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Role of isoconversional methods in varying activation
energies of solid-state kinetics
I. isothermal kinetic studies
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Abstract

Solid-state kinetics was developed from kinetic concepts for reactions in homogeneous phase systems, which has created considerable
debate over issues such as variable activation energy. This behavior has been viewed by some as a violation of basic chemical kinetic
principles. Variation in activation energy has been detected by isoconversional or ‘model-free’ calculation methods. The relationship between
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ifferent calculation methods and the occurrence of variable activation energy was investigated in this work by employing model-
soconversional methods to analyze simulated isothermal data. In addition, these approaches were applied for sulfameter–dioxo
esolvation data. We showed that variable activation energy is of two types—a true variation that results from the complex na
olid-state process and an artifactual one resulting from the use of some isoconversional methods.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Solid-state kinetic studies have caused numerous debates
nd controversies[1,2]. One controversial issue is the varia-

ion of activation energy as a function of reaction progress. In
recent article, Galwey[3] questioned the meaning of vari-
ble activation energy in solid-state decompositions and pro-
osed several explanations for this observation. Vyazovkin

4], in reply, provided alternative explanations for this be-
avior. Most explanations focus on the complexities inherent

n solid-state kinetics with little consideration being given to
econdary effects such as the effects of mathematical or com-
utational methods. The aim of this work is to test the sensi-

ivity of some of these methods, which will be done through
inetic analysis of simulated isothermal data, in addition to
ctual experimental kinetic results.

∗ Corresponding author. Tel.: +1 319 335 8819; fax: +1 319 335 9349.
E-mail address:ammar-khawam@uiowa.edu (A. Khawam).

1.1. Rate laws and kinetic analysis

The rate of a solid-state degradation reaction can be
erally described by

dα

dt
= kf (α) (1)

wherek is the reaction rate constant,f(α) the reaction mode
andα the conversion fraction. Integrating the above equa
gives the integral rate law

g(α) = kt (2)

whereg(α) is the integral reaction model. The tempera
dependence of the rate constant is usually described b
Arrhenius equation[5]:

k = A e−Ea/RT (3)

whereA is the pre-exponential (frequency) factor,Ea the ac-
tivation energy,T the absolute temperature andR the gas
040-6031/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2004.11.030



94 A. Khawam, D.R. Flanagan / Thermochimica Acta 429 (2005) 93–102

Table 1
Solid-state rate expressions for different reaction models

Model Differential formf (α) = (1/k)(dα/dt) Integral formg(α) = kt

Nucleation models
Power law (P2) 2α1/2 α1/2

Power law (P3) 3α2/3 α1/3

Power law (P4) 4α3/4 α1/4

Avarami–Erofe’ev (A2) 2(1− α)[−ln(1 − α)]1/2 [−ln(1 − α)]1/2

Avarami–Erofe’ev (A3) 3(1− α)[−ln(1 − α)]2/3 [−ln(1 − α)]1/3

Avarami–Erofe’ev (A4) 4(1− α)[−ln(1 − α)]3/4 [−ln(1 − α)]1/4

Geometrical contraction models
Contracting area (R2) 2(1− α)1/2 [1 − (1− α)1/2]
Contracting volume (R3) 3(1− α)2/3 [1 − (1− α)1/3]

Diffusion models

1 D diffusion (D1)
1

2α
α2

2 D diffusion (D2) [−ln(1 − α)]−1 [(1 − α)ln(1− α)] + α

3 D diffusion-Jander equation (D3) 3(1− α)2/3/2(1− (1− α)1/3) [1− (1− α)1/3]2

Ginstling–Brounshtein (D4) (
3

2
((1− α)−1/3 − 1) 1− (2α/3)− (1− α)2/3

Reaction-order models
Zero-order (F0) 1 α

First-order (F1) (1− α) −ln(1− α)
Second-order (F2) (1− α)2 (1− α)−1 − 1
Third-order (F3) (1− α)3 0.5 [(1− α)−2 − 1]

constant. Substituting Eq.(3) in the above two rate expres-
sions gives

dα

dt
= A e−Ea/RT f (α) (4)

and

g(α) = A e−Ea/RT t (5)

Several reaction models[6] are listed inTable 1.
Kinetic parameters can be obtained from isothermal

kinetic data by applying these rate laws with traditional
model-fitting methods or with isoconversional (model-free)
methods. Model-fitting methods involve two fits: the first
determines the model that best fits the data (Eq.(2)) while
the second determines specific kinetic parameters such
as the activation energy (Ea) and frequency factor (A)
using the Arrhenius equation (Eq.(3)). On the other hand,
isoconversional methods calculateEa values at progressive
degrees of conversion without any modelistic assumptions.
The standard isoconversional method[7] is based on taking
the natural logarithm of Eq.(5) giving,

−ln t = ln

(
A

g(α)

)
− Ea

RT
(6)

A plot of −ln t versus 1/Tat eachα yieldsEa (from the
slope) for thatα regardless of the model.

og-
a

l

t

Vyazovkin developed an advanced isoconversional
method (AIC)[9,10]that can be utilized for analyzing isother-
mal and non-isothermal data based on∣∣∣∣∣∣

n∑
i=1

n∑
j �=i

J(Eaα, Ti(tα))

J(Eaα, Tj(tα))

∣∣∣∣∣∣ = min (8)

where

J(Ea, T (t)) =
∫ tα

tα−∆α

e−Eaα/RT0 dt

whereT0 is the isothermal temperature,�α = 1/m with m
being the number ofα segments chosen for integration (20
in our work). The activation energy (Ea) represents the value
that minimizes (min) the above equation.

Isoconversional methods do not directly compute a fre-
quency factor and therefore usually report activation energy
values only. Vyazovkin[11] has suggested an indirect method
that utilizes an artificial isokinetic relationship to calculate a
frequency factor for isoconversional methods.

1.2. Varying activation energy

Solid-state kinetics was developed from reaction kinetics
in homogeneous systems (i.e. gases and liquids). The Arrhe-
nius equation (Eq.(3)) relates the rate constant of a simple
o ation
e en-
e -
t
t vary
w be
d tion
Friedman’s[8] method is based on taking the natural l
rithm of Eq.(4) giving

n

(
dα

dt

)
= ln(Af (α)) − Ea

RT
(7)

A plot of ln(dα/dt) versus 1/Tat eachα yieldsEa (from
he slope) for thatα regardless of the model.
ne-step reaction to the temperature through the activ
nergy (Ea) and pre-exponential factor (A). It has been g
rally assumed that activation energy (Ea) and frequency fac

or (A) remain constant, however, it has been shown[12–14]
hat in solid-state reactions these kinetic parameters may
ith the progress of the reaction (α). This variation can
etected by isoconversional methods. While this varia
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appears to be in conflict with basic chemical kinetic princi-
ples, in reality, it may not be. Such behavior may show that
solid-state kinetics are more complex and/or multi-step com-
pared to reactions in homogeneous phases. There are several
proposed explanations for varyingEa with reaction progress.
Vyazovkin [13] has shown this behavior in homogeneous
phases. Possible explanations for such variation in solid-state
reactions have been summarized by Galwey[3].

A variation in activation energy could be observed for both
elementary and complex reactions. An elementary reaction
could show variable activation energy during its progress due
to the heterogeneous nature of the solid sample, which could
cause a systematic change in reaction kinetics due to product
formation, crystal defect formation, intra-crystalline strain or
other similar effects. Solid-state reactivity of an elementary
reaction could also be affected by experimental variables that
could change the reaction kinetics by affecting heat or mass
transfer at a reaction interface[3].

If two or more elementary steps, each having a unique
activation energy, control the rate of product formation, the
reaction is usually called a complex reaction[15]. In such
a reaction, a change in the activation energy as the reaction
progresses would be observed. This change will depend on
the contribution of each elementary step, which gives an ‘ef-
fective’ activation energy that varies with reaction progress.
Kinetic complexities are not limited to multiple chemical
s subli-
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o ects,
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tifact that results from the sensitivity of these methods to
different experimental variables. This sensitivity was tested
through kinetic analysis of simulated and actual experimental
data. Actual experimental data was based on studying desol-
vation reaction kinetics of a drug solvate. A solvate crystal
form is a form in which solvent molecules occupy specific
positions within the crystal structure. Desolvation reactions
are characterized by the removal of solvent molecules from
the crystalline solvate below its melting point[17]. Such reac-
tion kinetics can be studied by isothermal and non-isothermal
thermal methods[18].

Sulfameter (structure below) is a long acting sulfonamide
that is used for the treatment of urinary and respiratory tract
infections[19]. A dioxolane (structure below) solvate of sul-
fameter was used to study desolvation reaction kinetics.

2. Experimental
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teps. They may also include physical processes (e.g.
ation, localized melting, adsorption–desorption, diffus
f a gaseous product, particle size and morphology eff
tc.) that have different activation energies[3].

Isoconversional methods, use several TGA or DSC
ets for kinetic analysis. When performing isothermal
eriments, care should be taken to ensure that every
one under the same experimental conditions (i.e., sa
eight, purge rate, sample size distribution, particle m
hology, etc.) so that only the temperature varies for
un. Experimental variation can be minimized, but not
ally removed. For example, sample mass may vary from
un to the next and affect a reaction because[16]:

(a) a larger mass causes larger endothermic or exotherm
fects (self-heating or self-cooling), producing deviati
from the fixed temperature;

b) the rate of diffusion of evolved gases through the sam
will change with sample mass.

Similarly, sample packing could affect solid reaction
etics where loosely packed powders contain air pocket
an reduce thermal conductivity or trap evolved gasses
ared to a more densely packed powder. If any of the a
ffects occur, a thermogram can be altered such that it
bove or below the expected thermogram for isothermal

es. This could introduce errors in the calculation of kin
arameters (i.e. activation energy) obtained from isoco
ional methods.

We propose that the observed variation in activation
rgy as detected by isoconversional methods could be
There are two parts to this investigation: the first invo
ata simulation where several isothermal experiments
imulated and then analyzed mathematically and the se
nvolved analyzing actual experimental data of the isothe
esolvation of sulfameter–dioxolane solvate.

The methods for evaluating isothermal kinetic data
lude the standard isoconversional method[7], Friedman’s

soconversional method[8], Vyazovkin’s advanced isoco
ersional (AIC) method[9,10] and the conventional mode
tting method.

.1. Data simulation

A simple, one-step reaction (solid A producing solid
nd gas C) according to the scheme below was simu

sothermally.

(s)→ B(s)+ C(g)

Fifteen simulations were generated using Microsoft® Ex-
el from the integral form of the rate law (Eq.(5)), isotherma
ata was simulated by calculating the time (t) forα values
etween 0.01 and 0.99 according to:

= g(α)

A e−Ea/RT
(9)

alues were assigned to the above parameters (g(α),Ea, A
ndT) to calculate the time for eachα. In some simulation
rror was introduced to approximate variability encount

n real data. The generated kinetic data were then ana
y different methods.
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Table 2
Variations in isothermal simulations generated from simulation A1
(error-free), produced using a first-order reaction model (F1) with
A= 1 ×1015 min−1 andEa = 100 kJ/mole

Simulation Simulation characteristics

A1 Error-free simulation of five isothermal curves at 323,
328, 333, 338 and 343 K

A2 323 K curve of simulation A1 shifted by−10% in time
A3 328 K curve of simulation A1 shifted by−10% in time
A4 333 K curve of simulation A1 shifted by−10% in time
A5 338 K curve of simulation A1 shifted by−10% in time
A6 343 K curve of simulation A1 shifted by−10% in time
A7 Temperature of 343 K curve in simulation A1 taken as

340 K
A8 Temperature of 333 and 343 K curves in simulation A1

taken as 335 and 340 K, respectively
A9 343 K curve of simulation A1 shifted by−0.016 min
A10 343 K curve of simulation A1 shifted by +0.016 min
A11 333 K curve of simulation A1 shifted by−0.1 min
A12 333 K curve of simulation A1 shifted by +0.1 min
A13 333 and 343 K curves of simulation A1 shifted by

+0.2 and−0.1 min, respectively
A14 Simulations A7 and A9 combined
A15 0.5% random error in time introduced to each curve in

simulation A1

The first isothermal simulation (A1) consisted of five
isothermal (α–t) curves which were simulated (error-free) at
five temperatures (323, 328, 333, 338 and 343 K) using a first-
order model (g(α) = −ln(1− α)) withA= 1 ×1015 min−1 and
Ea = 100 kJ/mole. Fourteen additional simulations (A2–15)
were generated from A1 using the same kinetic parameters
and model but introducing different perturbations in each
(Table 2). These perturbations included shifting one or more
curves and/or changing the temperature of a curve. A curve
shift simulates a thermal lag in a sample, while a tempera-
ture change simulates possible self-cooling/-heating effects
or the effect of using an apparent sample temperature rather
than the true temperature.

Kinetic analysis of each simulation was done by the con-
ventional model-fitting method and several isoconversional
methods (i.e. standard method[7], Friedman’s method[8]
and the advanced isoconversional method, AIC[9,10]).

All kinetic analysis was done with Microsoft Excel® us-
ing the Solver® tool for the AIC method or direct calcula-
tion for the standard and Friedman’s methods. The differen-
tial (dα/dt) in Friedman’s method was numerically evaluated
without smoothing.

2.2. Sulfameter solvate desolvation

Sulfameter was obtained from Sigma® Chemical Co. (lot
n h
C ere
u pre-
p t.

er-
m 7.
T bra-

tion method using alumel and nickel. A flow of nitrogen gas
ranging from 40 to 50 ml/min was used as a purge. A sample
size of 3–5 mg was used for each kinetic run. Isothermal runs
were performed at nominal temperatures of 323, 328, 333,
338 and 343 K; the exact sample temperature was obtained
by averaging observed sample temperatures over the time of
the TGA run.

Four different batches of sulfameter–dioxolane solvate
were separately prepared, a sample from each batch was ana-
lyzed (samples 1–4). Samples 1 and 2 were run without con-
trolling particle size or weight while samples 3 and 4 were
sieved and a particle size range of 90–355�m was used and
weights were within 5% of each other.

Kinetic analysis for desolvation data was done by model-
fitting and isoconversional methods, as described earlier for
simulated data.

3. Results and discussion

Thermogravimetric results of simulated and real data
are shown inFigs. 1 and 2.Fig. 1 showsα versus time
plot for isothermal simulation (A1) which consists of five
isothermal curves simulated (error-free) at five temperatures.
Fig. 2 shows four isothermal desolvation thermograms for
sulfameter–dioxolane samples (samples 1–4). Gravimetric
w nt ra-
t ata
s

3

3
ging

t hape
(
H ,
a hape

F tic
r et
g y
(

o. 107F0910) while dioxolane was obtained from Aldric®

hemical Co. (lot no. LO14921KO). These chemicals w
sed as supplied. A dioxolane solvate of sulfameter was
ared by recrystallizing sulfameter from the neat solven

Desolvation kinetics of this solvate was followed isoth
ally by thermogravimetry using a Perkin-Elmer TGA
he TGA temperature was calibrated by a two-point cali
eight loss for these solvates showed a 1:1 drug–solve
io (∼21%, w/w). Kinetic analysis for simulated and real d
ets is described below.

.1. Simulated data

.1.1. Isoconversional methods
Isoconversional analysis (Figs. 3–8) showed that chan

he temperature in isothermal runs does not affect the s
i.e. linearity or slope) of the isoconversional (Ea–α) plot.
owever, it does significantly change calculatedEa values
s seen in simulations A7 and 8 (Fig. 5). A change in the s

ig. 1. Error-free simulation (A1) ofα vs. time for several isothermal kine
uns at: (�) 323 K; (♦) 328 K; (�) 333 K; (�) 338 K; (�) 343 K. The ins
ives the simulation model, pre-exponential factor (A) and activation energ
Ea).



A. Khawam, D.R. Flanagan / Thermochimica Acta 429 (2005) 93–102 97

Fig. 2. α vs. time plots for the isothermal desolvation of sulfameter–dioxolane solvate samples: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4.

of an isoconversional plot represents an artificial variation in
activation energy.

Shifting one or more curves had different effects based
on the type of curve shift introduced. Systematic curve shifts
(moving a curve by a constant percent (A2–6)) had no effect
on the shape of the isoconversional plot, but considerably
altered calculated values ofEa from all three isoconversional
calculation methods (Fig. 4). On the other hand, shifting a
curve by a fixed time (A9–13) significantly changed the shape
of isoconversional plots calculated from the standard isocon-
versional method while those calculated from the Friedman
and AIC methods were unaffected (Figs. 5–7). Changes in the

F hree
i

shape of isoconversional plots (i.e. the artifactual variation in
activation energy), are due to variation of introduced errors
at eachα, the highest error being at lowα values, which ac-
counts for the observed deviation inEa from 100 kJ/mole in
some simulations. For example, A9 and 10 (Fig. 5) show op-
posite deviations inEa values that result from a±0.016 min
curve shift (Table 2), which occur up toα = 0.5. A similar
result is seen for A11–14 (Figs. 6 and 7) where largerEa
deviations are seen compared to A9 and 10 due to larger
introduced curve shifts (Table 2). Traditionally, researchers
[20] have suggested analyzing solid-state kinetics over
selected conversion values (i.e. 0.1–0.9) because errors are

F by
t

ig. 3. Ea vs.α plots of simulated isothermal runs (A1), evaluated by t
soconversional methods: (�) standard; (♦) Friedman; (�) AIC.
ig. 4. Ea vs. α plots of simulated isothermal runs (A2–6), evaluated
hree isoconversional methods: (�) standard; (♦) Friedman; (�) AIC.
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Fig. 5. Ea vs. α plots of simulated isothermal runs (A7–10), evaluated by
three isoconversional methods: (�) standard; (♦) Friedman; (�) AIC.

Fig. 6. Ea vs.α plots of simulated isothermal runs (A11 and 12), evaluated
by three isoconversional methods: (�) standard; (♦) Friedman; (�) AIC.

usually highest at extreme conversion values (i.e.,α < 0.1 and
α > 0.9).

Our results also show that some simulated runs were more
sensitive to the same perturbation than others. Perturbations

Fig. 7. Ea vs.α plots of simulated isothermal runs (A13 and 14), evaluated
by three isoconversional methods: (�) standard; (♦) Friedman; (�) AIC.

affecting the middle curve (third of five) introduced less error
than those affecting extreme curves (i.e. first or fifth curve).
For example, when curves were systematically shifted by
−10% in A2–6 (Fig. 4), calculated values ofEa increased by
about 0.6% in A4 where the third curve was shifted compared
to a change of about 4% in A2 and A6 that involved shifting
the first or last curve. Similarly, curves shifted by a fixed time
as in A9–12 (Figs. 5 and 6) showed variable effects in the
results calculated from the standard isoconversional method.
For example, when the fifth curve (343 K curve) was shifted
by ±0.016 min as seen in A9 and 10 (Fig. 5), deviations in
calculatedEa values as large as 25% were seen, however,
when the curve shift was six times higher (curve shifted by
±0.1 min) on the middle curve (333 K curve) as in A11 and 12
(Fig. 6), the deviation in calculatedEa values did not exceed
0.6%.

3.1.2. Model-fitting results
Kinetic analysis of each simulation was done by the con-

ventional model-fitting method where several kinetic triplets
(model,A andEa) were obtained (Table 3). Model selection
(i.e. the first fit) was not affected by any introduced pertur-
bation. The correct model (F1) was selected for all isother-
mal simulations (A1–15) and essentially perfect first-order
plots were obtained (r= 1.000). Model-fitting results agreed
w ods,
w nsi-
t by a
fi thod.
W nged
f y the
m cted
( ere
s per-
a e or
m

T
F
m

S

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

ith those obtained from the Friedman and AIC meth
hich showed that the model-fitting method is less se

ive to some of the perturbations (namely, curve shifts
xed time) compared to the standard isoconversional me
hile the shape of the standard isoconversional plot cha

or A9–13 (Figs. 5 and 7), kinetic parameters obtained b
odel-fitting method for these simulations were not affe

Table 3). Both isoconversional and model-fitting results w
imilarly affected by either changing the isothermal tem
ture as in A7 and 8 (Fig. 5) or systematically shifting on
ore curves as in A2–6 (Fig. 4).

able 3
itted kinetic parameters for simulated isothermal data (Table 2) using
odel-fitting methodsa

imulation A (min−1) Ea (kJ/mole) r2 b

1 1.00× 1015 100.00 1.0000
2 2.46× 1014 96.06 0.9984
3 5.12× 1014 98.09 0.9973
4 1.04× 1015 100.06 0.9970
5 2.08× 1015 101.97 0.9975
6 4.07× 1015 103.83 0.9986
7 5.23× 1016 110.77 0.9833
8 2.89× 1016 108.93 0.9650
9 1.00× 1015 100.00 1.0000
10 1.00× 1015 100.00 1.0000
11 1.00× 1015 100.00 1.0000
12 1.00× 1015 100.00 1.0000
13 1.02× 1015 100.06 1.0000
14 5.23× 1016 110.77 0.9833
15 9.85× 1014 99.96 1.0000
a Best fit model is always F1 (i.e., first-order).
b Correlation coefficient for lnk vs. 1/Tplot.
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3.2. Sulfameter desolvation

Kinetic analysis of sulfameter–dioxolane desolvation us-
ing the standard isoconversional method showed that shapes
of isoconversional plots are substantially different. For the
first two samples (Fig. 9a and b), this variation was antici-
pated since experimental variables were not as carefully con-
trolled. However, for the second two samples (Fig. 9c and d),
experimental conditions were nearly identical but the isocon-
versional plot still showed large differences at low conversion
values, whereas atα > 0.4 both isoconversional plots obtained
from the standard method are almost identical for these sam-
ples. This finding resembles results obtained for the same
method for simulations A9 and 10 (Fig. 5) and A11 and 12
(Fig. 6).

Kinetic analysis done with the Friedman and advanced
isoconversional (AIC) methods showed less variable ac-
tivation energy compared to the standard isoconversional
method (Fig. 10). However, calculated activation energies
were highly scattered with the Friedman’s method which
was also seen in simulation A15 (Fig. 8) which is common
with differential methods, the scatter could be reduced by
smoothing but experimental information could be lost if this
is not done carefully. There was also some scatter in the
isothermal desolvation results obtained by the AIC method

Fig. 8. Ea vs.α plots of simulated isothermal runs (A15), evaluated by three
isoconversional methods: (�) standard; (♦) Friedman; (�) AIC.

for both simulated (Fig. 8) and experimental data (Fig. 10),
which can also be seen in some other AIC results[9]. This
scatter is probably due to integration over smallα intervals.

Kinetic analysis done with the model-fitting method
(Table 4) gaveEa values that agreed with those obtained from
the AIC method. Results obtained from the model-fitting
method also showed an agreement with those obtained
from the standard isoconversional method forα > 0.4.

F
(

ig. 9. Ea vs.α plots for isothermal sulfameter–dioxolane solvate desolvation
�) Friedman; (�) AIC.
runs (samples 1–4), evaluated by three isoconversional methods: (�) standard;



100 A. Khawam, D.R. Flanagan / Thermochimica Acta 429 (2005) 93–102

Fig. 10. Ea vs.α plots for isothermal sulfameter–dioxolane solvate desolvation runs of four samples. Plots a, c and e are for samples 1 and 2. Plots b, d and f
are for samples 3 and 4.

Model-fitting results also showed that calculated activation
energies were not very dependent upon the kinetic model
(Table 4). This means that for the same run, any model gives
very comparable activation energies, which agrees with
previous reports[21,22].

Comparison of activation energies obtained from differ-
ent methods suggests that the observed variation inEa in
the standard isoconversional method for samples 3 and 4 is

artifactual, which could be due to a less-controlled exper-
imental variable that may have shifted any of theα–time
curves for these two samples (Fig. 2). These two samples
gave widely varyingEa values up toα ∼ 0.4. It seems that
desolvation of sulfameter–dioxolane solvate having a par-
ticle size of 90–355�m (samples 3 and 4) has an activation
energy of 75–85 kJ/mole if the results of the standard method
for α > 0.4 are to be believed, which agrees with the results
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Table 4
Fitted kinetic parameters for sulfameter–dioxolane isothermal desolvation kinetics by model-fitting methods

Model Sample 1 Sample 2 Sample 3 Sample 4

A (min−1) Ea (kJ/mole) r A (min−1) Ea (kJ/mole) r A (min−1) Ea (kJ/mole) r A (min−1) Ea (kJ/mole) r

A2 6.89× 1013 94.61 0.9980 5.26× 109 67.90 0.9992a 2.67× 1011 75.91 0.9995a 5.12× 1012 84.55 0.9983a

A3 5.36× 1013 94.92 0.9890 3.67× 109 67.88 0.9954 1.78× 1011 75.78 0.9915 3.04× 1012 84.09 0.9943
A4 4.39× 1013 95.07 0.9790 2.84× 109 67.88 0.9884 1.34× 1011 75.70 0.9822 2.17× 1012 83.86 0.9871
D1 4.34× 1013 94.51 0.9879 3.09× 109 67.63 0.9805 1.96× 1011 76.24 0.9846 3.82× 1012 84.92 0.9818
D2 3.13× 1013 94.04 0.9785 2.71× 109 67.70 0.9676 1.67× 1011 76.23 0.9761 3.98× 1012 85.49 0.9672
D3 1.15× 1013 93.33 0.9275 1.43× 109 68.01 0.9136 7.82× 1010 76.17 0.9278 2.59× 1012 86.37 0.9103
D4 8.13× 1012 93.80 0.9674 7.88× 108 67.79 0.9552 4.71× 1010 76.22 0.9657 1.25× 1012 85.78 0.9538
F1 1.03× 1014 93.80 0.9666 1.09× 1010 68.02 0.9576 5.71× 1011 76.09 0.9675 1.55× 1013 85.72 0.9554
F2 4.56× 1014 92.11 0.6227 1.46× 1011 69.39 0.6130 4.45× 1012 75.92 0.6315 3.18× 1014 88.29 0.6069
F3 1.04× 1016 91.61 0.3870 6.38× 1012 70.69 0.3821 1.17× 1014 75.76 0.3981 1.51× 1016 89.82 0.3772
P2 4.91× 1013 95.67 0.9377 2.52× 109 67.81 0.9520 1.19× 1011 75.66 0.9402 1.49× 1012 83.08 0.9528
P3 4.13× 1013 95.83 0.9125 2.02× 109 67.83 0.9310 8.92× 1010 75.50 0.9167 1.07× 1012 82.80 0.9307
P4 3.50× 1013 95.91 0.8968 1.67× 109 67.84 0.9176 7.10× 1010 75.40 0.9019 8.37× 1011 82.66 0.9166
R1 5.39× 1013 95.22 0.9783 3.12× 109 67.74 0.9825 1.72× 1011 75.99 0.9774 2.49× 1012 83.83 0.9846
R2 3.56× 1013 94.61 0.9981a 2.60× 109 67.78 0.9954 1.47× 1011 76.07 0.9971 2.75× 1012 84.65 0.9959
R3 2.65× 1013 94.36 0.9962 2.15× 109 67.83 0.9913 1.2× 1011 76.09 0.9955 2.51× 1012 84.98 0.9909

a Best fit model.
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well-controlled particle size and weights. For the standard
isoconversional method (Fig. 11a), this average showed the
widest confidence intervals (±40%) for lowα (α ≤ 0.2) while
the smallest were±8–12% forα > 0.2. On the other hand, av-
eraging all four runs for the AIC method (Fig. 11b) showed
uniform confidence intervals of±10–20% at all values ofα.
Judging from the simulation results, plot (Fig. 11b) is prob-
ably more representative of the actual activation energy than
that in (Fig. 11a).

The systematic decrease of confidence intervals with re-
action progress seen in the standard isoconversional method
further supports the somewhat artifactual activation energy
variation at lowα.

4. Conclusions

The debate over variable activation energy is most of-
ten due to viewing heterogeneous solid-state kinetics from a
homogeneous perspective. However, explanations are neces-
sary for this behavior to better understand solid-state reaction
mechanisms.

Activation energy variation could be real or artifactual.
A true variation in activation energy is one that occurs be-
cause of the inherent complexity of the solid sample, which
includes different reactivity of individual particles due to par-
t ari-
a yed.
O eth-
o ty is
m y as
a he
o con-
v tion,
w ow-
e quite
s eful
f g is
e

en-
e . The
a ob-
t acti-
v ental
v etect
t nver-
s eting
k tion
i to a

false mechanistic conclusion about a reaction being complex
while, in fact, it is not.

The AIC method appears to be a superior isoconversional
method and its use should be encouraged in isothermal ex-
periments. The results from this method should be used in
conjunction with those from the model-fitting method to de-
termine the most accurate values ofEa andA. Finally, vari-
ation in activation energy could be a combination of the two
aforementioned sources of variation, making the resolution
into individual contributions difficult or impossible.

There seems to be no ideal method for evaluating solid-
state kinetics because calculated values of activation energy
could be in error, even when results from isoconversional and
the model-fitting methods agree. To overcome this, experi-
mental variables should be adequately controlled and exper-
iments replicated, so that averaged kinetic parameters and
their confidence intervals can be estimated.

Our next work involves similar simulations and experi-
mental data for non-isothermal kinetic runs[23].
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