

Available online at www.sciencedirect.com



Thermochimica Acta 434 (2005) 119-124

thermochimica acta

www.elsevier.com/locate/tca

# Microcalorimetric studies of the iridium catalyst for hydrazine decomposition reaction

Lin Li<sup>a,b</sup>, Xiaodong Wang<sup>a</sup>, Xuqun Zhao<sup>a,b</sup>, Mingyuan Zheng<sup>a,b</sup>, Ruihua Cheng<sup>a,b</sup>, Lixing Zhou<sup>a</sup>, Tao Zhang<sup>a,\*</sup>

<sup>a</sup> State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P.O. Box 110, Dalian 116023, PR China <sup>b</sup> Graduate School of Chinese Academy of Sciences, Beijing 100039, PR China

> Received 31 August 2004; received in revised form 13 December 2004; accepted 13 December 2004 Available online 30 January 2005

#### Abstract

Microcalorimetric studies of  $H_2$ ,  $NH_3$  and  $O_2$  adsorption, as well as the  $NH_3$  decomposition activities evaluation were used to characterize the iridium catalysts for hydrazine decomposition with different supports ( $Al_2O_3$ ,  $SiO_2$ ) and iridium contents (1.8, 10.8 and 22.1%). The higher  $H_2$  chemisorption amounts on  $Ir/Al_2O_3$  catalysts than those on the corresponding  $Ir/SiO_2$  counterparts revealed that the strong interaction of iridium and  $Al_2O_3$  led to higher dispersion of iridium on  $Ir/Al_2O_3$  catalysts than on  $Ir/SiO_2$  catalysts. The larger increase in strong  $H_2$ adsorption sites on highly loaded  $Ir/Al_2O_3$  than the corresponding  $Ir/SiO_2$  ones could be attributed to the interaction not only between iridium atoms but also between iridium and  $Al_2O_3$ . The microcalorimetric results for  $NH_3$  adsorption showed that no apparent chemisorption of  $NH_3$ existed on  $Ir/SiO_2$  catalysts while  $NH_3$  chemisorption amounts increased on  $Ir/Al_2O_3$  catalysts with iridium loadings, which arose from the interaction of the catalysts support of  $Al_2O_3$  with chloride anion. Both highly dispersed iridium active sites and chloride anion on  $Ir/Al_2O_3$ catalysts could be beneficial to the intermediate  $NH_3$  decomposition in  $N_2H_4$  decomposition. The similar  $O_2$  plots of differential heat versus normalized coverage on  $Ir/Al_2O_3$  and  $Ir/SiO_2$  catalysts could not be due to the metal–support interaction, but to the formation of strong Ir-Obond.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Microcalorimetry; Ir/Al2O3 catalyst; Hydrazine; Ammonia; Decomposition

## 1. Introduction

The catalytic decomposition of hydrazine has been an interesting problem because of its many practical applications: gas generators, fuel cells and the most frequently used in satellite attitude control [1–3]. An important aspect of this process is that hydrazine decomposition usually does not follow the fixed chemical stoichiometry. It could be affected by catalysts, temperature and pressure [4,5]. For example, hydrazine decomposes on Ir based catalyst almost exclusively to form N<sub>2</sub> and NH<sub>3</sub> while N<sub>2</sub>, H<sub>2</sub> and NH<sub>3</sub> are the products over Rh, Pt and Pd catalysts between 60 and 160 °C. Another interesting aspect of catalytic decomposition of hydrazine is that greatly different from the general commercial noble metal catalyst, iridium based catalysts exhibiting the highest catalytic activity for hydrazine decomposition always have much higher iridium content. Generally, the most efficient catalyst contains about 36 wt.% metallic iridium dispersed on an alumina support [6].

Up to now, only a few papers have been found to characterize the hydrazine decomposition process on  $Ir/Al_2O_3$ catalysts owing to the complexity of the hydrazine decomposition reaction and the particularity of the high-loading  $Ir/Al_2O_3$  catalysts. TEM, UV and XPS were used to probe the iridium species dispersed on the alumina support [7,8] and TPD combined with measuring the binding energy of adsorbed species was used to study the reaction mechanism

<sup>\*</sup> Corresponding author. Tel.: +86 411 84379015; fax: +86 411 84691570. *E-mail address:* taozhang@dicp.ac.cn (T. Zhang).

<sup>0040-6031/\$ –</sup> see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2004.12.018

of hydrazine decomposition [9–11]. The reaction process of hydrazine decomposition over  $Ir/Al_2O_3$  catalysts still has not been well understood.

In the present paper, microcalorimetry was employed to study the adsorption characteristics of  $N_2H_4$  as well as its decomposition products and intermediate on Ir based catalysts with different iridium contents (1.8, 10.8 and 22.1%) and supports (Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>) to elucidate the changes in surface structure and the reaction process of hydrazine decomposition on iridium-based catalyst. Microcalorimetric adsorption of O<sub>2</sub> was also performed to detect the effect of O<sub>2</sub> on hydrazine decomposition reaction since oxygen could exist in the application of this reaction.

# 2. Experimental

#### 2.1. Microcalorimetry

Microcalorimetric measurements of H<sub>2</sub>, N<sub>2</sub> and O<sub>2</sub> at 27 °C and NH<sub>3</sub> at 150 °C were performed using a BT 2.15 heat-flux calorimeter. The calorimeter was connected to a gas handling and a volumetric system employing MKS 698A Baratron Capacitance Manometers for precision pressure measurement ( $\pm 1.33 \times 10^{-2}$  Pa). The maximum apparent leak rate of the volumetric system was  $10^{-4}$  Pa/min in a system volume of approximately 80 cm<sup>3</sup>. The ultimate dynamic vacuum of the system was ca.  $10^{-5}$  Pa.

The procedures for microcalorimetric adsorption have been described in detail elsewhere [12]. Briefly, the sample was heated to 400 °C in 4h and held at this temperature for 4h in a special treatment cell using a dynamic high pure H<sub>2</sub> (99.999%) atmosphere. After being reduced, the sample was evacuated for 2 h at 400 °C, then transferred to a side-armed Pyrex and sealed in a Pyrex capsule. The capsule can minimize the possible contamination in the high vacuum system in the course of thermal equilibrium (6-8 h) with the calorimeter. After thermal equilibrium was reached, the capsule was broken by a vacuum feedthrough and 'fresh' catalyst was exposed. The microcalorimetric data were then collected by sequentially introducing small doses (1-10 µmol) of probe molecules onto the sample until it became saturated (5-6 Torr). The differential heat versus adsorbate coverage plots and adsorption isothermals can be obtained simultaneously after a typical microcalorimetric experiment.

#### 2.2. Catalysts preparation

The catalysts were prepared by incipient wetness method. The catalyst supports used in this study were  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> with a BET area of 208 and 400 m<sup>2</sup>/g, respectively. The precursor was an aqueous solution of H<sub>2</sub>IrCl<sub>6</sub>·6H<sub>2</sub>O (AR). After impregnation, the samples were dried at 110 °C for 12 h and calcined in air at 400 °C for 2 h. Iridium catalysts with different iridium loadings of 1.8, 10.8 and 22.1% were obtained.

#### 2.3. Catalysts characterization

The specific surface areas of  $Ir/Al_2O_3$  catalysts and  $Al_2O_3$  were determined by N<sub>2</sub> adsorption at 77 K using a Micromeritics ASAP 2010 apparatus. Before every experiment, the samples were evacuated at 350 °C for 4 h. The chlorine content of  $Ir/Al_2O_3$  catalysts were determined by X-ray fluorescence spectrum using a Philips MagiX spectrometer.

#### 2.4. Test of catalyst activity

NH<sub>3</sub> decomposition activities were evaluated in a fixedbed continuous-flow micro-reactor. Typically, about 400 mg  $(0.5 \text{ cm}^3)$  of catalyst particle with 20–40 mesh were used and the feedstock was pure NH<sub>3</sub> maintained at a feeding rate of 20 ml/min (GHSV = 2400 h<sup>-1</sup>). Prior to reaction, the catalysts were reduced in situ in pure hydrogen at 673 K for 2 h and then purged with pure argon. The products of N<sub>2</sub>, H<sub>2</sub>, and NH<sub>3</sub>, were detected by an on-line gas chromatograph (Agilent 6890A with 13X and Chromossorb 103 columns) equipped with a TCD detector.

## 3. Results and discussion

## 3.1. $N_2H_4$ adsorption

Iridium is very active for hydrazine decomposition and it is very difficult to obtain differential heat of  $N_2H_4$  adsorption on iridium based catalyst at room temperature.

# 3.2. H<sub>2</sub> adsorption

H<sub>2</sub> is not only the product of hydrazine decomposition, but also one of the most frequently used molecules for probing metal active sites of catalysts. Fig. 1a shows the adsorption isotherms of H<sub>2</sub> on the Ir/Al<sub>2</sub>O<sub>3</sub> catalysts with different iridium loadings. The shape of the isotherms is in general similar to that of a classical isotherm of Langmuir chemisorption type. The H<sub>2</sub> monolayer uptake is determined by extrapolating the linear part of the isotherm fitted curve to zero pressure. The capacities of hydrogen adsorption are 46, 175 and 260  $\mu$ mol/g on 1.8, 11.8 and 22.1% Ir/Al<sub>2</sub>O<sub>3</sub> catalysts. Obviously, the amount of hydrogen adsorption on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts is in direct proportion to the iridium loadings of catalysts. Thus, assuming that hydrogen adsorbs dissociatively on iridium active sites, this result indicates that Ir/Al<sub>2</sub>O<sub>3</sub> catalyst with the higher iridium content possesses the more iridium active sites.

The same microcalorimetric measurements for  $H_2$  adsorption on SiO<sub>2</sub>-supported iridium catalysts were also performed as comparison. The corresponding adsorption isotherms are shown in Fig. 1b. It can be seen that the capacities of hydrogen adsorption on 1.8, 11.8 and 22.1% Ir/SiO<sub>2</sub> catalysts are 24, 120 and 165 µmol/g, which are much lower than those on cor-



Fig. 1. (a) Isotherms of H<sub>2</sub> adsorption at room temperature on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts with different iridium loadings: ( $\blacktriangle$ ) 1.8%, ( $\triangledown$ ) 10.8%, ( $\blacksquare$ ) 22.1%. (b) Isotherms of H<sub>2</sub> adsorption at room temperature on Ir/SiO<sub>2</sub> catalysts with different iridium loadings: ( $\triangle$ ) 1.8%, ( $\bigtriangledown$ ) 10.8%, ( $\square$ ) 22.1%.

responding Ir/Al<sub>2</sub>O<sub>3</sub> counterparts, indicating not only higher dispersion of iridium but also smaller size of iridium crystallite exists on Ir/Al<sub>2</sub>O<sub>3</sub> than on Ir/SiO<sub>2</sub>. These results imply that there exists a strong interaction between iridium and Al<sub>2</sub>O<sub>3</sub> in Ir/Al<sub>2</sub>O<sub>3</sub> catalysts, which leads to a better anchoring of iridium on Al<sub>2</sub>O<sub>3</sub> than on SiO<sub>2</sub>. Thus, Al<sub>2</sub>O<sub>3</sub> seems to be a good support for dispersing iridium as iridium loadings increase.

Fig. 2A shows the histograms of the energetic distribution of iridium active sites for H<sub>2</sub> adsorption on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts. These histograms were generated by first normalizing the H<sub>2</sub> uptake with the corresponding monolayer uptake on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts, then smoothing the differential heat data with a least-squares-fitted polynomial and finally using this polynomial to determine the percentage of active sites on  $Ir/Al_2O_3$  catalysts with a given range of differential heats [13]. It can be seen that although the percentages of iridium active sites contained in the interval of 100-90 kJ/mol are similar among the 1.8, 10.8 and 22.1% Ir/Al<sub>2</sub>O<sub>3</sub> catalysts, the ones in the intervals of 90-80 kJ/mol and 80-70 kJ/mol are enhanced greatly with the increase of iridium content at the expense of those in low energetic interval. It suggests that a significant fraction of active sites on the highly loaded Ir/Al<sub>2</sub>O<sub>3</sub> catalyst interacts strongly with hydrogen. The same histograms of H<sub>2</sub> adsorption on Ir/SiO<sub>2</sub> catalysts are shown in Fig. 2B. It is interesting to note that although SiO<sub>2</sub> is a neutral support, the percentages of iridium active sites contained in the interval of 90–80 kJ/mol and 80–70 kJ/mol on Ir/SiO<sub>2</sub> catalysts are also increased with increasing iridium loadings, but lower than those on corresponding Ir/Al<sub>2</sub>O<sub>3</sub> counterparts. These strongly suggest that not only the interaction between iridium atoms but also the interaction between iridium and Al<sub>2</sub>O<sub>3</sub> exists on the high-loading Ir/Al<sub>2</sub>O<sub>3</sub> catalysts, which lead to the strong H<sub>2</sub> adsorption sites. Several studies have demonstrated that the hydrogen adatoms produced upon the dissociative adsorption of hydrazine can react with hydrazine to produce ammonia [10,14] through hydrogenolysis reaction of hydrazine (H<sub>2</sub> + N<sub>2</sub>H<sub>4</sub>  $\rightarrow$  2NH<sub>3</sub>). Obviously, the highly loaded Ir/Al<sub>2</sub>O<sub>3</sub> catalyst can promote the hydrazine decomposition by hydrogenolysis reaction.

# 3.3. N<sub>2</sub> adsorption

Generally, iridium is not considered as a metal to adsorb molecular nitrogen. In fact, no differential heat of  $N_2$  adsorption on iridium based catalysts was obtained in our experiment. It is consistent with the  $N_2$ -TPD result [10] in the literature.

#### 3.4. NH<sub>3</sub> adsorption and NH<sub>3</sub> decomposition

 $NH_3$  is often used to probe the number and strength of acid sites on catalyst. In hydrazine decomposition reaction,  $NH_3$  is not only the product but also the intermediate. Therefore, the adsorption and decomposition studies of  $NH_3$  on Ir catalysts will help to understand hydrazine decomposition process.

Fig. 3 shows the differential heat versus NH<sub>3</sub> uptake on SiO<sub>2</sub>, 10.8% Ir/SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> and Ir/Al<sub>2</sub>O<sub>3</sub> catalysts. It can be seen that the initial heat and uptake of NH3 adsorption on both SiO<sub>2</sub> and 10.8% Ir/SiO<sub>2</sub> are very low, suggesting that NH<sub>3</sub> could not adsorb on iridium active sites directly at experiment temperature. But NH<sub>3</sub> adsorption on both Al<sub>2</sub>O<sub>3</sub> and Ir/Al<sub>2</sub>O<sub>3</sub> produced high initial heat and uptake. It implies that NH<sub>3</sub> adsorption process proceeds mainly on the catalyst support during hydrazine decomposition over Ir/Al<sub>2</sub>O<sub>3</sub>. It is worthwhile to note that NH<sub>3</sub> uptakes on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts increase with iridium contents although the catalysts surface areas decrease (Table 1). Table 1 shows that the chlorine content increases in Ir/Al<sub>2</sub>O<sub>3</sub> catalysts with increasing iridium loadings since H<sub>2</sub>IrCl<sub>6</sub> was used as precursor in the procedure of the catalysts preparation. So it is reasonable to conclude that the chlorine remained on the catalysts leads to the larger NH<sub>3</sub> uptakes on Ir/Al<sub>2</sub>O<sub>3</sub>.

Fig. 4 shows NH<sub>3</sub> decomposition activity over Ir/Al<sub>2</sub>O<sub>3</sub> and Ir/SiO<sub>2</sub> catalysts. The initial reaction temperature of ammonia thermal decomposition is 600 °C and NH<sub>3</sub> cannot decompose entirely even at 850 °C. Though the initial decomposition temperature of NH<sub>3</sub> over SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> has not been changed as compared to thermal decomposition, slightly higher NH<sub>3</sub> conversion exists over SiO<sub>2</sub> and obviously higher NH<sub>3</sub> conversion exists over Al<sub>2</sub>O<sub>3</sub> at the reaction temperature region. This implies that Al<sub>2</sub>O<sub>3</sub> exhibits



Fig. 2. (A) Histograms of the distribution of site strength for  $H_2$  adsorption on  $Ir/Al_2O_3$  catalysts with different iridium loadings: (a) 1.8%, (b) 10.8%, (c) 22.1%. (B) Histograms of the distribution of site strength for  $H_2$  adsorption on  $Ir/SiO_2$  catalysts with different iridium loadings: (a) 1.8%, (b) 10.8%, (c) 22.1%.

certain ammonia decomposition activity. It is worthwhile to note that the initial decomposition temperature of NH<sub>3</sub> is decreased greatly and NH<sub>3</sub> conversions are increased significantly when iridium is introduced into SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>.



Fig. 3. Differential heat vs. adsorbate uptake for NH<sub>3</sub> adsorption on ( $\Diamond$ ) SiO<sub>2</sub>, ( $\blacklozenge$ ) 10.8% Ir/SiO<sub>2</sub>, ( $\triangle$ ) Al<sub>2</sub>O<sub>3</sub>, and Ir/Al<sub>2</sub>O<sub>3</sub> catalysts with different iridium loadings: ( $\blacktriangle$ ) 1.8%, ( $\triangledown$ ) 10.8%, ( $\blacksquare$ ) 22.1% at 150 °C.

These results imply that iridium sites are also active center for intermediate NH<sub>3</sub> decomposition in N<sub>2</sub>H<sub>4</sub> decomposition reaction. Furthermore, NH<sub>3</sub> conversions on Ir/Al<sub>2</sub>O<sub>3</sub> and Ir/SiO<sub>2</sub> catalysts increase with iridium contents, suggesting that higher iridium loadings on iridium catalysts are beneficial to the NH<sub>3</sub> decomposition. Interestingly, NH<sub>3</sub> conversions on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts are much higher than those on Ir/SiO<sub>2</sub> counterparts. The microcalorimetric results of H<sub>2</sub> adsorption show that iridium active sites are dispersed better on the support of Ir/Al<sub>2</sub>O<sub>3</sub>. Furthermore, the microcalorimetric results of NH<sub>3</sub> adsorption indicate that chloride anion in Ir/Al<sub>2</sub>O<sub>3</sub> catalysts leads to higher NH<sub>3</sub> uptake. Thus, it

Table 1 BET and chlorine content of  $Al_2O_3$  and  $Ir/Al_2O_3$  catalysts with different iridium loadings

|                                         | BET (m <sup>2</sup> /g) | Chlorine content |
|-----------------------------------------|-------------------------|------------------|
| Al <sub>2</sub> O <sub>3</sub>          | 208                     | _                |
| 1.8% Ir/Al <sub>2</sub> O <sub>3</sub>  | 202                     | 0.896            |
| 10.8% Ir/Al <sub>2</sub> O <sub>3</sub> | 190                     | 1.656            |
| 22.1% Ir/Al <sub>2</sub> O <sub>3</sub> | 156                     | 1.892            |



Fig. 4. The decomposition activity of ammonia over Ir/Al<sub>2</sub>O<sub>3</sub> catalysts with different iridium contents: ( $\blacktriangle$ ) 1.8%, ( $\triangledown$ ) 10.8%, ( $\blacksquare$ ) 22.1%, Ir/SiO<sub>2</sub> catalysts with different iridium contents: ( $\triangle$ ) 1.8%, ( $\bigtriangledown$ ) 10.8%, ( $\Box$ ) 22.1%, ( $\blacklozenge$ ) Al<sub>2</sub>O<sub>3</sub>, ( $\bigcirc$ ) SiO<sub>2</sub> and ( $\blacklozenge$ ) thermal decomposition.

is obvious that higher NH<sub>3</sub> conversion on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts could be attributed to highly dispersed iridium active sites and high chlorine content on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts.

#### 3.5. $O_2$ adsorption

O<sub>2</sub> has been used as probe molecule to study the chemisorption properties of low-loading Ir catalysts [15-18]. In addition, O<sub>2</sub> could exist in the application of hydrazine decomposition. Thus it is desirable to study the adsorption properties of O2 on highly loaded Ir/Al2O3 and Ir/SiO<sub>2</sub> catalysts, as well as the effect of O<sub>2</sub> adsorption towards this reaction. The microcalorimetric results of O<sub>2</sub> adsorption on Ir/Al<sub>2</sub>O<sub>3</sub> and Ir/SiO<sub>2</sub> catalysts are shown in Fig. 5a and b. The O<sub>2</sub> saturation uptakes in the calorimetric curves are normalized by dividing the corresponding monolayer uptakes in order to compare the catalysts with different iridium content and dispersion. Different from those of H<sub>2</sub> adsorption on Ir/Al<sub>2</sub>O<sub>3</sub> and Ir/SiO<sub>2</sub> catalysts, the normalized differential heat curves of O<sub>2</sub> adsorption on Ir/Al<sub>2</sub>O<sub>3</sub> and Ir/SiO<sub>2</sub> catalysts with different iridium loadings are almost the same. All the catalysts show the initial heats of 350 kJ/mol and adsorption heat plateau versus O<sub>2</sub> coverage at 300 kJ/mol up to about 0.8 monolayer. Guil et al. [15,16] also found the similar calorimetric results on low-loading Ir/Al<sub>2</sub>O<sub>3</sub> and Ir/SiO<sub>2</sub> catalysts. Obviously, the similar adsorption behavior of O<sub>2</sub> on Ir/Al<sub>2</sub>O<sub>3</sub> and Ir/SiO<sub>2</sub> catalysts could not be attributed to the metalsupport interaction, but to the formation of strong Ir-O bonds, which restricts the surface mobility of O on iridium; i.e., the oxygen remains on these surface sites where they are first adsorbed. Moreover, the special adsorption behavior of O<sub>2</sub> also implies that O<sub>2</sub> could compete with reactant and intermediate to adsorb on iridium active sites in the course of hydrazine decomposition reaction and further decrease the activity of Ir catalysts in the presence of  $O_2$ .



Fig. 5. (a) Differential heat vs. adsorbate coverage for O<sub>2</sub> adsorption on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts with different iridium loadings at room temperature: ( $\blacktriangle$ ) 1.8%, ( $\blacktriangledown$ ) 10.8%, ( $\blacksquare$ ) 22.1%. (b) Differential heat vs. adsorbate coverage for O<sub>2</sub> adsorption on Ir/SiO<sub>2</sub> catalysts with different iridium loadings at room temperature: ( $\bigtriangleup$ ) 1.8%, ( $\bigtriangledown$ ) 10.8%, ( $\Box$ ) 22.1%.

### 4. Conclusions

The microcalorimetric results of  $H_2$  adsorption on  $Ir/Al_2O_3$  and  $Ir/SiO_2$  catalysts show that the capacities of  $H_2$  adsorption on  $Ir/Al_2O_3$  catalysts are obviously higher than those on the corresponding  $Ir/SiO_2$  counterparts. It can be attributed to the better dispersion of iridium on  $Al_2O_3$  support, as a result of the strong interaction between iridium and  $Al_2O_3$ . Moreover, larger increase in strong  $H_2$  adsorption sites on highly loaded  $Ir/Al_2O_3$  catalysts than on the corresponding high-loading  $Ir/SiO_2$  catalysts could be owing to the interaction not only between iridium atoms, but also between iridium and  $Al_2O_3$ .

No apparent chemisorption of NH<sub>3</sub> exists on Ir/SiO<sub>2</sub> catalysts. However, NH<sub>3</sub> chemisorption amounts on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts increase with iridium loadings and the largest NH<sub>3</sub> uptake exists the highest loaded Ir/Al<sub>2</sub>O<sub>3</sub> catalyst. The increase in NH<sub>3</sub> uptake on Ir/Al<sub>2</sub>O<sub>3</sub> catalysts could result from the interaction of Al<sub>2</sub>O<sub>3</sub> support with chloride anion. NH<sub>3</sub> conversions are enhanced significantly when iridium is introduced into SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>. Furthermore, NH<sub>3</sub> conversions increase with iridium contents. These indicate that iridium is active sites for the intermediate ammonia decomposition in hydrazine decomposition process. Much higher  $NH_3$  conversions on  $Ir/Al_2O_3$  catalysts than those on  $Ir/SiO_2$  counterparts could be attributed to not only highly dispersed iridium active sites, but also chlorine anion in  $Ir/Al_2O_3$  catalyst.

The plots of differential heat versus  $O_2$  coverage on  $Ir/Al_2O_3$  and  $Ir/SiO_2$  catalysts present almost the same high initial heat and large differential heat plateau, suggesting that the formation of strong Ir–O bonds is responsible for the special  $O_2$  adsorption behavior.

## Acknowledgments

This work was supported by a grant from the National Science Foundation of China (NSFC) for Outstanding Youth (No. 20325620) and a grant from NSFC for Youth (No. 20303017).

## References

 E. Schmidt, Hydrazine and its Derivatives Preparation. Properties, Applications, Wiley, New York, 1984.

- [2] W. Keim, Hydrazine decomposition, in: Handbook of Heterogeneous Catalysis, VCH Verlagsgeseclschatt mbH, Weinheim, 1997, pp. 1795–1799.
- [3] W.E. Armstrong, L.B. Ryland, H.H. Voge, Catalyst comprising Ir or Ir and Ru for hydrazine decomposition, U.S. Patent 4,124,538 (1978).
- [4] S.E. Wood, J.T. Bryant, Ind. Eng. Chem. Prod. Res. Dev. 12 (1973) 117–122.
- [5] R. Maurel, J.C. Menezo, J. Catal. 51 (1978) 293-295.
- [6] P.J. Birbara, W. Locks, Catalyst for hydrazine decomposition, U.S. Patent 4,348,303 (1982).
- [7] G. Schulz-Ekloff, R. Hoppe, Catal. Lett. 6 (1990) 383-388.
- [8] J. Escard, C. Leclere, J.P. Contour, J. Catal. 29 (1973) 31-39.
- [9] B.J. Wood, H. Wise, J. Catal. 39 (1975) 471-480.
- [10] J.P. Contour, G. Pannetier, J. Catal. 24 (1972) 434-445.
- [11] J.L. Falconer, H. Wise, J. Catal. 43 (1976) 220-233.
- [12] L. Li, X. Wang, T. Zhang, J. Shen, L. Zhou, Chin. J. Catal. 24 (2003) 872–876.
- [13] R.D. Cortright, J.A. Dumesic, J. Catal. 148 (1994) 771-778.
- [14] K.I. Aika, T. Ohhta, A. Ozaki, J. Catal. 19 (1970) 140-143.
- [15] J.M. Guil, A. Perez Masia, A. Ruiz Paniego, J.M. Trejo Menayo, Thermochim. Acta 312 (1998) 115–124.
- [16] J.M. Guil, J.E.H. Garcia, A.R. Paniego, J.M.T. Menayo, Top. Catal. 19 (2002) 313–321.
- [17] M. Cabrejas Manchado, J.M. Guil, A. Ruiz Paniego, J. Catal. 136 (1992) 598–604.
- [18] J. Cobes, J. Phillips, J. Phys. Chem. 95 (1991) 8776-8781.