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Abstract

This paper proposes an integral method that uses local heating rates to evaluate the activation energy dependence on the extent of conversi
The method leads to consistent results with those from a differential isoconversional technique while regular integral isoconversional techniqu
results in systematic errors in the activation energy with the extent of conversion. The method is validated from (1) simulated thermal analysis
curves for a single reaction model, (2) simulated thermal analysis curves involving in two parallel reactions, and (3) non-isothermal dehydration
of calcium oxalate monohydrate.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction error of an integral isoconversional method can be estimated
by comparing it against the Friedman method. Because the
Model-free isoconversional methods are the most reliable Friedman method employs instantaneous rate values, it is
methods for the calculation of activation energies of thermally sensitive to experimental noise and tends to be numerically
activated reactions. A large number of isoconversional meth- unstablg15], especially when the rate is estimated by numer-
ods have been proposed. Isoconversional techniques make iical differentiation of experimental data. This comparison is
possible to estimate the activation energy of a process as @herefore more effectively performed on smoothed data that
function of the extent of conversioa, Analysis of the activa- ~ do not contain experimental noise.
tion energy dependence arprovides important clues about Improved methods have recently been proposed to elimi-
reaction mechanisrfil-5]. It is noteworthy[1,6,7] that, if nate this systematic error. VyazovKit6] suggested a mod-
the activation energy depends enthe differential method  ified integral non-linear isoconversional procedure (MNL-
suggested by Friedm4d8] gives values of the activation en- INT), in which the constancy of activation energy, is
ergy which differ from those obtained with integralisoconver- assumed for only a small segmemy. When the seg-
sional methods such as FW@10], Li-Tang[11], KAS [12] ment A« is small enough, this procedure leadsBgp val-
and Vyazovkin methodfl 3,14]. The reason is that integral ues practically equal to those obtained by the Friedman
isoconversional techniques assume constant valuesotl technique.
A even when the kinetic parameters depend on the extent of Budrugeac[17] proposed a differential non-linear iso-
conversion. This assumption obviously introduces some sys-conversional procedure (NL-DIF) to evaluate the activation
tematic error, ifE andA vary with «. This systematic error  energy from non-isothermal data. This procedure also uses
does not appear in the Friedman method, and the systemati¢he minimum condition used in MNL-INT procedure when
Aa — 0. When the activation parameters change witk,,
* Corresponding author. Tel.: +86 27 67842752; fax: +86 27 67842752. €valuated by the NL-DIF method is equal to that by the Fried-
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Both NL-DIF and MNL-INT procedures make use of nu- If § is small enough, taking the first two terms from K5,
merical iterations to find,, values that satisfy the minimum  we obtain
condition suggested by Vyazovkjh3]. This paper presents _
a local linear integral isoconversional procedure (LL-INT) P15 = 25exp(—d[1 + (1/6)8 x~*(1 — 2x)] (6)
for evaluation of activation energy dependence under non- let§= kX, in whichk denotes a small deviation from Eq
isothermal conditions. The resultis in agreement with that of (6) becomes
Friedman method performed on simulated data that do not

contain experimental noise.

2. Theoretical considerations and calculation
procedure

The relationship between rate of reaction and extent of

reaction is generally expressed in the form:
da/dt = A exp(—E/RT) f(«) (1)

wherew is the extent of conversiohthe time,T the temper-
ature,A the pre-exponential factoE the activation energy,
R the gas constant arfér) the differential reaction kinetic
model, in whichA, E, f(«) are called the kinetic triplet of

a reaction. A non-isothermal solid-state reaction with a pro-
grammed linear heating ragas considered. As in all isocon-
versional methods, it is assumed that the reaction model is
independent of the heating rate, but both the activation energy
E and pre-exponential factérare dependent on the conver-

sion«. The local heating ratfl8,19] may deviate froms,
however, for only a small segment feAa, o + Aa], By, Ex
andA,, may be assumed constant. Integrating@&ywith the
limits Ty, — A @ndTy + A, ONE gets

A TotAa

sl =24 [ exp(-k/RT) AT @)
whereg(w) is the integral reaction kinetic model. LBfx) =
fé‘ exp(—1/xdx, in which x=RT/E. Taylor series of the
function P(x+8) and P(x— 8) around the poink is devel-
oped to calculate the integral:

a—Aa

P(x+8) =Y (P"(x)/n!)s" (3)
n=0

Plx—8) = ) _(PU()/nt)(-1)"s" (@)
n=0

In Egs.(3) and (4),
PO =exp(-1/9,  POE) =x"?exp(-1/3.
PO) = x~*(1 - 2x) exp(~1/3)
Eq. (3) being subtracted from E@4), one obtains
P(x+8) — P(x — 9)
= 25exp(—1/9 + (1/3)8 x 41— 2x) exp(—1/) + - - -
(5)

P(x)|51 = 25 exp(—[1 + (k/x)*(1 — 2x)/6] ©)

In Eq. (7), the term (k/X¥(1 — 2x)/6 can be considered as a
correction term with respect to the approximation developed
previously[20-22]. That is

P(x)[*T8 = 25 exp(—2) (®)

If the segment [ Aa, o+Aca] is small enough,
Ta+aa+ Te— Ae ~2Ta. Taking into account the fact that
SZR(T(X+A0¢ _Taan)/ZEou k:(Ta+Aa - Taan)/ZTa Eq
(7) takes the following form:

/‘Ta+A
To—Aa

= (TOH-AOt -

) exp(—Ey/RT)dT

Ta—Aa)(l + a) exp(_Ex/RTa)s
o = (1/28) Ea(Tus s — Ta—na/ RTA (1= 2RT4/Es)  (9)

Rearranging E(9), and taking the logarithms of both sides,
one gets Eq(10):

IN((Bar/ (Tart pee — Ta—2e))(1/(1+ @)
=In Aa - |n[g(a)]a+Aa - Ea/RTot

oa—Aa

(10)

Eqg. (10) is the basis of local linear integral isoconversional
method (LL-INT). According to the isoconversional prin-
ciple, the reaction rate at a constant conversion depends
only on the reaction temperature. Also, values ofA}n—
In[g(a)]“fﬁg will be the same a& and A«. To solve Eq.

o

(10), the following iterative procedure is proposed.

I. For a=0, plotting In(B,/(Ty+re — Tu—nra)) VErsus
1/RT,, activation energ)E((}) is obtained from the slope
of the line.

Il. EY being introduced into E10), the value o&is cal-
culated. Plotting IN((8/ (To+ae — Tu—na))(1/(1+ a)))
versus 1/R], activation energﬁfxz) is obtained from the
slope of the line.

. Let E,SP replaceEg,l) and repeat procedure Il until

EP - ED| <& (11)

where ¢ is preset as the iteration accuracy, which was
0.001 kJ/mol for the calculations in this paper. The value of
final E, is determined. If the segment fe Aa, o+ Ac] is
small enough, i.eAa — 0, this method will lead t& values
practically equal to those obtained by the differential isocon-
versional method.

The inaccuracy in approximations for temperature integral
is one of the main sources of error involving the isoconver-
sional method$23]. The values oP(x) over small intervals
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e for FWO method
In8 =IN[AE/Rg(«)] — 5.331— 1.052E/RT (14)
o for KAS method

: " In[8/T?] = IN[AR/Eg()] — E/RT (15)

%// : ol Activation energy of process |, as shown in Ha6), is

7 : i ? ; i, independent of the extent of conversion, which is simulated
by means of numerical integration. Process II, which is
simulated by means of the Runge—Kutta algorithm, describes
“o two parallel reactions of different reaction ord¢t®], as

Deviation from Simpsons’s procedure (%)

: m;(; 0.002 shown in Eq(17), each of which has significantly different
e e SR kinetic parameters. A strong variation in the apparent
1/x ?ﬁmm K activation energy may be observed for process II:
Fig. 1. Surface plot of the percent deviation of E®). and (8)(plots A do/dt = A exp(—E1/RT)(1 — )" (16)

and B refer to Eqs(7) and (8), respectively) from numerical results of the
integral intervalP(x)|§fg, in which § =kx. dot/dt = Ay exp(—El/RT)(l . a)”l
were calculated with Simpson’s rule. The relative percent er- + Az exp(—E/RT)(1 — a)*? (17)

rors associated with the use of the approximate formula, Eqg. _

(8), along with Eq(7) as a solution of the Arrhenius integral 1 n€ paramleters of I%qi_lg)l and (17)are: ni=1, E11:

for variousx (15<1/x<60, a physically realistic domain ~200kJmor™, A1= 10*min~t, nz=2, E;=100kJmot,

of 1/x) over different small intervals (kk=0.002-0.01) are  A2=10°min~*. Both of the processes have been simulated
plotted inFig. 1. As shown irFig. 1, fork— O and small val-  for linear heating rates of 2, 4, 6, 8, and 10Kmin

ues of 1/x, Eq¥(7) and (8)lead to values practically equal to  Nonlinear interpolation has been employed to evaluate the
those obtained by the numerical integral method. For higher Values 0fTa, To— g, Ta+ e @nd (de/diy used to evaluate
values ofk and 1/x, the accuracy of E¢B) is very poor. the activation energies from simulated data with H3$)
Therefore, the range of its applicability is localized to small @nd (17). The dependence of activation energy on the

values ofk and 1/x. On the contrary, as for E), increas- conversion degree for processes of | and Il are displayed in
ing the value ok under constant 1/x, the percent deviation Figs- 2and 3, respectively. _
from Simpson’s procedure increases slightly. This fact indi- _FOr process |, the activation energy does not vary sig-

cates that the accuracy of E@) is high with large value of nif_icantly with the extent of conversion _(Fig. 2). In this case,
k, which means that the influence & value on the kinetic ~ Friedman, LL-INT method, and regularintegral methods lead
parameters is small. E7) is significantly more accurate t0 @lmost identicakE dependence. The LL-INT technique

than Eq.(8) in all the range of 1/xFig. 1shows that Eq(7) gives rise to gslightly larger scatter in t.Ee/aIues be'cause
is much superior to Eq8). LL-INT technique involves more numerical calculations.
3. Simulations and comparison o —m— LL-INT method
A —0— Friedman method
Along with the LL-INT method, the Friedman (E¢L2)) —A—Tang method
method and some regular integral isoconversional methods ~ 20' —Y— FWO method
(Tang[24], FWO, and KAS) for evaluating the activation en- T~ RAS method

ergy are applied for process | (simulated data for a single reac--_

tion) and process Il (simulated data for two parallel reactions). g 200+ 515:°<<_>7o:526*970—‘?:0:3?9:925*233
The relationships that form the bases of these methods are = l:3f:f:fsf‘f';':'E':X=‘=‘=‘=‘="‘“
3 i

v

o for Friedman method

In(da/dr) = In(A/f(@)) — E/RT (12)

199

o for Tang method
198 1 1 1 L 1 1 ]

0.0 0.2 0.4 0.6 0.8 1.0
In T 1.8946610
['B/ ? Extent of conversion

= In[AE/g ()R] + 3.63504095- 1.89466100 IrE
Fig. 2. E dependencies evaluated for the simulated process | by various
—1.00145033E/RT (13) methods.
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Fig. 3. E dependencies evaluated for the simulated process Il by various Fig. 4. E dependencies evaluated for the dehydration process of
methods. CaG04-H20 by various methods.

(For process I, inFig. 3, theE dependence o ob-  the difference is that the experimental data must be numeri-
tained from regular integral methods deviates noticeably cajly differentiated to estimate activation energy by Friedman

from the Friedman method. However, thedependence on  method and numerical differentiation considerably lowers the
« yielded by the LL-INT method is practically identical to  sjgnal-to-noise ratio.

that estimated by Friedman method. For a given value, of
EFr~ ELL-INT > Etang™ EFwo ~ Exas. The average relative
deviation of LL-INT method is 0.35% and the maximum rel-
ative deviation is 0.74%. The average relative deviation of
regular integral methods is about 6.0% and the maximum |t the activation energy does not vary with the conver-
relative deviation is 17.5%, which is in agreement with that g5, degree, LL-INT technique leads Eovalues identical
claimed[16] about 18%. The regular methods (Tang, FWO \yith those obtained by Friedman and regular integral tech-

and KAS) are based on the integration of the rate equationiq,es. The systematic error of regular integration techniques
for constang,. Thatis the reason that f&, dependence on yith the extent of conversion is eliminated with the LL-INT

«, only results of the LL-INT method is in agreement with  eihod. The estimation of activation energy dependence for

5. Conclusions

that of the Friedman method. dehydration of Cag4-H,0 validated the method.
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