

Available online at www.sciencedirect.com

**SCIENCE** DIRECT<sup>®</sup>

Thermochimica Acta 437 (2005) 34–38

thermochimica acta

www.elsevier.com/locate/tca

# Ternary excess molar enthalpies of  $(1$ -propanol + 2-propanol + 1,4-dioxane) mixture at 298.15 K

Mohammad Mainul Hossain Bhuiyan<sup>a</sup>, Kazuhiro Tamura<sup>b,\*</sup>

<sup>a</sup> *Department of Chemistry, Faculty of Science, Dhaka University, Dhaka 1000, Bangladesh* <sup>b</sup> *Department of Chemistry and Chemical Engineering, Division of Material Engineering and Material Sciences, Kakuma-machi, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan*

> Received 7 February 2005; received in revised form 29 April 2005; accepted 8 June 2005 Available online 15 July 2005

#### **Abstract**

Ternary excess molar enthalpies for (1-propanol + 2-propanol + 1,4-dioxane) mixture have been measured with a flow calorimeter at *T* = 298.15 K and atmospheric pressure. Constant contours for the ternary experimental results were calculated by a polynomial equation. Further, the results have been compared with those calculated from a UNIQUAC formalism taking into consideration the molecular self- and cross-association of two alcohols and the solvation among the alcohols and 1,4-dioxane. The results predicted by using binary parameters obtained from the corresponding binary results alone are in good agreement with the experimental values. © 2005 Elsevier B.V. All rights reserved.

*Keywords:* Excess molar enthalpies; 1,4-Dioxane; Flow calorimeter; Association; Solvation

### **1. Introduction**

The liquid mixtures of cyclic ethers are highly non-ideal and a significant amount of work on thermodynamic properties of 1,4-dioxane mixtures with alcohols [1–6], hydrocarbons [7–9], and water [10] has been published. But very little attention has been paid to the excess molar enthalpies of ternary alcohol–cyclic ether mixtures. This prompted us to study the excess molar enthalpies [of 1,4-](#page-3-0)dioxane or oxane [terna](#page-3-0)ry system[s invo](#page-3-0)lving methanol, ethanol, 1-propanol or 2-propanol at  $T = 298.15$  K. This paper presents the excess molar enthalpies of  $(1$ -propanol + 2-propanol + 1,4-dioxane) ternary mixtures at  $T = 298.15$  K. The ternary results are compared with a UNIQUAC prediction. Excess enthalpies of the binary mixtures have been reported previously: (1 propanol + 2-propanol) [11];  $(1$ -propanol + 1,4-dioxane) [2]; and (2-propanol + 1,4-dioxane) [4]. In the full concentration

range the mixtures of  $(1$ -propanol + 2-propanol) are exothermic while those of 1,4-dioxane with either 1-propanol or 2-propanol are endothermic.

### **2. Experimental**

1-Propanol and 2-propanol used in this investigation were the same as used in our earlier work [12] and 1,4-dioxane with mass fraction purity > 0.998 was purchased from Aldrich Chemical Co. Chemicals were kept in sealed dark bottles dried over molecular sieves (3A 1/16, 4A 1/16) 2–3 weeks prior to their use to eliminat[e the r](#page-3-0)esidual traces of water. All of the chemicals were manipulated under an inert nitrogen atmosphere. No significant peaks of impurities for all the components were detected by gas chromatography.

Experimental measurements were carried out with a previously described [13,14] flow calorimeter at  $298.15 \pm 0.005$  K. The errors in the excess molar enthalpy  $H_{\text{m}}^{\text{E}}$  were estimated to be less than  $\pm 0.5\%$  from preliminary experiments on benzene + cyclohexane [14,15].

<sup>∗</sup> Correspondi[ng](#page-3-0) [auth](#page-3-0)or. Tel.: +81 76 234 4804; fax: +[81](#page-3-0) [76](#page-3-0) [2](#page-3-0)34 4829. *E-mail address:* tamur[a@t.k](#page-3-0)anazawa-u.ac.jp (K. Tamura).

<sup>0040-6031/\$ –</sup> see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2005.06.011

<span id="page-1-0"></span>Three series of measurements were performed by adding 1,4-dioxane to binary mixtures composed of  ${x'_1 1$ -propanol +  $(1 - x'_1)$ 2-propanol}. The mixtures were prepared by mass using a balance (AEX—180, Shimadzu) ensuring accuracy in the mole fractions of  $10^{-4}$ . Thus, the ternary excess molar enthalpy  $H_{\text{m,123}}^{\text{E}}$  can be expressed as

$$
H_{\text{m},123}^{\text{E}} = \Delta H_{\text{m}}^{\text{E}} + (1 - x_3)H_{\text{m},12}^{\text{E}} \tag{1}
$$

where  $\Delta H_{\text{m}}^{\text{E}}$  is the measured excess molar enthalpy for the pseudobinary mixtures,  $H_{m,12}^{\text{E}}$  the excess molar enthalpy of the initial binary mixtures  $\{x'_1\}$ -propanol + (1 –  $x'_1$ )2-propanol}, and  $x_3$  the mole fraction of 1,4-dioxane. The values of  $H_{m,12}^{\text{E}}$  at three specified compositions (approximate compositions of these mixtures were 25, 50, and 75 mol% of component 1) were interpolated by means of a spline–fit method.

## **3. Results and discussion**

The experimental  $\Delta H_{\text{m}}^{\text{E}}$  for the ternary mixture of (1propanol + 2-propanol + 1,4-dioxane) at  $298.15$  K are pre-

Table 1 Experimental excess molar enthalpies of 1-propanol (1) + 2-propanol (2) + 1,4-dioxane (3) mixture at 298.15  $\mathbb{K}^a$ 

sented in Table 1, along with  $H_{m,123}^{\text{E}}$  calculated from Eq. (1). The values were correlated using the following equation:

$$
H_{\text{m},123}^{\text{E}} = H_{\text{m},12}^{\text{E}} + H_{\text{m},13}^{\text{E}} + H_{\text{m},23}^{\text{E}} + \frac{x_1 x_2 x_3 \Delta_{123}}{RT}
$$
 (2)

where  $H_{\mathrm{m},ij}^{\mathrm{E}}$  are the binary excess molar enthalpies and were fitted to a polynomial equation of the form

$$
H_{\mathbf{m},ij}^{E}(\mathbf{J}\,\mathbf{m}\mathbf{o}^{I-1}) = x_i x_j \sum_{n=1}^{p} a_n (x_i - x_j)^{n-1}
$$
 (3)

In each case, the optimum number of coefficients *p* was ascertained from the variation of the standard deviation  $\sigma$ with the number of parameters *n*.

The coefficient  $a_n$  of Eq. (3) and the standard deviation  $\sigma$ calculated for the three constituent binary mixtures are summarized in Table 2. Fig. 1 illustrates the experimental excess molar enthalpies of the constituent binary mixtures together with the calculated results from Eq. (3). The term  $\Delta_{123}$  in Eq. (2), stands for the ternary contribution to the magnitude was







<sup>a</sup> [11].

<sup>b</sup> [5].

<sup>c</sup> [4].

<span id="page-2-0"></span>

Fig. 1. Excess molar enthalpies  $H_m^E(\text{J mol}^{-1})$  of constituent binary mixtures at 298.15 K. 1-Propanol  $(x_1)$  + 2-propanol  $(x_2)$ : ( $\bullet$ ) Polak et al. [11]; 1propanol  $(x_1)$  + 1,4-dioxane  $(x_2)$ : ( $\triangle$ ) Tamura and Bhuiyan [2]; 2-propanol  $(x_1) + 1,4$ -dioxane  $(x_2)$ : ( $\Delta$ ) Bhuiyan and Tamura [4]; (-) calculated from Eq.  $(3)$ ;  $(\cdots)$  correlated by the association model.

correlated by the following expressio[n:](#page-3-0)

$$
\frac{\Delta_{123}}{RT} = \frac{\sum_{j=1}^{p} b_j (1 - 2x_3)^{j-1}}{1 - k(1 - 2x_3)}
$$
(4)

The values of the coefficients  $b_j$  and  $k$ , the absolute arithmetic mean deviation, and the standard deviation obtained in fitting Eqs. (2) and (4) to the experimental ternary  $H_{\text{m}}^{\text{E}}$  are  $b_1 = -0.1876, b_2 = 1.3148, b_3 = -1.1959$ , *b*<sub>4</sub> = − 4.7629, *b*<sub>5</sub> = 9.2818, *b*<sub>6</sub> = 17.127, *b*<sub>7</sub> = −8.3762,  $b_8 = -15.495$ ,  $k = -1.0823$ ,  $\delta(H_m^{\text{E}}) = 3.5 \text{ J} \text{ mol}^{-1}$ , and  $\sigma(H_{\rm m}^{\rm E}) = 4.6 \,\mathrm{J} \,\mathrm{mol}^{-1}$  $\sigma(H_{\rm m}^{\rm E}) = 4.6 \,\mathrm{J} \,\mathrm{mol}^{-1}$  $\sigma(H_{\rm m}^{\rm E}) = 4.6 \,\mathrm{J} \,\mathrm{mol}^{-1}$  for the (1-propanol + 2-propanol + 1,4dioxane) system. Eq. (2) was used to calculate contour lines of constant  $H_{m,123}^{\text{E}}$  plotted in Fig. 2 for the (1-propanol + 2 $propanol + 1,4$ -dioxane) system.

The excess enthalpy  $\Delta H_{\text{m}}^{\text{E}}$  reported is mainly resulted from two [cont](#page-1-0)ributions of opposite signs: (i) a positive term due to the disruption of alkanol–alkanol hydrogen



Fig. 2. Contours for constant values of  $H_{m,123}^{\text{E}}(\text{J mol}^{-1})$  for the (1propanol + 2-propanol + 1,4-dioxane) system at 298.15 K  $(-)$  calculated from Eq. (2).



Fig. 3. Excess molar enthalpies  $H_{m,123}^{\text{E}}(J \text{ mol}^{-1})$  for the ternary mixtures of {1-propanol  $(x_1)$  + 2-propanol  $(x_2)$  + 1,4-dioxane  $(x_3)$ } at 298.15 K: ( $\bullet$ )  $x'_1 = 0.25$ ; ( $\triangle x'_1 = 0.50$ ; ( $\bigcirc$ )  $x'_1 = 0.75$ ; (--) calculated from Eq. (2); ( $\cdots$ ) predicted from the association model.

bonds, and (ii) a negative term due to the formation of  $C_4H_8O_2 \cdots HO$ -hydrogen-bonded complex[es.](#page-1-0)

The positive excess enthalpy of the pseudobinary mixtures as shown in Table 1 indicates the predominance of the disruption of the existing hydrogen bonds of the alkanol multimers over the formation of weak hydrogen bonds between linear alkanol multimers and cyclic 1,4-dioxane molecules during t[he mixing](#page-1-0) process.

Fig. 3 compares the experimental ternary  $H_m^{\text{E}}$  with the results calculated from Eq. (2) for the  $(1-propanol + 2$  $propanol + 1,4-dioxane)$  system.

The thermodynamic excess properties of ternary mixtures reflect differences in the molecular size, shape, and interactions among three c[ompo](#page-1-0)nents; therefore, it is of importance to use ternary data for testing models for the prediction. The experimental ternary  $H_{\text{m}}^{\text{E}}$ s were compared with those predicted by a UNIQUAC associated-solution model [16]. The model assumes linear associating polymers of 1-propanol (A) and 2-propanol (B) molecules and the multisolvation of polymers result in homopolymers (A*<sup>i</sup>* and B*i*) and copolymers  $\{(A_iB_j)_k, A_i(B_jA_k)_l, (B_iA_j)_k, and B_i(A_jB_k)_l\}$  $\{(A_iB_j)_k, A_i(B_jA_k)_l, (B_iA_j)_k, and B_i(A_jB_k)_l\}$  $\{(A_iB_j)_k, A_i(B_jA_k)_l, (B_iA_j)_k, and B_i(A_jB_k)_l\}$ . The resulting homopolymers, copolymers and 1,4-dioxane (C) as an active nonassociating component form other complexes: A*i*C, B*i*C,  $A_i(B_iA_k)_lC$  and  $B_i(A_iB_k)_lC$ . Here subindices *i*, *j*, *k*, and *l* go from one to infinity. The equilibrium constants for these chemical complex-forming reactions are assumed to be independent of the degree of self-association, cross-association, and multisolvation. The equilibrium constants are tempera-

Table 3

Values of solvation constants and enthalpies of complex formation between unlike molecules

| System $(A + B)$                         | $K_{AB}$ | $-h_{AB}$ (kJ mol <sup>-1</sup> ) | T(K)   |
|------------------------------------------|----------|-----------------------------------|--------|
| 1-Propanol + 2-propanol <sup>a</sup>     | 36.1     | 23.2                              | 323.15 |
| 1-Propanol + $1,4$ -dioxane <sup>b</sup> | 45.0     | 16.3                              | 298.15 |
| $2$ -Propanol + 1,4-dioxane <sup>c</sup> | 21.0     | 16.3                              | 298.15 |

<sup>a</sup> [12,13].

 $^{b}$  [5].

<sup>c</sup> [4].

<span id="page-3-0"></span>Table 4 Binary parameters and absolute arithmetic mean deviations

| System $(A + B)$                         | No. of data points | $C_{\text{BA}}\ (\text{K})$ | $C_{AB}$ (K) | $D_{\rm BA}$ | $D_{\rm AB}$ | $\delta(H_{\rm m}^{\rm E})$ (J mol <sup>-1</sup> ) |
|------------------------------------------|--------------------|-----------------------------|--------------|--------------|--------------|----------------------------------------------------|
| 1-Propanol + 2-propanol <sup>a</sup>     |                    | 204.09                      | 29.25        | 0.7856       | 0.0339       | 0.07                                               |
| $1$ -Propanol + 1,4-dioxane <sup>b</sup> | 19                 | $-60.01$                    | 594.88       | $-0.3380$    | $-0.4143$    | 6.80                                               |
| $2$ -Propanol + 1,4-dioxane <sup>c</sup> |                    | $-305.00$                   | 420.38       | $-1.7526$    | 1.0451       | 1.80                                               |

<sup>a</sup> [12,13].

 $^{b}$  [5]. <sup>c</sup> [4].

ture dependent and are fixed by means of the following van't Hoff's equation:

$$
\frac{\delta \ln K}{\delta (1/T)} = -\frac{h}{R} \tag{5}
$$

The enthalpies of hydrogen bond formation are assumed to be independent of temperature.

The model gives the ternary excess molar enthalpy for the systems as the sum of the chemical and physical contributions:

$$
H^{\rm E} = H_{\rm chem}^{\rm E} + H_{\rm phys}^{\rm E} \tag{6}
$$

The chemical contribution term is related to the enthalpy of complex formation in the mixing [16]. The physical contribution term is derived by applying the Gibbs–Helmholtz relation to the residual term of the UNIQUAC equation [17]. The equilibrium association constants at 323.15 K and the enthalpies of hydrogen b[ond](#page-4-0) [for](#page-4-0)mation of alcohols A and B were taken from the refs. [18,19]. The structural parameters of complexes are expressed as the sum of par[amete](#page-4-0)rs of [each](#page-2-0) monomer. The monomer structural size and surface parameters *r* and *q* were calculated according to the Vera et al. method [20]. T[he cross-](#page-4-0)association constants and enthalpies of hydrogen bond formation for alcohols are available elsewhere [12,13]. The solvation constants and enthalpies of complex formation between alcohols and 1,4-dioxane were [rece](#page-4-0)ntly reported [4,5]. The values of the solvation constants summarized in Table 3 [4,5,12,13] are treated as adjustable parameters to give the best fit to the experimental data. The enthalpies of complex formation for all alcohols  $h_A = h_B = h_{AB} = -23.2$  kJ mol is the same as the enthalpy of dilution of et[hanol](#page-2-0) [in](#page-2-0) *n*-hexane [19]. The enthalpies of complex formation for the  $(alcohols + 1,4-dioxane)$  systems are estimated as −18.5 kJ mol. The estimation is made from the difference between the enthalpy of dilution of ethanol in *n*hexane and those o[f](#page-4-0) [ethan](#page-4-0)ol in 1,4-dioxane. In fitting the association model to the binary experimental  $H_{\text{m}}^{\text{E}}$  values, the energy parameter  $a_{ji}$  in  $H_{\text{phys}}^{\text{E}}$  is assumed to be a linear function of temperature as expressed by

$$
\frac{a_{ji}}{R} = C_{ji} + D_{ji} \left\{ \left( \frac{T}{K} \right) - 273.15 \right\}
$$
 (7)

The coefficients  $C_{ji}$  and  $D_{ji}$  were obtained by using the simplex method [21] and the objective function is given by

$$
F = \sum_{k}^{m} \left( H_{\text{exp}}^{\text{E}} - H_{\text{cal}}^{\text{E}} \right)_{k}^{2} \tag{8}
$$

The binary coefficients and the absolute arithmetic mean deviations  $\langle |H_{\text{m}}^{\text{E}}| \rangle$  between the binary experimental and calculated values are inserted in Table 4. Fig. 1 shows a comparison of the experimental binary  $H_{\text{m}}^{\text{E}}$  with those calculated by the association model. The model with the association and solvation constants and binary parameters obtained solely from the correspo[nding b](#page-2-0)inary correlation predicted the ternary excess molar enthalpies. The absolute arithmetic mean deviations between the experimental and calculated excess molar enthalpies were  $10.8 \text{ J mol}^{-1}$  for the  $(1-propanol + 2-propanol + 1,4-dioxane)$  system. Comparison between the ternary experimental  $H_{\text{m}}^{\text{E}}$  and predicted results obtained from the association model are shown in Fig. 3 for the system. The correlated and predicted values show a fair agreement with the experimental data.

## **References**

- [1] M.M.H. Bhuiyan, K. Tamura, Thermochim. Acta 405 (2003) 137–146.
- [2] K. Tamura, M.M.H. Bhuiyan, J. Chem. Thermodyn. 35 (2003) 1657–1669.
- [3] M.M.H. Bhuiyan, K. Tamura, Netsu Sokutei 30 (2003) 137–145.
- [4] M.M.H. Bhuiyan, K. Tamura, J. Chem. Thermodyn. 36 (2004) 549–554.
- [5] K. Tamura, M.M.H. Bhuiyan, J. Chem. Eng. Data 50 (2005) 66–71.
- [6] E. Calvo, P. Brocos, A. Piñeiro, M. Pintos, A. Amigo, R. Bravo, G. Roux-Desgranges, J. Chem. Eng. Data 44 (1999) 948–954.
- [7] J.-P.E. Grolier, A. Inglese, E. Wilhelm, J. Chem. Thermodyn. 16 (1984) 67–71.
- [8] E. Calvo, P. Brocos, R. Bravo, M. Pintos, A. Amigo, A.H. Roux, G. Roux-Desgranges, J. Chem. Eng. Data 43 (1998) 105–111.
- [9] A. Penas, E. Calvo, M. Pintos, A. Amigo, R. Bravo, J. Chem. Eng. Data 45 (2000) 682–685.
- [10] M.A. Saleh, S. Akhtar, M.S. Uddin, M.H. Uddin, Phys. Chem. Liq. 39 (2001) 551–563.
- [11] J. Polak, S. Murakami, G.C. Benson, H.D. Pflug, Can. J. Chem. 48 (1970) 3782–3785.
- [12] M.M.H. Bhuiyan, K. Tamura, T. Yamada, J. Chem. Eng. Data 46 (2001) 1499–1503.
- [13] K. Tamura, M. Saito, T. Yamada, J. Chem. Eng. Data 44 (1999) 626–630.
- [14] I. Nagata, K. Tamura, S. Ozaki, K. Myohen, Thermochim. Acta 209 (1992) 31–41.
- <span id="page-4-0"></span>[15] K. Elliott, C.J. Wormald, J. Chem. Thermodyn. 8 (1976) 881–893.
- [16] I. Nagata, K. Tamura, K. Gotoh, Thermochim. Acta 104 (1986) 179–202.
- [17] D.S. Abrams, J.M. Prausnitz, Am. Inst. Chem. Eng. J. 21 (1975) 116–128.
- [18] V.A. Brandani, Fluid Phase Equilib. 12 (1983) 87–104.
- [19] R.H. Stokes, C. Burfitt, J. Chem. Thermodyn. 5 (1973) 623–631. [20] J.H. Vera, S.G. Sayegh, G.A. Ratcliff, Fluid Phase Equilib. 1 (1977) 113–135.
- [21] J.A. Nelder, R. Mead, Comput. J. 7 (1965) 308–313.