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Rapid thermal conductivity measurement with
a hot disk sensor

Part 1. Theoretical considerations
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Abstract

The hot disk technique represents a transient plane source method for rapid thermal conductivity and thermal diffusivity measurement.
The main advantages of the hot disk technique include: wide thermal conductivity range, from 0.005 W/(m K) to 500 W/(m K); wide range
of materials types, from liquid, gel to solid; easy sample preparation; non-destructive; and more importantly, high accuracy. In this paper,
t oint source
s ill be derived.
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he basic theory of thermal conductivity measurement with hot disk sensor will be discussed. Starting from the instantaneous p
olution, the mathematical expression of the average temperature change in the sensor surface during a hot disk measurement w
his temperature change, which can be accurately determined by measuring the electrical resistance of the sensor, is highly d

he thermal transport properties of the surrounding material. By analyzing this temperature change as a function of time, it is p
educe the thermal conductivity and the thermal diffusivity of the surrounding material. Several practical considerations, from sa
equirement to the elimination of thermal contact resistance, will also be discussed.

2005 Elsevier B.V. All rights reserved.
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. Introduction

Thermal conductivity is a key thermal transport property
f materials. Knowledge of a material’s thermal conductivity

s crucial for a wide range of applications, including polymer
njection molding, home insulation using various building

aterials, insulation for space shuttle, and thermal man-
gement of electronic packages in semiconductor industry,
tc.

There are two main categories of techniques to measure
hermal conductivity, steady-state techniques and transient
echniques. The radial heat flow method and the guarded hot-
late method are examples of steady-state techniques[1]. Hot
ire and laser flash are examples of the transient technique

∗ Tel.: +1 4805523154; fax: +1 4805545241.
E-mail address: yi.he@intel.com.

[1]. The comparison of various transient techniques ca
found elsewhere[2]. Other transient techniques include
3� method[3,4], the differential photoacoustic method[5],
the pulsed photothermal displacement technique[6], and the
thermal-wave technique[7]. Other techniques can be fou
in ref. [8].

Recently, the hot disk technique, which is a transient p
source technique, has gained popularity as a tool for rapi
accurate thermal conductivity measurement. A precurs
this technique was first developed by Gustafsson in 1967
non-steady-state method of measuring thermal conduc
of transparent liquids[9]. In the original experimental desig
a thin rectangular metallic foil suspended in the liquid
heated by a constant electric current. The temperature d
bution around the foil was measured optically as a func
of time. From this result, both thermal diffusivity and therm
conductivity of the liquid could be determined.
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In principle, the hot strip sensor does not have to be rect-
angular and can have any form. An alternative is the hot disk
sensor, which is made of a double spiral of thin nickel wire
[10–12]. The thickness of the nickel wire is only 10�m. The
advantage of the hot disk sensor over the hot strip sensor will
be discussed later. The hot disk technique, together with other
types of transient plane source technique[13], have been suc-
cessfully used to measure the thermal conductivity of a wide
range of materials, including materials with low electrical
conductivity (such as fused quartz)[14], building materials
(e.g. cement and brick powder)[15,16], stainless steel[17],
copper powder[18], anisotropic solids (crystalline quartz)
[19], and thin metallic materials[20]. The hot disk technique
represents a rapid and precise method for studying thermal
transport properties of a wide range of materials. With suit-
able sample preparation, the hot disk technique can be used to
measure thermal conductivity in the range of 0.005 W/(m K)
to 500 W/(m K) over a wide temperature range. However, this
technique has been largely kept as an academic research tool
for many years, and was not commercially available until
recently. Since its introduction to the commercial market, the
hot disk technology was met with great enthusiasm[21].

The hot disk technique and other transient plane source
techniques are based on using a thin metal strip or a metal
disk as a continuous plane heat source. The metal disk or
strip is sealed between two thin polyimide films for elec-
t sor
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2. Theory

2.1. Heat conduction in an isotropic material: general
equation and solution

The differential equation of heat conduction in an isotropic
material whose thermal conductivity is independent of tem-
perature is given by[22]:

∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2 = 1

κ

∂T

∂t
, (1)

whereT(x, y, z, t) is the temperature at point (x,y, z) and time
t, and

κ = K

ρc
(2)

is the thermal diffusivity,K the thermal conductivity,ρ the
density, andc is the specific heat of the conducting material at
temperatureT. ρc is sometimes called the volumetric specific
heat of the material and the units ofρc are J m−3 K−1. For a
small change in temperature, we will assume that bothρ and
c are temperature independent.

When a heat source of strengthQ is switched on att = 0
in the material, Eq.(1) can be modified to include the effect
o
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f olu-
rical insulation. During the experiment, the hot disk sen
s sandwiched between two pieces of samples to be in
ated, and a small constant current is supplied to the se
he sensor also serves as a temperature monitor, so th

emperature increase in the sensor is accurately determ
hrough resistance measurement. This temperature inc
s highly dependent on the thermal transport properties o

aterial surrounding the sensor. By monitoring this tem
ture increase over a short period of time after the start o
xperiment, it is possible to obtain precise information on
hermal transport properties of the surrounding materia

In this paper, the theoretical background of thermal
uctivity measurement using the hot disk sensor will be
ussed. In the theoretical treatment, a hot disk sensor c
pproximated as a sensor with a number of concentric r
tarting from the equation of heat conduction and its insta
eous point source solution, the mathematical expressi

he temperature increase in the sensor surface can be ob
y integrating the point source solution over the source
me and time. This expression, which directly relates

emperature increase in the sensor surface to the senso
guration, the output power, and the transport propertie
he surrounding material, forms the basis of the hot disk m
urement. Although the final result of the average temper
ncrease in a hot disk sensor has been given before[10], how-
ver, the detailed mathematical derivation was not pres

n the literature, which will be discussed in this paper. A
pecial case, the mathematical treatment for measurin
lab samples will also be discussed using the image s
echnique.
d

-

f the heat source[22]:

∇2T + Q

ρc
= ∂T

∂t
. (1a)

UsuallyQ = Q(�r, t) is a function of position and time.Q
s the amount of heat released at (x,y, z, t) per unit time pe
nit volume, or power dissipation per unit volume. The u
f Q are J s−1 m−3.

It is well known that the fundamental solution (forQ = 0)
o Eq.(1) is given by

= T0 + 1

(4πκt)3/2 exp

(
− r2

4κt

)
, (t > 0) (3)

hereT0 is the initial temperature. In the case a sourc
trengthQ exists in the material, the general solution to
1a)is given by the convolution of the functionQ/ρc with the
undamental solution expressed in Eq.(3):

(�r, t) = T0 +
∫ t

0

∫
V ′

Q(�ξ, t′)
ρc

1

[4πκ(t − t′)]3/2

× exp

(
− (�r − �ξ)

2

4κ(t − t′)

)
d3�ξ dt′. (4)

he volume integration is over the source volumeV′. In
he case that the source is an instantaneous point s
t �r0 = (x0, y0, z0) and is switched on only att′ = 0, then
(�ξ, t′) = Q0δ(�ξ − �r0)δ(t′), where δ(x) is the Dirac delta

unction. From Eq.(4), the instantaneous point source s
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tion is then obtained as

T (�r, t) = T0 + Q0/ρc

(4πκt)3/2 exp

(
− (�r − �r0)2

4κt

)
. (5)

It should be mentioned that because of the integrations
over volume and time, the units ofQ0/ρc in Eq. (5) become
K m3. One can verify that in magnitude,Q0 is the total amount
of heat released by the point source:

H =
∫

V ′

∫ t

0
Q(�ξ, t′) d3�ξ dt′ = Q0. (6)

Using Eq.(5), one can show that this heat indeed causes the
temperature in the sample to increase by�T = T (�r, t) − T0,
because

H =
∫ ∞

−∞
ρc�T d3�r = Q0, (7)

if one uses the fact that∫ ∞

−∞
exp

(
− (x − x0)2

4κt

)
dx = (4πκt)1/2. (8)

Thus, the general solution expressed in Eq.(4) is the inte-
gration of the instantaneous point source solution over time
and the source volume.
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× Q0δ(r
′ − a)δ(z′)r′ dr′

∫ 2π

0
dθ′
∫ ∞

−∞
e−(z−z′)2/4κt dz′

= e−z2/4κte−(r2+a2)/4κtQ0

ρc(4πκt)3/2

∫ 2π

0
era cos(θ−θ′)/2κta dθ′

= 2πaQ0 e−(r2+a2+z2)/4κt

ρc(4πκt)3/2 I0

( ra

2κt

)
(11)

where

I0(x) = 1

2π

∫ 2π

0
ex cosθ dθ = 1

2π

∫ 2π

0
ex sinθ dθ (12)

is the first kind modified Bessel function of the zeroth order.
When the single ring source is continuous, the source

strength can be expressed as

Q = Q0δ(r
′ − a)δ(z′)u(t′), (13)

whereu(t′) is the Heaviside unit step function:

u(t′) =
{

0 for t′ < 0

1 for t′ ≥ 0
. (14)

The source is turned on att′ = 0 and stays on afterwards.
It can be verified that the total amount of heat released by the
source up to timet is

H

∫ ∫ t
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.2. Single ring source

A hot disk sensor composed of a double spiral nickel
an be treated as a disk consisting of a certain number (
oncentric rings[10]. Let us first consider an instantane
ingle ring source with radiusa in thez′ = 0 plane. If we us
he cylindrical coordinates, the strength of the source ca
xpressed as

= Q0δ(r
′ − a)δ(z′)δ(t′) . (9)

he total heat released up to timet by the instantaneous sing
ing source is then

=
∫

V ′

∫ t

0
Q dV ′ dt′

=
∫ ∞

0
Qr′ dr′

∫ 2π

0
dθ′
∫ ∞

−∞
dz′
∫ t

0
dt′ = 2πaQ0. (10)

hus, in magnitude,Q0 is the heat released by per unit len
f the ring source.

In the cylindrical coordinates, any position in the samp
= (r, θ, z), and any position in the source is�ξ = (r′, θ′, z′),

t is easy to verify that (�r − �ξ)
2 = r2 + r′2 − 2rr′ cos(θ−

′) + (z − z′)2. If we assume the source is in thez′ = 0 plane
sing Eq.(4), the temperature increase caused by this in

aneous ring source becomes[22]:

T (r, θ, z, t) − T0

= 1

ρc(4πκt)3/2

∫ ∞

0
e−[r2+r′2−2rr′ cos(θ−θ′)]/4κt
(t) =
V ′ 0

Q dV ′ dt′

=
∫ ∞

0
Q0δ(r

′ − a)r′ dr′
∫ 2π

0
dθ′
∫ ∞

−∞
δ(z′) dz′

×
∫ t

0
u(t′) dt′ = 2πaQ0t. (15)

Therefore, it becomes clear that 2πaQ0 is the magnitude o
ower dissipation associated with the source, orPo = 2πaQ0.

To obtain the temperature increase caused by a contin
ing source, one only needs to changet to t − t′ in Eq. (11)
nd integrate over timet′ to obtain the temperature solutio

(r, θ, z, t) − T0 = 2πaQ0

ρc(4πκ)3/2

∫ t

0

e−(r2+a2+z2)/4κ(t−t′)

(t − t′)3/2

× I0

(
ra

2κ(t − t′)

)
dt′. (16)

In Eq.(11), 2πaQ0 is the total amount of heat released
he source and it has the unit of Joule, but in Eq.(16), 2πaQ0
s the magnitude of the power output of the source, which
nits of J s−1, because the integration over time has yet t
arried out.

.3. Hot disk sensor

A hot disk sensor with a double spiral of nickel wire can
reated as a sensor withm concentric rings which are equa
paced, since the sensor is designed to have uniform p
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density throughout the disk. Assume thata is the radius of
the largest ring, then the smallest ring has a radius ofa/m.
The total length of the heating filament is

L =
m∑

l=1

2πl
a

m
= (m + 1)πa. (17)

Suppose the source is continuous and it is turned on att = 0.
It can then be represented as

Q = Q0

m∑
l=1

δ

(
r′ − la

m

)
δ(z′)u(t′). (18)

Similarly, one can verify that the total heat released by the
sensor up to timet is

H =
∫

V ′

∫ t

0
Q(�ξ, t′) dV ′ dt

=
∫ ∞

0
Q0

m∑
l=1

δ

(
r′ − la

m

)
δ(z′)r′ dr′

∫ 2π

0
dθ′

×
∫ ∞

−∞
dz′
∫ t

0
u(t′) dt′

= πa(m + 1)Q0t = LQ0t, (19)
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we can letz → 0 and Eq.(20)becomes

�T (r, t) = Po

ρcm(m + 1)

∫ t

0

dt′

4[πκ(t − t′)]3/2

×
m∑

l=1

l e−(r2+(l2a2/m2))/4κ(t−t′)I0

(
rla

2mκ(t − t′)

)
.

(21)

Let us introduce a new integration variableσ, and let

σ2 = κ(t − t′)
a2 (22)

we have dt′ =−2σa2 dσ/κ, when t′ = 0, σ = √
κt/a; when

t′ = t, σ = 0. Therefore, Eq.(21)becomes

�T (r, t) = Po

2π3/2m(m + 1)ρc

∫ 0

√
κt/a

(−dσ

κσ2a

)

×
m∑

l=1

l e−((r2/a2)+(l2/m2))/4σ2
I0

(
rl

2maσ2

)

= Po

2π3/2am(m + 1)K

∫ τ

0

dσ

σ2

m∑ −((r2/a2)+(l2/m2))/4σ2
(

rl
)

w
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ust as expected. Again,Q0 is the heat released per unit len
er unit time of the sensor coil, andπa(m + 1)Q0 = Po is the
ower output of the hot disk sensor.

The temperature increase caused by the hot disk s
an be simply obtained by carrying out the integration in
4), noting that the source strength is now expressed b
18). This can be done by substitutinga by la/m and carry
ut the summation overl in Eq.(16). The result is

T (r, z, t) = 2πQ0

ρc

∫ t

0

dt′

[4πκ(t − t′)]3/2

×
m∑

l=1

la

m
e−(r2+(l2a2/m2)+z2)/4κ(t−t′)

× I0

(
rla

2mκ(t − t′)

)

= Po

ρcm(m + 1)

∫ t

0

dt′

4[πκ(t − t′)]3/2

×
m∑

l=1

l e−(r2+(l2a2/m2)+z2)/4κ(t−t′)

× I0

(
rla

2mκ(t − t′)

)
, (20)

here we have used the fact thatPo =πa(m + 1)Q0, as we
iscussed in Eq.(19).

In a hot disk measurement, we are only concerned a
he temperature change near the surface of the sensor.
 ,

×
l=1

l e I0
2maσ2 , (23)

here

=
√

κt

a
(24)

s a dimensionless parameter called the characteristic
atio, andK =κρc is the thermal conductivity of the materi

Eq. (23) describes the temperature increase at any
n the z = 0 plane (i.e. sensor surface) after the curren
he hot disk sensor is turned on. However, during a hot
easurement, we can only measure the temperature in

or the sensor itself. Thus, we need to determine the ave
emperature increase for the sensor only. This can be do
veraging�T(r, τ) over the length of the concentric rings

T̄ (τ) = 1

L

∫ 2π

0
�T (r, τ)

m∑
k=1

δ

(
r − k

m
a

)
r dθ (25)

Substituting Eq.(23) into Eq. (25) and using the fac
hat L = (m + 1)πa, we can express the average tempera
ncrease in the sensor surface as

T̄ (τ) = 1

(m + 1)πa

Po

2π3/2am(m + 1)K

∫ τ

0

dσ

σ2

m∑
k=1

ka

m

×
m∑

k=1

l e−((k2/m2)+(l2/m2))/4σ2
I0

(
kl

2m2σ2

)
2π

= Po

π3/2aK
D(τ), (26)
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whereD(τ) is a dimensionless time function given by

D(τ) = 1

m2(m + 1)2

∫ τ

0

dσ

σ2

m∑
k=1

k

m∑
l=1

l e−((k2+l2)/m2)/4σ2

× I0

(
kl

2m2σ2

)
, (27)

which is exactly the expression given in refs.[10,11,23].
From Eq.(26), we can see that the average temperature

increase in the hot disk sensor is proportional to a function
D(τ), which is a rather complicated function of a dimen-
sionless parameterτ = √

κt/a, but, numerically, it can be
accurately evaluated to five or six significant figures.

When using the hot disk technique to determine thermal
transport properties, a constant electric current is supplied
to the sensor at timet = 0, then the temperature change of
the sensor is recorded as a function of time. The average
temperature increase across the hot disk sensor area can be
measured by monitoring the total resistance of the hot disk
sensor:

R = R0[1 + α�T̄ (t)], (28)

whereR is the total electrical resistance at timet, R0 is the
initial resistance att = 0, α is the temperature coefficient of
resistivity, which is well known for nickel. Eq.(28)allows us
t
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Fig. 1. To measure thermal conductivity of a thin slab sample, the hot disk
sensor is sandwiched between two specimens with thicknessh. The outer
surfaces of the specimens,z′ =±h, are insulated. Theoretically, this condition
can be achieved by introducing infinite number of image sources atz′ =±2h,
z′ =±4h, etc., in an infinitely thick sample, as illustrated above.

the measurement time so that during this period, the sam-
ple seems infinite. In this case, the hot disk technique can
still be applied to measure the thermal transport properties of
thin slab materials. In the case that the effect of sample thick-
ness cannot be ignored, the following procedure will be used.
Again, the sensor is sandwiched between two identical thin
slab samples with thicknessh. The outer surfaces of the two
slabs are covered with isolation material so that no heat can
transfer out of these surfaces during measurement, as illus-
trated inFig. 1. Theoretically, this condition can be satisfied
by introducing the image sources of the same strength as the
original real source (Q0 = Po/((m + 1)πa)) at z′ =±2h, ±4h,
. . . planes, assuming the sample is infinitely thick, as shown
in Fig. 1. Similar to Eq.(18), the sources can be expressed as

Q = Q0

∞∑
n=−∞

m∑
l=1

δ

(
r′ − la

m

)
δ(z′ − 2nh)u(t′). (29)

Again,u(t′) is the Heaviside unit step function. The term
n = 0 in Eq.(29) represents the original real source, the rest
are all image sources. Substituting this expression into Eq.
(4) and using the result obtained in Eq.(20), we have

�T (r, z, t) = 2πaQ0

ρcm(4πκ)3/2

∫ t

0

dt′

(t − t′)3/2

∞∑ 2 ′

p nsor
s ur-
f ation
c ture
o accurately determine�T̄ as a function of time.
If one knows the relationship betweent andτ, one can

lot �T̄ as a function ofD(τ), and a straight line shou
e obtained. The slope of that line isP0/(π3/2aK), from
hich thermal conductivityK can be calculated. Howev

he proper value ofτ is generally unknown, sinceτ = √
κt/a

nd the thermal diffusivityκ is unknown. To calculate th
hermal conductivity correctly, one normally makes a se
f computational plots of�T̄ versusD(τ) for a range ofκ
alues. The correct value ofκ will yield a straight line for the
T̄ versusD(τ) plot. This optimization process can be do
y the software until an optimized value ofκ is found. In
ractice, we can measure the density and the specific h

he material separately, so that betweenK and�, there is only
ne independent parameter. Therefore, both thermal co

ivity and thermal diffusivity of the sample can be obtai
rom above procedure based on the transient measur
sing a hot disk sensor.

. Thin slab samples: a special case

Above analysis is based on the assumption that from
ot disk sensor point of view, the sample dimensions are
ite, or they can be practically considered infinite within
hort measurement time, so that the sample boundari
ot affect the temperature increase measured by the ho
ensor. The sample size requirement for a standard ho
easurement will be discussed later. For a thin slab sa
r a highly conductive material, it is impractical to shor
×
n=−∞

e−(z−2nh) /4κ(t−t )

×
m∑

l=1

l e−(r2+(l2a2/m2))/4κ(t−t′)I0

(
rla

2κ(t−t′)m

)
(30)

Eq. (30) gives the temperature change at timet > 0 at any
oint (r,θ, z) in the slab sample caused by a hot disk se
ource atz′ = 0 plane, with the condition that the outer s
aces of the two slabs are insulated. Again, above equ
an be modified if we are only interested in the tempera
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change near the sensor surface, i.e., atz = 0 plane, and notice
that the power output of the sensor isPo =πa(m + 1)Q0:

�T (r, t) = 1

4(πκ)3/2

Po

m(m + 1)ρc

×
∫ t

0

dt′

(t − t′)3/2

(
1 + 2

∞∑
n=1

e−n2h2/κ(t−t′)
)

×
m∑

l=1

l e−(r2+(l2a2/m2))/4κ(t−t′)I0

(
rla

2mκ(t − t′)

)
.

(31)

In Eq.(31)we used the fact that

lim
z→0

∞∑
n=−∞

exp

(
− (z − 2nh)2

4κ(t − t′)

)

= 1 + 2
∞∑

n=1

exp

(
− n2h2

κ(t − t′)

)
. (32)

Similar to previous procedure, we can introduce
σ2 =κ(t − t′)/a2 and defineτ = √

κt/a, and finally, the tem-
perature change due to a continuous hot disk sensor sand-
wiched between two slab samples can be obtained as

�
P

A r the
m

�

w

D

c
r ge
t ation
b ck
s s,
i rms
w

Based on Eq.(34), similar optimization procedure can be
performed until a proper thermal diffusivityκ is found so
that a straight line is obtained for the�T̄ versusDs(τ) plot.
From the slope of this line, thermal conductivity value can
be obtained for the thin slab samples.

4. Probing depth

The theoretical analysis discussed above assumes that the
sensor is placed in a sample that is infinitely large. For thin
slab samples, it is assumed that the sample dimensions in
thexy-plane are infinite. This is not the case in reality since
all sample sizes are limited. Therefore, it is essential that
during the measurement timet, the sample boundaries have
little influence on the measurement result. One can define a
probing depth�p, which is the distance from the sensor edge
to the nearest free surface of the sample. Analysis has shown
that if [17,24]:

�p ≥
√

4κt (36)

then the influence of the sample size on the final result will be
negligible. This criterion will be used as a guideline to prepare
samples with dimensions suitable for hot disk measurement.
For thin slab samples,�p defines the required minimum dis-
t ample
b
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b ent in
T (r, τ) = o

2π3/2am(m + 1)K

×
∫ τ

0

dσ

σ2

(
1 + 2

∞∑
n=1

e−(n/σ)2(h/a)2
)

×
m∑

l=1

l e−((r2/a2)+(l2/m2))/4σ2
I0

(
rl

2maσ2

)
,

(33)

gain, we proceed to average the temperature rise ove
concentric rings and finally obtained

T̄ (τ) = Po

π3/2aK
Ds(τ), (34)

here

s(τ) = 1

m2(m + 1)2

∫ τ

0

dσ

σ2

(
1 + 2

∞∑
n=1

e−(n/σ)2(h/a)2
)

×
m∑

k=1

k

m∑
l=1

l e−((k2+l2)/m2)/4σ2
I0

(
kl

2m2σ2

)
(35)

Eq.(35)is exactly the expression given in ref.[20]. As we
an see from the above equation, the summation overn (n 	= 0)
epresents the contribution of all image sources. For larh,
hese contributions become negligible, and above equ
ecomes the same as Eq.(27), which is the case for a thi
ample. Asn increases, e−(n/σ)2(h/a)2decreases quickly. Thu

n practice, it is only necessary to consider the first few te
hen evaluating the contribution of the image sources.
ance between the edge of the sensor and the nearest s
oundary in thexy-plane.

. Time correction

In the ideal situation, the temperature response of the
le is assumed to be instantaneous when the current
ot disk sensor is switched on. In reality, however, th
re a number of factors which would affect the temp

ure response time, including non-ideal electric compon
he heat capacity of the sensor and the insulation ma
KaptonTM or polyimide); time delay caused by therm
esistance between the sensor and the material; and in
nstrument dead time[17]. For these reasons, a time corr
ion, tc, is needed when evaluating the thermal conduct
sing Eq.(26):

T̄ (τc) = Po

π3/2aK
D(τc), (37)

hereτc = √
κ(t − tc)/a is the corrected characteristic tim

atio. The time correction can be obtained by least sq
tting so that the average temperature increase is lin
ependent on the functionD(τc) [17]. Based on our exper
ental results, the typical time correction is 50–100 ms

. Contact resistance

Contact resistance is the interfacial thermal resist
etween the sample surface and the sensor. It is pres
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almost all measurement techniques, except the non-contact
techniques (such as laser flash). In the hot disk technique, the
presence of insulating layers (KaptonTM or polyimide) adds
an additional contact resistance between the material and the
sensing disk. However, it was noted that the influence of con-
tact resistance on the average temperature increase becomes
a constant,�T, after a short period of time[17,25]:

�T̄ (τc) = �T + Po

π3/2aK
D(τc), (38)

where�T is inversely proportional to the thermal conductiv-
ity of the insulating layer, and is related to the dimensions of
the insulating layer. This time can be estimated as�ti = δ2/κi ,
whereδ is the thickness of the insulation layer andκi is the
thermal diffusivity of the insulation material[26]. Numeri-
cal simulations have shown that for a 25�m thick KaptonTM

insulation layer, the time needed for�T to become a constant
is typically∼50 ms[21,27]. Thus, this term can be easily sep-
arated in the software when�T̄ (τc) versusD(τc) is plotted
using data points generated aftert > 50 ms (and after time
correction, which is also small).

7. Temperature drift

Before an actual measurement, any systematic tempera-
t for
2 l be
c vity
a

8

acity
t r, hea
c the
p heat
c the
a

9

pe-
c duc-
t ent.
A gres-
s a
l
m ted
w -
r hen
b
c a if
o using

other experimental techniques. Whenρ and c are known,
there is only one independent fitting parameter. In prac-
tice, when bulk samples are used, the thermal conductivity
value can be determined with or without the prior knowledge
of ρc, and the difference between these two approaches is
small.

10. Hot disk versus hot strip

In the original transient plane source technique, a rectan-
gular metal foil was used as the sensor[9,14,15,17]. This was
also called the hot strip technique. Mathematical analysis for
hot strip sensor is simpler than that for hot disk sensor. For
hot strip sensor, the voltage or resistance of the sensor can
be expressed as an analytical function of the characteristic
time τ based on first order approximation. For small values
of τ, this expression can further be simplified, even for second
order approximation[28]. For the hot disk sensor, no analyt-
ical expression has been obtained for the functionD(τ), even
for small values ofτ [29].

However, there are two main advantages for using the hot
disk sensor. The first one is that because of the design, the
hot disk sensor has a much higher resistance than that of the
hot strip sensor. Therefore, the temperature measurement,
which is done by measuring the sensor resistance, can be
p ond
a more
c mple
s od,
t ong.
I atio
i size
w isk
m

1

vity
m e hot
d ire,
i ed
a uring
t and-
w rrent
i ensor
t
h erties
o rce
s ub-
s r
s at
�

c n is
k on,
ure drift surrounding the hot disk sensor is monitored
5 s. Any systematic temperature drift, if detected, wil
orrected when thermal conductivity and thermal diffusi
re calculated.

. Heat capacity of the sensor

Because the hot disk sensor has its own heat cap
hat can influence the temperature change of the senso
apacity of the sensor itself (including nickel wire and
olyimide insulation layer) is corrected. The calibrated
apacity of the sensor is included as a default value in
nalysis software.

. Density and heat capacity of the sample

In principle, it is not necessary to know a material’s s
ific heat and density in order to calculate thermal con
ivity when bulk samples are available for the measurem
fter the raw experimental data are collected, a linear re
ion is performed to obtain the optimizedτ value so that
inear relationship is obtained for�T̄ (τc) versusD(τc). Ther-

al diffusivity, κ, of the material can be easily calcula
henτ is known. Then, thermal conductivityK of the mate

ial can be obtained from the slope of the linear fit. W
oth κ and K are known, the volumetric specific heat,ρc,
an be determined. It is, however, always a good ide
ne can determine specific heat and density separately
t

erformed with higher sensitivity and accuracy. The sec
dvantage in using the hot disk sensor is that a much
ompact sample can be studied without violating the sa
ize requirement[29]. This is because in the hot strip meth
heoretical analysis assumes that the strip is infinitely l
n practice, it is often required that the length to width r
s 20:1. Under this condition, the corresponding sample
ill be much larger than the size required for the hot d
easurement.

1. Conclusions

Theory of the hot disk technique for thermal conducti
easurement was discussed from the first principles. Th
isk sensor, which is composed of a double spiral nickel w

s approximated asm concentric rings. The sensor is us
s a heat source as well as a temperature monitor. D

he thermal conductivity measurement, the sensor is s
iched between two halves of the sample. A constant cu

s supplied to the sensor. During the measurement, the s
emperature as a function of timet or characteristic timeτ
as a strong dependence on the thermal transport prop
f the surrounding material. Starting from the point sou
olution for thermal conduction is an infinite isotropic s
tance, the average temperature increase�T̄ near the senso
urface is obtained as a function ofτ. The result showed th
T̄ is proportional to a complicated functionD(τ), which

an be calculated numerically if the sensor configuratio
nown. When properτ value is chosen based on optimizati
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as described before, the slope of�T̄ versusD(τ) is inversely
proportional to thermal conductivity of the sample.

As a special case, the thermal conductivity measurement
of thin slab samples can be performed by insulating the outer
surfaces of the sample. Theoretically, the conduction problem
can be solved by introducing the image sources, and a modi-
fied functionDs(τ) can be obtained. Again, the slope of�T̄

versusDs(τ) is inversely proportional to thermal conductivity
of the thin slab sample.

With proper corrections, the hot disk technique provides
an excellent tool for rapid and accurate measurement for both
thermal conductivity and thermal diffusivity of a wide range
of materials. This technique is capable of measuring the ther-
mal conductivity over a wide range with high accuracy, and
the typical measurement time is 2.5–5 s. The hot disk tech-
nique is a valuable tool for material inspection and selection.
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