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Abstract

Applying an analytical model, both isothermally and isochronally conducted transformations are formulated, using time/temperature-dependent
kinetic parameters. In specific cases, the analytical model reduces to the Johnson–Mehl–Avrami (JMA) kinetics. Fits of JMA kinetics to exact
numerical calculations and analytical solutions using the same values for model parameters (as chosen in the numerical calculation) have been
performed for different temperatures (isothermal) or different heating rates (isochronal), respectively. According to the error analysis, only in the
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xtreme cases where pure site saturation or pure continuous nucleation prevails, JMA kinetics with constant kinetic parameters is ap
or intermediate cases where mixed nucleation or Avrami nucleation dominates, kinetic parameters change with progressing transform
mplies that the effective activation energy and the growth exponent generally depend on time/temperature, even if the transformation
s constant (isokinetic).

2005 Elsevier B.V. All rights reserved.
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. Introduction

Solid-state phase transformations are important means for the
djustment of the microstructure and thus the tuning of the prop-
rties of materials. In order to exploit this tool to full extent, much
ffort is spent on the modeling of phase transformations[1–18].

n the classical treatment (c.f. ref.[5]) Johnson–Mehl–Avrami
JMA) approach[1–4] plays a central role in studies of transfor-
ations where nucleation and growth mechanisms operate. Very
any experimental results of phase transformation kinetics have
een fitted with a JMA model. It should however be recognized

hat the JMA model can only be validated for certain extreme,
imiting cases, in particular for nucleation (see Section2). The
MA model implies that the growth exponentn and the effective
ctivation energyQ should be constant during the course of the

ransformation. New development in experimental techniques
llow high accuracy in the experimental data on transformation
inetics and have unambiguously determined that, as a rule,n

∗ Corresponding author. Tel.: +86 29 88460372; fax: +86 29 88492374.

andQ are not constant (e.g.[8,15–22]): the fitted paramete
n and Q, are different for different stages of the transform
tion. This has been explained by corresponding changes
nucleation and growth mechanisms[16–22], i.e. the transfo
mation process is not isokinetic. Fitting of JMA kinetics to s
phase transformations therefore only yields a phenomenolo
description. However, the limited validity of the classical JM
approach may be the cause for this, then only seemingly, in
patibility with isokinetics[23] and a critical reappraisal of th
modeling of phase transformation kinetics appears in orde

Against this background, ananalytical model for solid-stat
phase transformations has been developed that incorpora
three mechanisms: nucleation (e.g. mixed nucleation a
Avrami nucleation), growth (interface-controlled and/or volu
diffusion-controlled growth) and impingement[24]. The mode
has been developed for both isothermally and isochronally
ducted transformations, with timen(t),Q(t),K0(t) or temperatur
n(T), Q(T), K0(T)-dependent kinetic parameters (for which a
lytical descriptions have been given[24–26]). It should be note
that, consequently, a transformation can still be consider
“isokinetic” in the sense indicated above, although a kin
parameter, as the growth exponentn, can distinctly vary dur
E-mail address: liufeng@nwpu.edu.cn (F. Liu).
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Basing on exact numerical calculations, analytical solutions
were herein given using the same values for model parameters;
meanwhile the corresponding fits of JMA kinetics were pro-
vided. Detailed comparison between analytical solutions/fits of
JMA kinetics and exact numerical calculations has been carried
out. It can be proved from the error analysis that JMA kinet-
ics with constant kinetic parameters is applicable only for the
extreme cases; but for intermediate cases where mixed nucle-
ation or Avrami nucleation occurs, the kinetic parameters change
with progressing transformation.

2. Phase transformation kinetics

2.1. The path variable for isothermal and non-isothermal
transformations

Time and temperature in general are not state variables which
would determine the stage of transformation: the thermal his-
tory of a material determines the degree of transformation,f
(0≤ f ≤ 1). Therefore, it appears appropriate to introduce a path
variable,β, which fully determinesf and depends on the thermal
history, i.e. the path followed in the temperature–time diagram:
T(t) prescribesβ [6]. The transformed fraction,f, can then be
given as[6]

f = F (β) (1)
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where t′ = t + T0/Φ with T0 as the start temperature of the
transformation (i.e. att = 0). Eq.(4b) is only valid for heating.

2.2. Modes of nucleation, growth and impingement

The termsite saturation is used in those cases where the
number of (supercritical) nuclei does not change during the
transformation: all nuclei, of numberN* per unit volume are
present att = 0 already[15,24]

Ṅ(T ) = N∗δ(t − 0) (5)

with δ(t − 0) denoting the Dirac function.
Thecontinuous nucleation rate per unit volume (i.e. the rate

of formation of particles (nuclei) of supercritical size) is at large
undercooling only determined by the rate of the jumping of
atoms through the interface between the nucleus of critical size
and the parent phase, which can be given by an Arrhenius term
[15,24]

Ṅ(T (t)) = N0 exp

(
− QN

RT (t)

)
(6)

whereN0 is a temperature-independent nucleation rate constant
and QN is the temperature- and time-independent activation
energy for nucleation. The number of nuclei equals 0 att = 0.

Themixed nucleation mode involves that the nucleation rate
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he dependence of the path variableβ on the thermal history ca
e described as the integral over time of a rate constantK(T(t)),
ot conceived to be dependent ont other than throughT

=
∫

K(T (t)) dt (2)

his equation is compatible with the additively rule[5,6,23],
hich supposes that throughout the temperature/time ran

nterest the transformation mechanism is the same (whi
alled isokinetic). A change of transformation mechanism
he course of the transformation, as might be caused by
onstantK(T(t)) that is not solely dependent onT(t), would caus
breakdown of the additively rule and the applicability of

2) for the path variable. For many applications,K(T) can be
iven by an Arrhenius-type equation

(T (t)) = K0 exp

(
− Q

RT (t)

)
(3)

ith Q as the overall, effective activation energy,K0 the
emperature- and time-independent rate andR as the gas con
tant. It follows from Eqs.(2)and(3)for isothermal annealing[6]

= K(T )t (4a)

ccording to a detailed description for the temperature inte
nd its approximation, for isochronal annealing with a cons
eating rateΦ, it holds (c.f. refs.[6,10,15])

∼=
[

K0ΦRt′2

Q
exp

(
− Q

RΦt′

)]
(4b)
f
s

te

l
t

s equal to some weighted sum of the nucleation rates acco
o continuous nucleation and site saturation[15,24]

˙ (T (t)) = N∗δ(t − 0) + N0 exp

(
− QN

RT (t)

)
(7)

hereN* andN0 represent the relative contributions of the
odes of nucleation.
So-calledAvrami nucleation involves that the rate of form

ion of supercritical nuclei at timet is given by[1–4,15,24]

˙ (T (t)) = N ′λ exp

(
−
∫ t

0
λ dτ

)
(8)

hereλ is the rate at which an individual sub-critical nucl
ecomes supercriticalλ(t = τ) = λ0 exp

(
− QN

RT (τ)

)
, with λ0 as

temperature-independent rate andN′ as the total number o
ub-critical nuclei per unit volume att = 0.

Thediffusion-controlled and the interface-controlled growth
odes can be given in a compact form. At timet, the volumeY,
f a particle nucleated at timeτ is given by refs.[15,24]

= g

[∫ t

τ

ν dt

]d/m

(9)

ith g as a particle-geometry factor andν(t) = ν0 exp
(
− QG

RT (t)

)
ith QG the temperature- and time-independent activa
nergy of growth and withm as growth mode parameter (m= 1

or interface-controlled growth;m = 2 for volume diffusion
ontrolled growth) andd as the dimensionality of the grow
d = 1, 2 and 3).

For interface-controlled growth, ν0 is a temperature
ndependent interface velocity constant andQG represents th
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energy barrier at the interface. Forvolume diffusion-controlled
growth, ν0 equals the pre-exponential factor for diffusionD0 and
QG represents the activation energy for diffusion,QD.

The number of supercritical nuclei formed in a unit volume, at
timeτ during a time lapse dτ, is given byṄ(T (τ)) dτ according
to Eqs.(5)–(8). The volume of each of these nuclei grows from
τ until t according to Eq.(10) where it is supposed that every
particle grows into an infinitely large parent phase, in absence of
the other growing particles. In this hypothetical case, the volume
of all particles at timet, calledthe extended volume is given by

V e =
∫ t

0
VṄ(T (τ))Y (T (t)) dτ (10)

with V as the sample volume, which is supposed to be con-
stant throughout the transformation. A relation between the
actually transformed volume,Vt, and the extended transformed
volume,Ve, or between the real transformed fraction,f = Vt/V,
and the extended transformed fractionxe = Ve/V is required. The
expressions for the extended transformed volume/fraction do
not account for the overlap of growing particles (hard impinge-
ment). It is supposed here that the nuclei are dispersed randomly
throughout the total volume. Suppose that at timet the actually
transformed volume isVt. If the time is increased by dt, the
extended and the actual transformed volumes will increase by
dVe and dVt. From the change of the extended volume dVe, only
a med
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specific analytical and numerical approaches to account for the
diffusion fields surrounding the product phase particles have
been proposed (e.g.[30–32]), which, however, are unsuited for
general applications. The applicability of Eqs.(11) and (12)
to diffusion-controlled reactions has been discussed in several
recent works[10,12,33–35]. Approximately, within the context
of the general analytical transformation model[24,25], models
for (hard) impingement are discussed below for both interface-
and diffusion-controlled transformations.

2.3. General equation for the transformed fraction

According to Eqs.(4)–(9)and for cases for nucleation con-
sidered here (as mixed nucleation and Avrami nucleation), the
overall extended volume can be shown to be given by the addi-
tion of two parts: one part that can be conceived as due to pure
site saturation and one part that can be conceived as due to pure
continuous nucleation. By extensive calculation an explicit ana-
lytical expression for the extended volume can be obtained[24].
The degree of transformation can then be derived considering
the impingement for example according to Eq.(12).

No matter which of the nucleation or growth modes con-
sidered determine the transformation mechanism, the degree
of isothermal or isochronal transformation can be uniquely
described by combinations of the time-dependent kinetic param-
eters:n(t), Q(t) andK0(t) (i.e. for isothermal transformation) or
t
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part will contribute to the change of the actually transfor
olume dVt, namely a part as large as the untransformed vo
raction[1–3,5]. Hence

V t =
(

V − V t

V

)
dVe df

dxe
= 1 − f (11)

his equation can be integrated, giving the degree of tran
ation,f, as

= V t

V
= 1 − exp

(
−V e

V

)
(12)

n case of anisotropically growing particles, the time inte
hat particles, after their randomly dispersed nucleation
row before “blocking” by other particles occurs, is, on a
ge, smaller than for isotropic growth[12,16–18]. This blockin
ffect due to anisotropic growth leads to hard impingem

hat results in strong deviations from classical JMA kine
12,16–18]. Considering this blocking effect, one phenom
ogical approach accounting for impingement in this case
een proposed[12,16]by extending Eq.(12) to

df

dxe
= (1 − f )ξ (13)

hereξ ≥ 1. Impingement due to Eq.(13) is more severe, i.
he difference betweenf andxe is larger, than due to Eq.(11)
nd increases withξ.

Further, in diffusion-controlled transformations, as
ano-crystallization of amorphous alloys[27–29] and the
amma–alpha transformation in (carbon-containing) allo
teels[30,31], overlap of diffusion fields surrounding the gro
ng particles has to be considered (soft impingement). S
-

he temperature-dependent kinetic parametersn(T), Q(T) and
0(T) (i.e. for isochronal transformation) as

= 1 − exp

(
K0(t)n(t)tn(t) exp

(
−n(t)Q(t)

RT

))
(14)

= 1 − exp

(
K0(T )n(T )

(
RT 2

Φ

)n(T )

exp

(
−n(T )Q(T )

RT

))
(15)

t should be noted that these results are fully compatible
qs.(1)–(4), see refs.[6,24]. Only if pure site saturation or pu
ontinuous nucleation occurs, Eqs.(14)and(15)are compatibl
ith the description of Johnson–Mehl–Avrami[1–6]

= 1 − exp

(
−Kn

0αn exp

(
−nQ

RT

))
(16)

here the kinetic parameters:n, Q andK0 are constants (i.e. d
ot depend on time and temperature) andα can be identifie
ith either the annealing timet for isothermal transformatio
r with RT2/Φ for isochronal transformation.

The effective, overall activation energy,Q, can always be an
ytically interpreted as a combination of the activation ener
or nucleation and growth,QN andQG [24]

=
d
m

QG +
(
n − d

m

)
QN

n
(17)

here the value ofn is equal tod/m for site saturation and equal
/m + 1 for continuous nucleation. Eq.(17) is also deduced an
ytically in Ref. [15] for transformations controlled by extrem
ases, i.e. pure site saturation and pure continuous nuclea
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Table 1
Expressions for the (time and temperature dependencies of the) growth exponent,n, the overall activation energy,Q and the rate constant,K0 to be inserted in Eqs.
(14)and(15) for isothermal annealing and isochronal annealing, respectively

Isothermal Isochronal

Mixed nucleation

n d
m

+ 1

1 +
(

r2
r1

)−1

d

m
+ 1

1 +
(

r2
r1

)−1

Q
d
m

QG +
(
n − d

m

)
QN

n

d
m

QG +
(
n − d

m

)
QN

n

Kn
0

gν0
d/m(

d
m

+ 1
)1/(1+(r2/r1)−1)

[(
N∗

1

(
1 + r2

r1

))1/(1+(r2/r1))

×

(
N01

(
1 +
(

r2
r1

)−1
))1/(1+(r2/r1)−1)

]
gν0

d/m(
d
m

+ 1
)1/(1+(r2/r1)−1)

[(
N∗

1

(QG)d/m

(
1 + r2

r1

))1/(1+(r2/r1))

×

(
CcN01

(
1 +
(

r2
r1

)−1
))1/(1+(r2/r1)−1)

]

r2

r1

1
d
m +1

N01t exp
(
− QN

RT

)
N∗

1

CcQG
d/mN01 exp

(
− QN

RT

)(
d
m

+ 1
)

N∗
1

(
RT 2

Φ

)
Avrami nucleation

n n = d

m
+ 1

1 + r2
r1

n = d

m
+ 1

1 + r2
r1

Q
d
m

QG +
(
n − d

m

)
QN

n
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(
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)
QN

n

Kn
0

gN ′f (λt)ν0
d/m

d
m

+ 1
(λ0)1/(1+r2/r1)(λt)1/(1+(r2/r1)−1)


gν0

d/mN ′f
(

λ RT 2

QNΦ

)
d
m

+ 1
(λ0)1/(1+r2/r1)

(
λ

RT 2

Φ

)1/(1+(r2/r1)−1)
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r2
r1

λt

d
m

+ 1

CcQG
d/m

d
m

+ 1

(
RT 2

Φ
λ

)
For Cc, f(λt) andf(λRT2/QNΦ), see ref.[24].

Unlike the extreme cases for which the JMA equation holds
strictly, in general,n, Q and K0 are not constant but will be
time (isothermal transformation) or temperature (isochronal
transformation)-dependent. They depend on the model param-
eters, asN∗

1 andN01 (mixed nucleation) orN′ andλ0 (Avrami
nucleation),QN andQG, as well as on the annealing temperature
T (isothermal transformations) or the heating rateΦ (isochronal
transformations); see the analytical functions summarized in
Table 1. Fitting of Eqs.(14) and (15), with the appropriate
expressions forn, Q andK0, to a series of isothermal anneals
or to a series of isochronal anneals leads to determination of the
model parameters which are for the cases considered here:QN,
QG andv0 together with eitherN∗

1 andN01, or N′ andλ0 [25].
As above mentioned (Section2.2), it should be noted that the

same expressions (Table 1) occur for the kinetic parametersn,
Q andK0 for the two growth modes considered (see Eq.(9)),
provided, in case of volume diffusion-controlled growth, the
pre-exponential factor,v0, and the activation energy,QG, are
substituted byD0 and QD, the pre-exponential factor and the
activation energy for diffusion.

Hence, isokinetic transformation (c.f. Section2.1) does not
necessarily require thatn, Q andK0 have to be constants during
the course of the transformation, as has very often been stated
erroneously (e.g. see refs.[19,21]). Obviously, various com-
binations of nucleation and growth modes represent different
transformation mechanisms, and result in different expressions
f d
f

3. Calculation results

The following calculations are carried out:

(1) According to the recipe in Section2.2, numerical calcula-
tion of the transformation rate was performed for a range of
model parametersQG, ν0 andd/m andQN andN0 andN*

or λ0 andN′ (seeTable 2). Parameters are chosen such that
a mixture of nucleation mechanisms is employed.

(2) Then JMA fit to the transformation rate and analytical calcu-
lation using the same values for model parameters as chosen
in the numerical calculations are carried out.

(3) Rigorous numerical application of the recipe given in Sec-
tion 2.3provides the transformation rate, df/dtor df/dT, as a

Table 2
Values of the model parameters as used in the numerical calculations for isother-
mal and isochronal annealing for mixed nucleation or Avrami nucleation and
the growth mechanism pertaining to volume diffusion or interface-controlled
growth

Mixed nucleation Values Avrami nucleation Values

QG (kJ mol−1) 300 QG (kJ mol−1) 200
QN (kJ mol−1) 200 QN (kJ mol−1) 100
ν0 (m s−1) 109 ν0 (m s−1) 109

d/m 3/(3/2) d/m 3/(3/2)
N0 (m−3 s−1) Start 1030, end 1027 N′ (m−3) 5× 1015

N
or n(t), Q(t), K0(t) or n(T), Q(T), K0(T) and for the transforme
raction subjected to the general expressions Eqs.(14)and(15).
* (m−3) Start 1017, end 1020 λ0 (m−3 s−1) Start 105,
end 108
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Fig. 1. Relative error (of df/dt) from analytical solutions or JMA fits as a function
of model parameter,N* for isothermal annealing assuming mixed nucleation and
interface-controlled growth at two sets of annealing temperatures.

function of time/temperature. This calculation is performed
for five different temperatures (isothermal annealing) or
five different heating rates (isochronal annealing), assuming
interface-controlled growth mode.

(4) JMA kinetics (see Eqs.(1)–(4)) is fitted to the transforma-
tion rate as obtained in step 3 simultaneously for the five
different temperatures,T (isothermal annealing) or five dif-
ferent heating rates,Φ (isochronal annealing). Thus values
for the kinetics parameters,n, Q andK0 are obtained[15].

(5) Using the same values for the model parameters and the
values ofT or Φ as chosen in the numerical calculation, the
corresponding analytical expressions for df/dt, or df/dT (see
Eq.(14)or (15)andTable 1) result as well.

The above procedure has been performed for a range of
values ofN0 and N* or λ0 (seeTable 2), and good agree-

F a
f ed
n

Fig. 3. Relative errors (of df/dT) from analytical solutions or JMA fits as function
of the growth exponent for isochronal transformation assuming mixed nucleation
and interface-controlled growth at two sets of heating rates.

Fig. 4. Relative error (of df/dt or df/dT) from analytical solutions or JMA fits as
a function of model parameterλ0 for isothermal and isochronal transformation
assuming Avrami nucleation and interface-controlled growth at five different
temperatures (580, 590, 600, 610 and 620 K) or five different heating rates (0.01,
0.1, 1, 10 and 100 K s−1).

ment between exact numerical calculations and analytical solu-
tions results within the whole range ofN0 and N* or λ0 (see
Figs. 1–5). Analogous calculations for transformations assum-
ing volume diffusion-controlled growth are also performed and
similar results have been obtained, for which a detail description
is not given here.

4. Error analysis

The applicability of the analytical model and its superiority
to JMA kinetics for the intermediate cases can be judged from
the error analysis between JMA fits/analytical solutions and the
exact numerical calculations.
ig. 2. Relative errors (of df/dT) from analytical solutions or JMA fits as
unction of model parameterN* for isochronal transformation assuming mix
ucleation and interface-controlled growth at two sets of heating rates.
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Fig. 5. Relative errors (of df/dt or df/dT) from analytical solutions or JMA fits as
function of the growth exponent for isothermal and isochronal transformation
assuming Avrami nucleation and interface-controlled growth at five different
temperatures (580, 590, 600, 610 and 620 K) or five different heating rates (0.01,
0.1, 1, 10 and 100 K s−1).

4.1. JMA fits

As shown inFigs. 1–5, JMA kinetics provides good fits to
the exact numerical calculations for the extreme cases where
pure site saturation or pure continuous nucleation prevails (se
Figs. 1–5), but the resultant error becomes much higher for th
intermediate cases. Furthermore, the resultant error is drastical
dependent on the annealing temperature (isothermal) or the hea
ing rate (isochronal), e.g. higher error of fits results for wider
range of annealing temperatures or of heating rates as chose
seeFigs. 1 and 2.

4.2. The analytical solution

For all the analytical solutions using the same values for the
model parameters chosen in numerical calculations, the resu
tant error reduces with increasingN* or λ0, i.e. with changing
nucleation mechanism from pure continuous nucleation to pure
site saturation[24] (seeFigs. 1, 2 and 4). For the exact numer-
ical calculation for isothermal transformation assuming mixed
nucleation, the resultant error of analytical solution is nearly zero
throughout the overall range ofN* from 1017 to 1020, and is much
lower than that of JMA fits (seeFig. 1). This can be ascribed to
the fact that the analytical solution corresponds mathematically
to the exact numerical calculations for isothermal transforma-
tions assuming mixed nucleation[24]. Owing to approximations
a tion
[ -
e ultan
e heat
i (see
F

i ith
s

the correspondingn values can be calculated from the analytical
solutions obtained according to step 5 in Section3. Accordingly,
the resultant errors from JMA fits and from analytical solutions
as a function of the growth exponent,n, are obtained, as illus-
trated inFigs. 3 and 5. Obviously, the resultant error of JMA
fits is lower for the extreme cases (e.g. close ton = 3 or 4), but
much higher for the intermediate cases (e.g. aroundn = 3.4–3.5),
whereas the resultant error from the analytical solution is con-
tinuously increased with the growth exponent,n.

5. Discussion

According to the classical JMA kinetics, the kinetic parame-
ters:n, Q andK0 hold constant throughout the time/temperature
range of interest for isothermal transformations assuming pure
site saturation or pure continuous nucleation. Analogously, for
the numerical calculation (isothermal transformation) assum-
ing specific values, e.g.N0 = 1030 m−3 s−1 andN* = 1017 m−3

or N0 = 1027 m−3 s−1 andN* = 1020 m−3, the growth exponent,
n is fitted to be 3.9982 or 3.0001 by JMA kinetics, and is cal-
culated using analytical solutions to be nearly four or three over
the whole transformation (seeFig. 6), respectively. Furthermore,
the growth exponent obtained using analytical solutions is close
to three or four for transformations assuming Avrami nucle-
ation, provided thatλ0 = 108 or 105 is chosen, respectively; see
F d fit
f ase of
t pure
s

al-
u ists of
t the
o
c more
p yti-

F rans-
f
a , 810,
8

pplied for isochronal transformations and/or Avrami nuclea
24], the resultant error is increased (seeFigs. 2 and 4). How
ver, it should be noted that the dependence of the res
rror on the annealing temperature (isothermal) or the

ng rate (isochronal) is not as serious as that of JMA fits
igs. 1 and 2).

According to step 4 in Section3, the growth exponent,n,
s obtained from JMA fits to the numerical calculations w
pecific model parameters:N0 andN* or λ0 andN′; meanwhile
e
e
ly
t-

n;

l-

t
-

ig. 7. Therefore, JMA kinetics, which solely provides goo
or the extreme cases, can be considered as the specific c
he analytical model where pure continuous nucleation or
ite saturation prevails.

TakingN0 andN* or λ0 andN′ as between the extreme v
es, the extended volume for the intermediate cases cons

wo parts: one part is contributed from site saturation, and
ther from continuous nucleation. With increasingN* or λ0, the
ontribution from pure site saturation become more and
redominant[15,24]. Since the resultant error of the anal

ig. 6. Growth exponent as function of transformed fraction for isothermal t
ormation assuming mixed nucleation (choosing different values forN0 andN* )
nd interface-controlled growth at five different temperatures (770, 790
30 and 850 K).
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Fig. 7. Growth exponent as function of transformed fraction for isochronal
annealing at five different heating rates (0.01, 0.1, 1, 10 and 100 K s−1) choosing
specific values forλ0 and assuming Avrami nucleation and interface-controlled
growth.

cal solution is mainly due to the contribution from continuous
nucleation as a result of approximations applied[24], it reduces
with increasingN* or λ0 (seeFigs. 1, 2 and 4).

Applying a JMA-like model to a phase transformation assu-
mes that throughout the temperature/time range of interest the
transformation mechanism is the same (which is called “isoki
netic”), i.e. constant kinetic parameters with respect to time an
temperature[6,15]. Actually, this assumption corresponds to
assuming a constant ratio between the two contributions, i.
from site saturation and continuous nucleation, independent
transformation time/temperature. According to the analytica
model, the ratio between the two contributions changes wit
progressing transformation[24]. Therefore,n (as well asQ and
K0) should change as a function of time (isothermal) or temper
ature (isochronal) (as shown inFigs. 6 and 7). This accounts for
the large deviations of the resultant error in reaction to differ
ent temperatures (isothermal) or heating rates (isochronal),
obtained between JMA fits and analytical solutions.

Therefore, the analytical solution, applying time- or
temperature-dependent kinetic parameters gives better descr
tion to the intermediate cases, as compared to the JMA fit
FromFigs. 3 and 5, the resultant error from the analytical solu
tion is much lower than that from the JMA fit, corresponding
to n between 3.1 and 3.9. This implies that the JMA kinetics is
only applicable for the extreme cases.

6
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eme
atur
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2 etic
e

cases where pure continuous nucleation or pure site satu-
ration prevails; but for the intermediate cases where mixed
nucleation or Avrami nucleation dominates, JMA fits results
in much higher error, as compared to analytical solutions.
This indicates that the kinetic parameters should change with
progressing transformation, i.e. as a function of time (isother-
mal) or temperature (isochronal), and that the effective acti-
vation energy and the growth exponent generally depend on
time/temperature, even if the transformation mechanism is
constant (isokinetic).
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