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Abstract

In this study, an objective method to provide sufficiently unbiased analysis of raw DSC data, using the calculated first and second derivative:
in combination with error analysis is described and applied to analyze thermograms of lipid samples. A statistical method based on a closer stuc
of the residuals of fit and data correlation techniques with adequate criterion for the goodness of fit has proven to be valuable in evaluating th
experimental error. The derivatives were utilized to define unambiguously the key signal characteristics, such as minima, maxima, as well as er
and start points of thermal events, with uncertainties directly related to the actual noise of each signal. By estimating the pure experimental errc
and data correlation length, we have been able to have a better appreciation of the quality of the experimental data and detailed information c
our DSC system. The calculated errors using 15 runs for the same sample were consistent with the estimated standard deviations generated by
statistical analysis.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction an example, in the most recent TA Instruments analysis software
currently in use, the “TA Universal Analysis 2000", all the key
Use of the DSC as an analytical, diagnostic and researcstarting points for analysis are dependent on operator choice.
instrument is ubiquitous in the lipid literature. It is an efficient Visual examination is inherently subjective, fraught with pos-
tool widely and commonly used, for example, for “fingerprint- sible errors of interpretation, and thus, different analysts (even
ing” and in materials research. Information, such as peak posthe same analyst analyzing the data twice) might come to differ-
tions, widths, areas, heights and shapes of the peaks are routinelgt conclusions from the same data plot. Evidently, an unbiased
extracted from DSC thermograms and used as appropriate. determination of the main features of a DSC thermograph should
DSC thermogram is often complex, because various modes atart by eliminating the variability introduced by the operator. A
crystallization, solid-state transformations and melt-mediatednore rigorous approach in dealing with output data and aimed
transformations could be involved and contribute to a singleat the reduction of the variability on the data analysis, such as
peak. Users of DSC usually rely on the software which accomthat proposed by Foubert et fl], who have developed a calcu-
panies the purchase of the equipment for the handling of thiation algorithm for the start and end points of a thermal event,
output data. However, the determination of some key element® determine the integration limits of DSC crystallization signal,
is visually (manually) obtained for subsequent calculations. Ags a necessary alternative.
In this paper, we will describe an objective method to pro-
vide sufficiently unbiased analysis of raw DSC data, using the
T calculated first and second derivatives in combination with error
* Corresponding author. Tel.: +1 780 492 9081; fax: +1 780 492 8855. . . .
E-mail addresses: 1aziz.bouzidi@ualberta.ca (L. Bouzidi), analySl_S' Furthermore’ we make use_Of stat_lstlcal analySlS_ to
Suresh.narine@ualberta.ca (S.S. Narine). extract information on the errors associated with the data, define
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ima, as well as end and start points, and apply the method to
analyze thermograms of lipid samples.

2. Experimental method
The crystallization and melting experiments were performed =
on a “TA 2920 Modulated DSC” system (TA Instruments, New
Castle, DE, USA). Dry nitrogen was used to purge the thermal
analysis system. A relatively pure (97%) 1,3-dimyristoyl-2-
stearoylglycerol (MyStMy) triacylglyceride (TAG) was exten-
sively investigated for the application of the method. Myristic
and lauric binary systems used in our laboratory by Boodhoo
and Naring2] for a study of phase behavior of binary lipid sys-
tems have also been used to illustrate the method outlined in this
paper. The lauric binary systems are a mixture of 1,3-dilauroyl-2-
stearoylglycerol (LaStLa) and 1,2-dilauroyl-3-stearoylglycerol Temperature (°C)
(LaLaSt) TAGs and the myristic binary systems are a mixturehg, 1. Melting curves of MyStMy:MyMySt (40:60, wiw) binary system
of MyStMy and 1,2-dimyristoyl-3-stearoylglycerol (MyMySt) obtained with a melting rate of"&/min after crystallization at different rates.
TAGs. The purity of the individual TAGs was greater than 97%.Curve (a) after a crystallization rate of 0.¢/min and curve (b) after a crystal-
The samples were hermetically sealed into aluminum pan¥ation rate of 3C/min.
and an empty panwas used as areference. The DSC thermogram
of an empty pan was recorded prior to the sample measureials (including lipids) incorporating DSC experimental data but
ments at the same conditions as the sample. The baselines wevith a few exceptions, not much attention has been paid to the
recorded before every new set of experiments, at the start of trguantitative description of DSC thermograms, an essential step
day if running experiments overnight and after a new scan ratef the models are to be used predictiv§By-6].
The mass of each sample was within 1:8.0.1to 14.0+ 0.1 mg. A DSC thermogram is a complex combination of super-
The data sampling and temperature control procedures weposed thermal phenomena. DSC thermograms are particularly
fully automated and controlled by the “TA Instrument Control” complex in the case of lipids even for simple triglyceride mix-
software program. For all the samples, if not stated otherwisdures, where melt-mediated transformations between metastable
the procedure was as follows. Initially, the sample was kept aphases can complicate the melting event. Such melt-mediated
20°C for 20 min to reach steady state and then was heated toansformations themselves being dependent on the thermal his-
90°C at a rate of 53C/min and kept there for at least 5min tory ofthe sample asillustratedhig. 1.Fig. 1shows the melting
to erase its thermal history. To record the crystallization curvecurves of the binary system MyStMy:MyMySt (60:40, w/w)
the sample was cooled down at constant rate (depending on tiebtained with a melting rate of ®/min after processing with
experiment) to-5°C and kept at this temperature for 20 min to two different crystallization rates. For a crystallization rate of
allow for the completion of crystallization. The sample was then0.1°C/min (curve (a)), only a single melting peak centered at
heated to 90C at a constant rate of&/min to record the melt- 51.54+0.1°C appeared, whereas at a rate ¢iC3min (curve
ing curve. MyStMy (13.4t 0.1 mg) was run 15 times to test for (b)), two distinct melting peaks (3580.1 and 51.5-0.1°C,
reproducibility (it was equilibrated at 9@, then crystallized respectively) appeared separated by a melting-mediated crystal-
with a rate of 3C/min to—5°C, where it was kept for 20 min lizationat37.1 0.1°C. In general and apart from the single and
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and then melt at a rate of&/min up to 90°C). well defined line of a pure element in its most stable polymor-
In this paper, the exothermic signals from DSC are reportegbhic state (or of an element not demonstrating polymorphism), a
in the upward direction. clear definition—description of discriminated events of the signal
is not obvious.
3. The analysis method The background-baseline which is due to complex contribu-

tions of the thermal behavior of the material and the apparatus
To extract accurate information from a raw signal, we firstis an unavoidable component of the signal. However, functions
assess the level of “error” associated with the data by calculadescribing the pre- and post-transition baselines are very effi-
ing its standard deviation (S), compute the derivatives and thenienttools which can help to assess the overall noise as illustrated
use them to find the signal characteristics, such as the maximin Fig. 2.Fig. 2(a) shows the melting curve of the pure MyStMy
minima and inflexion points, and find the starting and endingsample, crystallized at a rate of €/min and melted at 5C/min

points of the event. with its pre- and post-transition baselineg éndy,, respec-
tively) fitted with straight lines (Rwas 0.998 and the standard
3.1. Data analysis, modeling limits and real spectrum error of estimates was 0.002 for both sectiofsy. 2(b) high-

lights the post-baseline (60—-90 min interval) and highlights the
The scientific literature is replete with models and theoreticalvery good fit obtainedrig. 2(c) shows the residuals which are
developments of thermodynamic and kinetic behavior of mateless than three times the standard deviation.
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The fitting procedures are primarily based on computing of
e the sum of squares of the residuals which are the difference
—— between the data and the fitting function. The classical fitting
strategy consists of minimizing the so-called Chi-squar® (x

[7]:
e S X2 = fjd? )
i i=1

where the normalized residudlis:
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- o; is the standard deviation of the uncertaifitgssociated with
T —~ 077] ,=-0.0010°1-0.7056 the experimental datg. The stangiard deviatiohis defined as
2 g the root-mean-square of the residuals between obsepat
e T calculatedy?®° values:
o © -0.79 = Raw Signal
% b Linear fit .

T -0.80 : : - ‘ :

d 2 e 65 70 75 80 85 90 S = LZ()@ — yica|92’ withi=1,---.n (4)
(b) Time (min) n—1-

—— Residuals (W/g) The statistical analysis of the residuals and the standard devi-
il : r ation associated with a data set leads to a quantification of its
g:ggg_ ) At 1V A associated experimental error and of the correlation between
-0.005 ; . , ‘ : data pointg8] as in the so-called Durbin—Watson (DW) statistic

60 65 0 75 80 85 0 [9-11]. The DW statistics is the basis of several good algorithms
(© Time (min)

in physical data treatment and is very effective. It also has the
of 1°C/min and melted at 5C/min with its pre- and post-baselines @ndy, knowledge of the experimental uncertainties. The DW statistics
respectively) fitted with straight lines; (b) zoom on the post-baseline (60-90 mirhytcome is much more insensitive to user misjudgments of the
interval); (c) residuals of fit. noise magnitude than if the? is used, as thg? value depends
) ) ) ~on the estimate of the measurement erf@y. Sophisticated

Ideally, a pure signal starts at time zero with a zero amplitudey,yroaches to analysis of residuals combining the DW statistic
value and increases (or decreases, depending on whether itis @, other statistical tests can be found in the literature (see, for
endotherm or exotherm) as time increases, reaches its maximuample{13-15]).
(minimum) and dies out at infinity. Practically, the range where 14 it the data, we have used a powerful method devel-
the “event” is measured is finite and the extent of its tails dependgped by Thijsse et al. and first published in 1988]. In their
on the experimental conditions and DSC system performancegpproach, the-interval is divided up in a certain number of
A signal without the baseline is considered a real thermal evenhteryvals and uses piecewise polynomial functions (splines) to
ifitis larger than the noise associated with the signal. To reducgynstruct a smooth curve through data points containing noise.
the variability on the data and accurately define the start and enfhe preak points (or knots) distribution is optimized and used to
points, the analysis should start and end as far as possible frogniro| the flexibility. The latest version of their software, includ-

the extrema of the peaks. ing the program source, executable and user manual, can be
freely downloaded from Thijsse’s websjte7]. Their approach
3.2. Assessing the “noise” assumes that the correlation function is a decaying exponential.

It uses the so-called generalized DW statistics, defined as:
In any experimental bivariate set of ddtgy}, noise is man-

ifest in the spectrum on or y alone by random errors, drifts , (. _ "~ LY i — di)?

or systematic errors. The first step of the analysis method ig’" Cn-m S (di)?

to assess accurately the noise. “Fitting” procedures are a com-

mon means of extracting it from raw data. When we approxi- 2(n—1) ni? o~ (im—xi) /€ (5)
i=1

- . . : - +—
mate two-dimensional data containimgxperimental points {x n(n — m)

yi)i=1, ... n byasmooth curve [§{x)] to the unknown realityg (x),

the measured data are supposed to contain a noise comppnent is the assumed correlation length in the datavailan integer

in y; so that: characterizing the extent ofimposed correlatinfis taken large
enough so that; andd,+,, are not correlated, and therefore, can

fi = g(x) + 4 (1)  account for the correct noise component.
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There are two possibilities to work with the spline program.3.4. Utilizing the derivatives of thermograms in association
One is to do an automatic search of autocorrelation using aith S
statistic Q (&) that ism-averaged over the relevant part of the

autocorrelation: The first and the second derivatives are used according to
_ 1 ™Mmax the level of noise associated with them. Strictly, a measurement
o) = —Z Om(&) (6) minus the baseline is considered an actual event (i.e. the fea-
Mmax, = ture is not “noise”) when its value is larger than the standard
with deviation attached to the signal. In order to accomquate for
unforeseen sources of errors and ensure that no spurious event
3(n — 1) is mistaken for a real feature, the signal is considered as “noise”
Mmax = [ Xy — X1 + 3} : ) or “zero event” when its value is less than 2S. Accordingly, the

values of first and second derivatives are assumed greater than

The other possibility is to fix: and¢ at any value during the fit  ;arg when they are greater thsin= 2+/2 x S and greater than
and use&2y,(£) as statistic. §” = 24/6 x S, respectively. This is reasonable since the resid-

Both possibilities have been used to fit the data withouy,gis have always been found less than two times the calculated
experimental uncertainty values as they were not available. Dugandard deviation in the end and start of the event regions. 28,
to the great flexibility of the polynomial function, however, a ¢ 3nds” will be called the “departure value” () from the
significant “overfitting” has been experienced, and thereforepsc signal, first derivative signal and second derivative signal,
led to an underestimation of the noise with all the DSC datgespectively. Note that the baseline was subtracted when using
analyzed for this study when an automatic search for correlatiophe psc signal. In the case of DSC thermograms, second deriva-
was used. The generalized DW statistigs(§) with a fixed m  tjyes are data treatment of choice because they flatten to zero the
and a careful choice of the correlation length were necessanysseline at the start and at the end of the cycle. However, sec-
to achieve a good estimation of the experimental error. Cargnq derivatives have reduced signal over noise compared to first
was taken to ensure that the algorithm recognizes the corregkrivative, give rise more frequently to spurious features and are
noise component and that the generalized DW parameter Wagyd to interpret in regions where the signal changes rapidly. The
as close as possible to its theoretical value of 2.00. All the DSGecond derivative is therefore used in conjunction with the first
data collected by our system were satisfactorily fit usirg3  gerivative.
and appropriate values. Physically meaningful derivatives  The start and end points of thermal events were determined
with relatively very few artifacts were evaluated using this Iastby tracking the “departure value” (Jstarting from the zero (of

procedure. the DSC signal, the first or second derivative). The start (or end)
of the event was the average of the range where the signal is in
3.3. Calculating the derivatives absolute value strictly larger than zero ¢and strictly smaller

than zero +2B. The error associated with its determination is
Several methods have been developed to calculate th@e extent of the range itself.
derivatives of noisy data. The most popular methods use the The derivatives are also used as a practical procedure of
so-called Savitzky—Golay convolution functions (the originalassessing the instrument resolution by quantitatively identify-
Savitzky—Golay papefl8] was cited 3885 times). However, ing resolved events and locating shoulders which could not be
the computation increases the standard deviation of the noiskiscriminated by other means, such as the van Ekeren resolution
contribution and depending on how the derivatives are caleriterion of identifying caloric event®2]. The van Ekeren res-
culated, they could generate artifacts without any relationolution criterion (or resolution facto®¥ as redefined and used
ships with the true spectral featurd®]. Moreover, the value by Marti et al.[23] does not account for weak shoulders even if
of the second derivative is roughly an order of magnitudethey are apparent. It is defined as:
smaller than the first derivative which induces a degrada-
tion of its signal (i.e. the value of the derivative here) overR = Zpeak (8)
noise by the same factor. If a random variable is multiplied min
by a constant (c, say), then the variance of the product isvhereimn is the minimum between two caloric events @pghk
increased by a factor a? (Mark and Workmar{20]). Since s the peak height of the second (weak) transitigig. 3 con-
the second derivative calculation is equivalent to using coeftains three different cases of overlapping contrived DSC curves.
ficients 1,—2 and 1 as multipiers for three data points atThe first case (Fig. 3(a)) can be quantitatively described with
the desiredx-spacing, the standard deviation of the noiseR=1.25. The second case (Fig. 3(b)) with a prominent shoulder
contribution to a second derivative ig6 greater than the givesR =1 and is the limitwhich can be quantitatively described
noise of the spectrum. Similarily, the noise contribution to awith the parameteR. The quantitative determination of the res-
first derivative is+/2 greater than the noise of the spectrumolution factor according to E7) is not possible in the last case
[21]. (Fig. 3(c)) where overlapping phenomena are clearly visible but
To calculate the derivatives, we have used both Tijsse’s softwithout a minimum in between.

ware and SigmaPlot software V9 for Windows (SPSS Inc., The first and second derivatives define precisely the posi-
Chicago, IL, USA). tions of the resolved single peaks and partially separated peaks.
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A point in the signal is a minimum (maximum) at the posi- inflexion point, observable between the succession of a mini-

tion where the first derivative intersects with thexis and

mum and a maximum, and the second derivative shows with an

where the second derivative has a maximum (minimum). Foextremum between them.
the weakly resolved peaks, the first derivative shows with an The x-accuracy region (time or temperature) of such

—— Resolved Peaks

R=1.25

(a) x-axis (arbitrary units)

— Limiting Case

(b) x-axis (arbitrary units)

—— No Resolution

(c) x-axis (arbitrary units)

determined points is taken as the domain where its value com-
prised within an absolute error 6f All signal characteristics
determined with the two above definitions are unique. For
example, the starting temperature of a thermal event will be
determined as the average between the temperature at which
the signal starts strictly to depart from “zero”o(D)) and the
temperature at which the signal is zero plus a standard deviation
Ts(0 +S) with an accuracy equal to half the difference between
To(0) andTs(0 +S). Section4 demonstrates that this is amply
justified.

3.5. Synopsis of the method
Starting from the raw DSC Data spline was run both

e with automatic search of autocorrelation;

e usingQ,,(&) as statistic: fixen (in our casem =3) and¢ at
values which give the best DW statistics, starting with the
average response time of the system.

The results obtained were:

1. the “best” value of, the DW statistics, the rms (&s no
experimental uncertainties were supplied);

2. the spline approximation data set;

3. the extrema and inflexion points which were evaluated with
the evaluation function of the software;

4. the first and second derivative data sets.

The results were used as follows:

e sort out maxima, minima and inflexion points by comparing
to the actual thermogram;
¢ locate the end and start of an event using the computed deriva-
tives by:
Defining the linear trend of signal: use of the first derivative
to locate the baselines left and right of the peak, it is where
the first derivative of the linear tails of the signal are less
than or equal to 22 x S off its constant value.
Locating where the event departs strictly from zero (the
start or the end of the event) with the second derivative, it
is where the second derivative departs strictly froxg{=
2/6 x S). If not possible with the second derivative, the
first derivative is used the same way wily = 2./2 x .
If not possible with the first derivative, the data set of the
heat flow minus the baseline is used with = 2 x S.
Defining the temperature range where the absolute value of
the second derivative (first derivative or heat flow signal)

Fig. 3. Three different cases of overlapping contrived DSC curves: (a) case
where resolution can be quantitatively described with paranitéb) case

with a prominent shoulder which can be quantitatively described with the limit

R=1,; (c) case where overlapping phenomena are clearly visible but without a
minimum in between. The quantitative determination of the resolution factor

according to Eq(7) is not possible in this case.

in the range fronDy, (timet; and temperatur&;) to Dy +

Dy /2 (timer, and temperatur&,). The temperature was
taken as the average temperature of the temperature range
and the error attached to it equal to half the magnitude of
the temperature rangeA{F T1)/2.
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e the spline was used:
to integrate the signal above the sigmoidal baseline, using z
the start and end points; ;
to obtain the integral the peak height, the full width at half
maximum (FWHM) of the peak and eventually the onset
of the event.

_—
Flow
o @
[ )]

o
"

4. Results and discussion

Exotherm up

The baseline recorded with two empty pans for our system
was a straight line in the domain where the thermal events of
interest are studied. It has slightly different slopes for the heating
process and the cooling process (0.806.0x 10~*W/(g°C)
against 0.0041.0x 10~4W/(g°C), respectively). The sub- s
traction of the baselines did not introduce any measurable dis-
tortion on peak characteristics in any of our thermograms. 3

Fig. 4 presents an actual DSC crystallization curve of 1,2- 200037 :
distearoyl-3-palmitoylglycerol (PaStSt) TAG (97% pure) crys- (©) Time (min)
tallized at a r.ate of 1C/min with a visible overlapping phe- Fig. 5. Melting curve of a 20% LaStLa/LalLaSt sample crystallized at a rate of
nomen,on V\,IhICh cannot pe t_re‘,atEd wihand the _use Of,the_ 0.1°C/min and fit with polynomials (splines) functions, classical DW statistics
derivatives is shown to discriminate them. The first derivativey,) and an automatic search of autocorrelation. (a) Enlarged region [7—10 min]
locates accurately the apparent maximum where it intersects th@the curve where the variations of the heat flow with time were small. The
x-axis (arrow (1)) and evidences the inflexion point betweerapproximating curve was obtained using 180 polynomials (179 knots) of order
a maximum and a minimum in the first derivative (arrow (2)) 3 (b) The main curve. (c) The residuals of_fit. The signal over noise_ratio (S/N)
The second derivative precisely locate the inflexion point (arrovx'{zgfeazﬁgt::rnof% fr:s gg:i'\f;?\fglsfj“hed lines in the figure are a guide to help
(3) at41.7C) and discriminates between two possible different
overlapping thermal events (arrow (4) at 43Z7and arrow (5) at
45.1°C). The first and second derivatives of the signal show perthe variations of the heat flow with time were small as seen in
fectly the positions of major inflexions in the signal and locatethe enlarged region [7—10 min] ((Fig. 5(a)) circled and shown
obvious overlapping contributions. The horizontal dashed linegbove the main curve). The residuals as showfign 5(c) are
in the figure are a guide to help locate the zeros of the derivativeyery small and the subsequent calculated signal over noise ratio

Fig. 5(b) showing the fit of a melting curve of a 20% LaStLa (S/N) is still very large (greater than 49 even for the region
in LaLaSt (w/w) sample crystallized at a rate of 6CUmin  where the heat flow varies very rapidly with time.
and melted at a rate of "&/min illustrates the effectiveness  As shown inFig. 6, the crystallization curve of a pure
of the spline software. In this case, the automatic search dflyStMy sample (crystallized at a rate of6/min), when fit
autocorrelation was used, produced an approximating curve ¢fsing the automatic search, generated a very small correlation
180 polynomials (179 knots) of order 3 with a DW statisticslength (§=0.001°C) and a large optimized number of knots of
of 2.01, close to the theoretical value. The fit followed closely446 (Fig. 6(a)). The calculated standard deviation (0.0003) was
the raw signal, particularly, dramatically in the region wherevisibly not a correct assessment of the experimental noise as

shown in the 30 min “flat” portion of the curve (Fig. 6(b)). The
portion was fitted with 179 knots and it is obvious that even the
T o @ I noise has been fitted. When the generalized DW statistic with
|| i e W / e 0 fixed m=3 and& (£ =0.05°C) statistics was used as shown in

10

Fig. 6(c) for the same portion of the curve asHig. 6(b), a

smaller number of knots (32) led to a correct fit of the data.

As can be seen, the fit-curve follows the “true baseline” behav-

ior instead of tracking the noise. The peak itself was fit with

residuals less than three times the calculated standard deviation.
The standard deviation associated with temperature measure-

ment was estimated by fitting the temperature versus time (7(¢))

curves for isothermal portions of the DSC experiments as well

‘ ‘ . : , as for constant heating or cooling rates. It was also calculated

36 38 40 42 44 46 48 from heat flow versus time curves in the regions with no ther-

Temperature (°C) mal eventFig. 7 shows a typical example of &) curve of a

Fig. 4. Actual DSC crystallization curve of a pure PaStSt TAG crystallized at aMyStMy sample heated to a final set-temperature of@@t

rate of 1°C/min with a visible overlapping phenomenon which cannot be treated@ rate of 5C/min and left at this temperature for 30 min. The

with R. The first derivative is shown to discriminate them. temperature was effectively stabilized in about 18 min (arrow

and Derivatives (arbitrary units)

Heat Flow (W/g); Exotherm Up
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deviation units. The dashed lines are a guide for the eye to locate the zero of the
derivative and the peak-to-peak noise associated with the temperature in the flat
region [20 and 30C].

1.62 4

1.60

a pure (97%) MyStMy sample crystallized at a rate 6€C&min

and melt at a rate of 8/min and its first derivative (the entire

. : . melting curve and its first derivative is shown in the upper left

Temperature () e 30 corner of the figure), the arrow (1) directs to the point where the
first derivative departs from “zero”, i.e. 1Iand the arrow (2)

Fig. 6. (a) Crystallization curve of a pure (97%) MyStMy sample crystalized dir€Cts to the end of the temperature determination range, i.e.

at a rate of 5C/min fit usingQ1. The correlation length i§=0.001 and the =~ 2Dy.

optimized number of knots is 446. (b) The 30 min portion of the curve fitted The temperatures of start and of end of thermal event for the

using Q1 statistics. Number of knots is 179 knots and the correlation Iengthindividual runs were determined within an average&@tOSOC

£=0.001. (c) Same flat portion as in (b) fitted usifg statistics. Number of L o

knots is 32 knots and the correlation lengt0.05. accuracy for crystall.lz.atlon and eEfQ.OS C accuracy for melt..
The maxima and minima of the signals have been determined

: with average uncertainties of O.C. The start and end points

1)). It dropped by only 0.2C and the peak-to-peak noise was . . o .

(1)) PP y only P P for the 15 identical runs of the crystallization and the melting of

equal to 0.02C underlining the effectiveness of the tempera- : . X
ture controller. The residuals had a nearly periodical pattern an@e MyStMy system were determined using the method outlined

were evenly distributed around zero with extrema less than 25
as pointed out by the dashed linesHig. 7(b). The calculated 0.06
first derivative departs from zero (as outlined in Secti®ard 4)
exactly where the value @fis above half the point-to-point (ptp)
noise (arrow (2)). The average standard deviations and correla-
tion lengths obtained for the flat parts of the DSC thermograms
are listed inTable 1.

Fig. 8examplifies the treatment of start and end points of ther-
mal events. It shows an enlarged region of the melting curve of

1.58 4 | —o— Raw Signal
Fit

1.56 T

—_—
(2]

-~
o
v
(=]
(5]
N
(=]

l 40 87.20
‘ Temperature
i Fitof T L 0.005
; l ;687.18 T
5 o 87.161
g 7 Ze7.14
g g
o 10
o £ 87.12
=3
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& (a) © 10 20 30 :o 50 60 70 a7.08 : ‘ . . y 0.015
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Table 2a

Characterization of the crystallization peak

15 runs Tmax (°C) FWHM (°C) Height (W/g) Area (J/g) Start of crystallizationQ) End of crystallizationqC)
Mean 32.437 2.783 2.635 170.614 23.43 36.34

Standard deviation 0.034 0.018 0.009 1.623 0.15 0.12

Standard error 0.009 0.005 0.002 0.434 0.04 0.03

above. The average correlation length used to fit the data was
70 s which is roughly equal to the average response time of 65 s
of the DSC pans.

The areas under the signals were calculated using the TA
Universal 2000 software and the SigmaPlot software V9 for
Windows (SPSS Inc., Chicago, IL, USA) feeding them with the
starting and ending points determined with this method. The
integrations under curves were performed using the trapezoidal
rule. A sigmoidal baseline initially is calculated as a straight line
from peak start to peak end. It is then recalculated for each data
point between the peak limits as the weighted average between :
the tangent baselines at peak start and end. The weighting factors 18 20 22 24 26 28 30
for a given point are: (1) one minus the fraction reacted (alpha) @ Time (min)
times the initial baseline and (2) alpha times the final baseline.

The area is then recalculated with the new baseline. If the new

area differs from the previous area by more than 1%, the area &%
is recalculated and the sigmoidal curve shifted repeatedly until
two consecutive calculations of the area differ by no more than
1%.

As expected, the two calculations yielded exactly the same
results for the same curves. The results are reportédbte 2a
for the crystallization peaklable 2bfor the melting peak and
Table 2cfor the crystallization peak mediated by melt. The
individual start and end temperatures were determined with
accuracies comparable to the repeatability errors listed in the 64 66 68 70 72 74 78
tables and individual determination of the minima and maxima (b) Time (min)
with errors smaller than those related to repeatability. Near th 9. (a) Temperature vs. tinfé?) and heat flow vs. time of the exothermic
extrema of the peaks where the slopes are the steepest, the re%tacess occurring for the MyStMy sample crystallized with a programmed rate
uals are in average less than four tinfeand have alternating of 3°C/min, and their respective first derivatives with respect to time. (b) Tem-
signs with relatively the same periodicity. The signal over noiseperature vs. tim&{(r) of endothermic process at a programmed heating rate of
ratio is still very large (approximately ﬂ) This is probably not ~ 5°C/min of the same sample as in (a) as well as the first and second derivatives
due to poor “piecing” of the curves into polynomials but to a cU"ves of the temperature with respect to time.
stronger dependency of the sensitivity of the system on the scale
of the thermal event. its flow rate[24]. During the event, the time dependence of the

The constant heating and cooling rates (temperature vers@perimental heating or cooling rate follows very closely the
time curves) are another powerful tool to determine the startime dependence of the heat flow. The derivatives of Ttfi
and end of a caloric event. When endothermic or exothermieurves are easier to compute and any deviation to the set linear
processes occur, the instrument cannot follow exactly its protrend appears clearlfig. 9(a) shows the heat flow curve and its
grammed temperature but adjusts more or less depending dinst derivative with respect to time for the MyStMy sample crys-
the rate itself and other experimental factors, such as the typaillized with a programmed rate from 3 to 20/min with the
of instrument, the mass of the sample and the purge gas amgfluence of the exothermic process on the cooling Fite.9(b)

Exotherm Up —— =

o Temperature
Temperature fitted 1
—— First Derivative

Second derivative

Temperature (°C)
(o]
o

B~
<

First and Second Derivatives (arbitrary units)

Table 2b

Characterization of the melting peak

15 runs Tmin (°C) FWHM (°C) Height (W/g) Area (J/g) Start of meltC) End of melt ¢C)
Mean 55.517 5.952 2.345 180.55 31.67 68.83
Standard deviation 0.040 0.023 0.007 0.756 0.17 0.20

Standard error 0.016 0.009 0.003 0.308 0.07 0.073
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Table 2c

Characterization of the crystallization peak induced by melt

15 runs Tmax (°C) FWHM (°C) Height (W/g) Area (J/g) Onset of crystallization°C)
Mean 44.432 5.432 0.269 18.594 38.99

Standard deviation 0.037 0.062 0.004 0.306 0.04

Standard error 0.015 0.025 0.002 0.125 0.02

shows an example of the influence of endothermic process ofe] M. Boodhoo, S. Narine, J. Am. Oil Chem. Soc., submitted for publica-

the experimental temperature at a programmed heating rate of ton. _ _

5°C/min of the same sample and shows the pIot of the first[3] V.J. Griffin, P.G. Laye, in: E.L. Charsley, S.B. Warrington (Eds.), Ther-
S . . | Analysis, Royal Society of Chemistry, Cambridge, 1992, pp. 17—

and second derivatives of the temperature with respect to time. mal ANalyss, Hoyal society of Lhemistry, ambricge PP

In both cases, the derivatives of the temperature change and g p. poliimore, S. Lerdkanchanapom, Thermal analysis (review), Anal.

the heat flow show the same trend and yielded the same values Chem. 70 (1998) 27R-35R.

for the start and end of the caloric event withii®.05°C. The [5] D. Dollimore, P. Phang, Thermal analysis (review), Anal. Chem. 72

detailed results of the study of the DSC temperature behavior _ (2000) 27R-36R.

. . . [6] S. Vyazovkin, Thermal analysis (review), Anal. Chem. 76 (2004)
during a caloric event are to be published elsewhere. 3909-3312.

[7] N.R. Draper, H. Smith, Applied Regression Analysis, Wiley, New York,
5. Conclusion 1981.
[8] P.R. Bevington, Data Reduction and Error Analysis for the Physical Sci-
The method based on analysis of the residuals of fit and the ences, McGraW Hill, New York 1969 (new edition with D.K. Robinson,
. Lo McGraw Hill, 1992).
93? of first and second d(?r!vatlves uged on DSC thermeram .0{9] J. Durbin, G.S. Watson, Testing for serial correlation in least squares
lipid system was very efficient and yielded accurate and unbi-" ~ regression. 1, Biometrika 37 (1950) 409-428.
ased results. The statistical method based on a closer study[06] J. Durbin, G.S. Watson, Testing for serial correlation in least squares
the residuals of fit and associating data correlation techniques regression. 2, Biometrika 38 (1951) 159-177.
with adequate criterion for the goodness of fit has proven to bE,l] J. Durb_in, G.S. _Watso_n, Testing for serial correlation in least squares
. . . regression. 3, Biometrika 58 (1971) 1-19.
ugeful n evfaluat.mg bOth_ the eXpe”memal error and th(:j' mod iZ] P. Minguzzi, Some practical tools for everyday least squares, J. Mol.
bias. By estimating relatively accurately the pure experimental ~ spectrosc. 209 (2001) 169-177.
error and data correlation length, we have been able to have[Es] J. Bechhoefer, Curve fits in the presence of random and systematic error,
better appreciation of the quality of the data and detailed infor- ~ Am. J. Phys. 68 (2000) 424-429.
mation on our DSC system. The errors inherent to the DS¢14] J.L. Femenias, Goodness of fit: analysis of residuals, J. Mol. Spectrosc.
determined unequivoquely and the values of key,, ' (2003) 32-42.

system were determined uneq quely ¥5{ J.L. Femenias, Fitting models to correlated data (large samples), J. Mol.
parameters, such as start and end of the thermal event, apparent spectrosc. 224 (2004) 73-98.
extrema and FWHMSs were determined accurately with uncere] B.J. Thijsse, M.A. Hollanders, J. Hendrikse, A practical algorithm for
tainties directly related to the actual noise of each signal. The least-squares spline approximation of data containing noise, Comput.
calculated errors using 15 runs for the same sample were cop- PNys: 12 (1998) 393-399.

. . . . 17] http://dutsm183.stm.tudelft.nl and can be accessed from the CIP
sistent with the estimated standard deviations generated by tl[le

o ) - - web site at http://www.aip.org/cip/source.htm. Last accessed April 20,
statistical analysis. This will enable us to compare data from 5qs.

different experiments. [18] A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data
by simplified least squares procedures, Anal. Chem. 36 (1964)
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