

Available online at www.sciencedirect.com

SCIENCE \bigcap DIRECT[®]

Thermochimica Acta 447 (2006) 69–74

thermochimica acta

www.elsevier.com/locate/tca

Reactivity in the solid state between $CoWO₄$ and $RE₂WO₆$ where $RE = Sm$, Eu, Gd

E. Tomaszewicz ∗

Department of Inorganic and Analytical Chemistry, Szczecin University of Technology, Al. Piastow 42, 71-065 Szczecin, Poland Received 16 February 2006; received in revised form 25 April 2006; accepted 2 May 2006 Available online 11 May 2006

Abstract

Reactivity in the solid state between CoWO₄ and some rare-earth metal tungstates RE_2WO_6 ($RE=Sm$, Eu, Gd) was investigated by the XRD method. Two families of new isostructural cobalt and rare-earth metal tungstates, $Co_2RE_2W_3O_{14}$ and $CoRE_4W_3O_{16}$, were synthesized. The $Co_2RE_2W_3O_{14}$ phases are formed by heating in air the CoWO₄ and RE_2WO_6 compounds mixed at the molar ratio 2:1, while the CoRE₄W₃O₁₆ phases are synthesized at the molar ratio of $\text{CoWO}_4/\text{RE}_2\text{WO}_6$ equals to 1:2. The $\text{Co}_2\text{RE}_2\text{W}_3\text{O}_{14}$ phases as well as the $\text{Co}_2\text{RE}_4\text{W}_3\text{O}_{16}$ compounds crystallize in the orthorhombic system. The $Co_2RE_2W_3O_{14}$ and $CoRE_4W_3O_{16}$ compound melt above 1150 °C. A melting manner of the $Co_2RE_2W_3O_{14}$ and CoRE4W3O16 compounds was determined in an inert atmosphere. The formation of CoWO4−*^x* phase was observed during heating in an inert atmosphere.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Rare-earth metal tungstates; Cobalt tungstate; Reactivity in the solid state

1. Introduction

During the past decade oxide-based inorganic phosphors have been extensively investigated for their optical applications[1,2]. Phosphors play an important role in high-resolution devices such as cathode-ray tubes, electroluminescent devices, plasma display panels and field emission displays [3–6].

Earlier studies on the reactivity in the soli[d state](#page-5-0) between ZnWO_4 and RE_2WO_6 ($\text{RE} = \text{Y}$, Nd, Sm, Eu, Gd, Dy and Ho) showed that these compounds reacted to give the family of isostructural compounds $ZnRE_4W_3O_{16}$ [7]. As it was found $ZnRE₄W₃O₁₆$ were synthesized by heating in air appropriate $\text{ZnWO}_4/\text{RE}_2\text{WO}_6$ mixtures according to the following reaction [7]:

$$
ZnWO_{4(s)} + 2RE_2WO_{6(s)} = ZnRE_4W_3O_{16(s)}
$$
 (1)

The family of compounds $ZnRE₄W₃O₁₆$ crystallize in the orthorhombic system. These compounds melt incongruently or decompose in the solid state above 1250 ◦C. The photoluminescence spectra of the $ZnEu_4W_3O_{16}$ compound were measured in the 250–600 nm under excitation at 613 nm. These experiments prove that the $ZnEu_4W_3O_{16}$ compound is shown to be potentially attractive as photoluminophor.

This work presents the results of investigations concerning the reactivity between other divalent metal tugnstate with the wolframite structure $(CoWO₄)$ with some rare-earth metal tungstates $RE₂WO₆$ (RE = Sm, Eu, Gd).

2. Experimental details

2.1. Sample preparation

The starting materials were $CoWO₄$ and rare-earth metal tungstates with the formula $RE₂WO₆$ (RE = Sm, Eu, Gd). For experiments CoWO₄ was prepared by two independent methods. Cobalt tungstate was obtained by precipitation from aqueous solution [8]. In order to synthesize $CoWO₄$ by this method stoichiometric amount of analytical grade CoSO4·7H2O and Na2WO4·2H2O were dissolved in double-distilled water. The solution of the cobalt salt was brought to a boil and to then, [a](#page-5-0) [h](#page-5-0)ot solution comprising $Na₂WO₄$ was added. The obtained precipitate was washed, dried, ground and annealed in a furnace at $800\,^{\circ}$ C (12 h) and $1000\,^{\circ}$ C (12 h). Cobalt tungstate was synthesized by conventional ceramic method, too. An equimo-

[∗] Fax: +48 91449 46 36.

E-mail address: tomela@ps.pl.

^{0040-6031/\$ –} see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2006.05.002

lar mixture of $CoSO_4 \cdot 7H_2O$ with WO_3 was heated in air at the following heating cycles: $600\,^{\circ}$ C (12 h); $800\,^{\circ}$ C (12 h); $900\,^{\circ}$ C (12 h) and 1000 °C (2 \times 12 h). A characterization using the Xray powder diffraction method showed that the obtained by both methods powders were indeed CoWO4 and revealed no presence of any chemical impurities. The disadvantage of "wet" method is problem with removing adsorbed by obtained precipitate $Na⁺$ and SO_4^2 ⁻ ions (necessity of repeated washing precipitate). The disadvantage of ceramic method is $SO₂$ evaluated in significant amounts.

 $RE₂WO₆$ were synthesized by the solid state reaction between RE_2O_3 (Sm₂O₃-mixture of cubic and monoclinic modifications, Eu₂O₃-cubic, Gd₂O₃-cubic) and WO₃ mixed at the molar ratio 1:1. The $RE₂O₃/WO₃$ mixtures were heated in the following cycles: $800\,^{\circ}\text{C}$ (12 h), $900\,^{\circ}\text{C}$ (12 h), $1000\,^{\circ}\text{C}$ (12 h) and $1100\,^{\circ}$ C (2 × 12 h).

The starting materials, i.e. $RE₂WO₆$ and $CoWO₄$, weighed in suitable molar proportion, were ground and heated in air in the following heating cycles: $1000\,^{\circ}\text{C}$ (12 h); $1050\,^{\circ}\text{C}$ (12 h); 1075 ◦C (12 h); 1100 ◦C (12 h); 1125 ◦C (12 h); 1150 ◦C (12 h). After each heating cycle, the samples were cooled gradually to ambient temperature, weighed, ground and analyzed by the XRD method and afterwards heated until an equilibrium state had been established. After the final heating cycle all samples were examined by DTA/TG and IR methods.

2.2. Characterization methods

Routine phase analysis was conducted with a DRON-3 diffractometer using the Co K α radiation ($\lambda = 1.79021$ Å). Diffraction patterns were collected over $12-60°$ 2 Θ at the stepped scan rate of 0.02◦ per step and the count time of 1 s per step. For indexing procedure, powder diffraction patterns were collected using an X'Pert PRO Philips diffractometer at the stepped scan rate of 0.02◦ per step and the count time of 10 s per step.

The DTA-TG examinations were performed using a Mettler Toledo TGA/SDTA851 apparatus. These measurements were carried out within the temperature range of $20-1500$ °C, in a nitrogen atmosphere, using corundum crucibles and at the heating rate of 10 K min^{-1} .

The IR spectra were recorded on a Specord M-80 spectrometer (Carl Zeiss Jena). For the sample preparation, the technique of KBr pellet was used.

3. Results and discussion

3.1. Reaction of RE2WO6 (RE = Sm, Eu, Gd) with CoWO4

Table 1 shows the contents of initial mixtures and the XRD analysis results of samples obtained after the last heating $CoWO_4/RE_2WO_6$ (RE = Sm, Eu, Gd) mixtures. The data of Table 1 point out that CoWO₄ excess does not appear if $RE₂WO₆$ mole percent exceeds 33.33%. These compounds enter into reaction to give two series of new compounds: $Co_2RE_2W_3O_{14}$ and $CoRE_4W_3O_{16}$. XRD analysis made for the samples, the initial mixtures of which contained to 33.33 mol%

Table 1

The molar ratio $RE_2WO_6/CoWO_4$ ($RE = Sm$, Eu, Gd) in initial mixtures and the phases identified by XRD analysis of the samples at room temperature

No.	RE_2WO_6 content in initial mixtures (mol%)	Identified phases
	10	CoWO ₄ , Co ₂ RE ₂ W ₃ O ₁₄
2	25	$Co2RE2W3O14$, CoWO ₄
3	33.33	$Co2RE2W3O14$
4	40	$Co_2RE_2W_3O_{14}$, $CoRE_4W_3O_{16}$
3	50	$Co2RE2W3O14$, $CoRE4W3O16$
5	60	$Co_2RE_2W_3O_{14}$, $CoRE_4W_3O_{16}$
6	65	$CoRE4W3O16, Co2RE2W3O16(traces)$
	66.67	$CoRE4W3O16$
8	70	$CoRE4W3O16$, RE ₂ WO ₆
9	75	$CoRE4W3O16$, RE ₂ WO ₆
10	90	RE_2WO_6 , $CoRE_4W_3O_{16}$

of $RE₂WO₆$, showed that two solid phases were occurring in the samples on treatment, viz. the compounds: $CoWO₄$ and $Co₂RE₂W₃O₁₄$. Thus, the compositions of the samples examined imply that within the component concentration range to 33.33 mol% of $RE₂WO₆$, the rare-earth metal tungstate reacts completely with $CoWO_4$ to give $Co_2RE_2W_3O_{14}$:

$$
2\text{CoWO}_{4(s)} + \text{RE}_{2}\text{WO}_{6(s)} = \text{Co}_{2}\text{RE}_{2}\text{W}_{3}\text{O}_{14(s)}
$$
(2)

At this concentration range, due to a full involvement of $RE₂WO₆$ in to the reaction (2), CoWO₄ occurs in excess and remains as a separate phase in equilibrium with $Co_2RE_2W_3O_{14}$. At the molar ratio 2:1 of the $\text{CoWO}_4/\text{RE}_2\text{WO}_6$ mixtures, both reactants react to completion. On the other hand, the composition of samples at equilibrium, the initial mixtures of which contained over 33.33 mol% of $RE₂WO₆$, shows that in the $RE₂WO₆ - CoWO₄ systems, apart from $Co₂RE₂W₃O₁₄$ other$ series of compounds—CoRE₄W₃O₁₆, is formed. The presence of $\text{CoRE}_4W_3O_{16}$ in those samples proves that other reactions run there, too:

$$
CoWO_{4(s)} + 2RE_2WO_{6(s)} = CoRE_4W_3O_{16(s)}
$$
(3)

The run of reactions (3) implies that the compounds $Co₂RE₂W₃O₁₄$ and $CoRE₄W₃O₁₆$ were in equilibrium in the concentration range of $33.33-66.67$ mol% of $RE₂WO₆$. The composition of samples obtained after heating the initial mixtures composed of 33.33 mol% of CoWO₄ and 66.67 mol% of $RE₂WO₆ confirms the quantitative course of the reactions (3). In$ the other concentration range, i.e. over 66.67 mol% of $RE₂WO₆$, the compounds to remain at equilibrium within the subsolidus area will be $\text{CoRE}_4W_3O_{16}$ and RE_2WO_6 (Table 1). Additionally, two independent mixtures of which containing 25 mol% of $CoRE₄W₃O₁₆$ and 75 mol% of CoWO₄ as well as 25 mol% of $Co₂RE₂W₃O₁₆$ and 75 mol% of $RE₂WO₆$ were prepared. These mixtures were heated under the same conditions as those applied to the preparation of samples obtained from $\text{CoWO}_4/\text{RE}_2\text{WO}_6$ mixtures. XRD analysis made for the samples containing initially $CoWO_4/CoRE_4W_3O_{16}$ and $RE_2WO_6/Co_2RE_2W_3O_{16}$ showed that in the $CoWO_4$ -RE₂WO₆ (RE = Sm, Eu, Gd) sys-

Table 3

Calculated parameters of the unit cells for $\text{CoRE}_4W_3O_{16}$ ($Z=3$) and values of their experimental and theoretical densities

tems other reactions run, too:

$$
CoRE4W3O16(s) + 3CoWO4(s) = 2Co2RE2W3O14(s) (4)
$$

\n
$$
Co2RE2W3O14(s) + 3RE2WO6(s) = 2CoRE4W3O16(s) (5)
$$

3.2. Characteristic of Co2RE2W3O14 and CoRE4W3O16 compounds

3.2.1. Crystallography (from XRD data)

Powder diffraction patterns of samples in an equilibrium state comprising initially 33.33 and 66.67 mol% $RE₂WO₆$ were subjected to indexing the $Co₂RE₂W₃O₁₄$ and $CoRE₄W₃O₁₆$ phases, respectively. Diffraction lines recorded within 2Θ (Co K α_{average}) 12–47° (for Co₂RE₂W₃O₁₄) and 12–60° (for $CoRE₄W₃O₁₆$ region were selected for indexing by POWDER [9,10] and DICVOL [11,12] programs. Very similar values of the unit cells for $Co_2RE_2W_3O_{14}$ and the unit cells for $CoRE_4W_3O_{16}$ were obtained during indexing procedure by these programs. Supplementary Tables S1 and S2 show the results of indexing the [powder](#page-5-0) [d](#page-5-0)iffraction patterns of $Co₂RE₂W₃O₁₄$ and $CoRE₄W₃O₁₆$, respectively. The parameters of $Co₂RE₂W₃O₁₄$ and $\text{CoRE}_4\text{W}_3\text{O}_{16}$ unit cells and the values of experimental [\(obtained](#page-5-0) [by](#page-5-0) [degassing](#page-5-0) [sam](#page-5-0)ples and hydrostatic weighing in pycnometric liquid—CCl4) and theoretical density have been tabulated in Tables 2 and 3, respectively. The data of Supplementary Table S1 and Table 2 show that the $Co₂RE₂W₃O₁₄$ compounds are isostructrural and the lattice parameters and cell volumina of theses phases decrease with decreasing of the rare-earth ion radius. The data of Supplementary T[able](#page-5-0) [S2](#page-5-0) and Table 3 point out that the $CoRE₄W₃O₁₆$ phases form a family of isostructural compounds. Fig. 1 shows the powder diffraction patterns of two phases from among the $ZnRE_4W_3O_{16}$ and $CoRE_4W_3O_{16}$ families. Fig. 1 confirms that the $\text{CoRE}_4\text{W}_3\text{O}_{16}$ compounds are isostructural with the $ZnRE_4W_3O_{16}$ phases. Analogously to the case of the $Co₂RE₂W₃O₁₄$ compounds, the lattice parameters and cell volumina of the $CoRE₄W₃O₁₆$ phases decrease from Sm to Gd.

3.2.2. Thermal properties

DTA-TG examinations were performed in an inert atmosphere (N_2) for the RE₂WO₆, CoWO₄, Co₂RE₂W₃O₁₄ and $CoRE₄W₃O₁₆$ compounds. The DTA curves of $RE₂WO₆$ do not evidence any thermal effects up to 1500 ◦C. Fig. 2 shows DTA-TG curves of CoWO4. A very small mass loss (∼0.09% by weight) was recorded on the TG curve of CoWO4 at ∼900 ◦C. During heating a sample of $CoWO₄$ with the heating rate 10 K min−¹ no effect was recorded on th[e](#page-3-0) [DTA](#page-3-0) [c](#page-3-0)urve of this compound at ∼900 ◦C (Fig. 2). Thus, separate samples of CoWO4 were heated: at 900 ◦C in nitrogen atmosphere (for 2 h) as well as at 900 and 1000 \degree C in air (for 2 h). After heating, the samples were cooled to ambient temperature and examined by the XRD me[thod.](#page-3-0) [O](#page-3-0)n the base of the XRD analysis it was found that positions of all diffraction lines recorded in the diffraction

Fig. 1. Powder diffraction patterns of $ZnEu_4W_3O_{16}$ and $CoEu_4W_3O_{16}$ compounds.

Fig. 2. DTA-TG curves of CoWO₄ (an inert atmosphere; heating rate, 10 K min⁻¹).

pattern of CoWO4 heated in an inert atmosphere are identical in comparison to positions of the diffraction lines recorded in the diffraction pattern of CoWO₄ used for experiments. However, an appearance of one additional diffraction line $(d=2.1322 \text{ Å},$ relative intensity $I = 2\%$) was observed in the powder diffraction pattern of CoWO4 heated in nitrogen. This diffraction line was not observed of the diffraction patterns of CoWO₄ heated in air. On the base of the conducted experiments the author suggests that in an inert atmosphere and at ∼900 °C CoWO₄ undergoes a decomposition. This process is connected with a liberation of a small amount of oxygen and a formation of hitherto unknown CoWO4−*x*. The endothermic effects recorded on the DTA curve of CoWO₄ with their onsets at 1309 and 1326 \degree C are probably associated with incongruent melting CoWO4−*x*. On the DTA-TG curves (not presented) of $CoWO₄$ recorded up to 1000 ◦C in air no effects and mass losses were recorded. For technical reasons (a very fast wearing off of a heating element during experiments conducted in air and the temperatures above $1000\degree C$) DTA-TG measurements in air were conducted only up to 1000 °C.

Fig. 3 shows the DTA curves of the $Co₂RE₂W₃O₁₄$ compounds. On each DTA curve of these compounds only one endothermic effect was recorded up to $1500\,^{\circ}$ C. On the base of the DTA-TG results and observations of the residue obtained after the DTA-TG examinations it was found that the effects with their onsets at: $1170\,^{\circ}\text{C}$ (Sm), $1187\,^{\circ}\text{C}$ (Eu) and $1209\,^{\circ}\text{C}$ (Gd) are associated with melting $Co₂RE₂W₃O₁₄$. On the base of the XRD method it was found that the $Co₂RE₂W₃O₁₄$ samples heated above their melting points, i.e. at 1190 °C (Sm), 1205 °C (Eu), $1225\textdegree C$ (Gd) and then quickly quenched contained one solid phase $Co₂RE₂W₃O₁₄$. Fig. 4 shows DTA curves of the $CoRE₄W₃O₁₆$ compounds. Only one endothermic effect was recorded on each of DTA curves of the $\text{CoRE}_4\text{W}_3\text{O}_{16}$ phases. The endothermic effects with their onsets at: $1292 \degree C$ (Sm), 1296 °C (Eu) and 1303 °C (Gd) are associated with melting the $CoRE₄W₃O₁₆$ phases. This fact may be confirmed by our observations of the residue in a crucible obtained after the DTA-TG

Fig. 3. DTA curves of: (a) Co2Sm2W3O14, (b) Co2Eu2W3O14 and (c) Co2Gd2W3O14 (an inert atmosphere; heating rate, 10 K min−1).

Fig. 4. DTA curves of: (a) $\text{CoSm}_4\text{W}_3\text{O}_{16}$, (b) $\text{CoEu}_4\text{W}_3\text{O}_{16}$ and (c) $\text{CoGd}_4\text{W}_3\text{O}_{16}$ (an inert atmosphere; heating rate, 10 K min⁻¹).

and XRD examinations. On the base of the XRD analysis it was found that $\text{CoRE}_4W_3O_{16}$ samples heated at a temperature above their melting points, i.e. at $1300\,^{\circ}\text{C}$ (Sm), $1310\,^{\circ}\text{C}$ (Eu) or 1315 °C (Gd), contained the corresponding $RE₂WO₆$ compound. The incongruent melting CoRE4W3O₁₆ can be described by the following equation:

$$
CoRE4W3O16(s) \rightarrow RE2WO6(s) + liquid
$$
 (6)

3.2.3. IR spectra

Figs. 5 and 6 show IR spectra of the $Co₂RE₂W₃O₁₄$ and $CoRE₄W₃O₁₆ compounds, respectively.$ As it is seen from these

Fig. 5. IR spectra of $Co₂RE₂W₃O₁₄$ compounds.

Fig. 6. IR spectra of CoRE4W₃O₁₆ compounds.

figures, the spectra of the $Co₂RE₂W₃O₁₄$ compounds as well as the spectra of the CoRE₄W₃O₁₆ phases show a big similarity to each other. In the light of literature information concerning binary and ternary lanthanide tungstates [13], the absorption bands with their maxima at \sim 850 cm⁻¹ (Co₂RE₂W₃O₁₆, Fig. 4) and at \sim 870 cm⁻¹ (CoRE₄W₃O₁₆, Fig. 5) can be assigned to the stretching mode of W-O bonds in joint $WO₆$ octahedra. This fact can be confirmed by [the p](#page-5-0)resence, in the IR spectra of the $Co₂RE₂W₃O₁₄$ phases as well as [in the I](#page-3-0)R spectra of the CoRE4W3O16 compounds, of some absorption bands in the $750-500 \text{ cm}^{-1}$ region. Other authors [14–17] suggest that the appearance of absorption bands in this region is caused by the oxygen bridge bond vibrations present in the anion lattice of tungstates, whereas, the absorption bands occurring in the IR spectra of the $Co₂RE₂W₃O₁₄$ and the $CoRE₄W₃O₁₆$ compounds below 500 cm−¹ can be due to the deformation modes of W-O bonds in WO_6 octahedra or to the deformation modes of W-O-W bridges $[14-17]$.

4. Conclusions

The experimental results obtained have led to the following conclusions:

- $CoWO_4$ and RE_2WO_6 ($RE = Sm-Gd$) react mutually by heating to give two series of new compounds: $Co₂RE₂W₃O₁₄$ and $CoRE₄W₃O₁₆$
- the $Co_2RE_2W_3O_{14}$ phases, formed by heating in air $CoWO_4$ and $RE₂WO₆ mixed at the molar ratio 2:1, are isostructural,$
- the $\text{CoRE}_4W_3O_{16}$ compounds, synthesized by heating in air CoWO₄ and $RE₂WO₆ mixed at the molar ratio 1:2, are$ isostructural,
- the $CoRE₄W₃O₁₆$ phases are isostructural with $ZnRE₄W₃O₁₆$, published elsewhere [7],
- $Co₂RE₂W₃O₁₄$ and $CoRE₄W₃O₁₆$ crystallize in the orthorhombic system,
- the anion lattice of new cobalt and rare-earth metal tungstates is built by joint $WO₆$ octahedra,
- the $Co₂RE₂W₃O₁₄$ compounds melt congruently at \sim 1200 °C,
- the CoRE4W₃O₁₆ phases melt incongruently at ∼1300 °C,

- in an inert atmosphere CoWO₄ decomposes at ∼900 °C, this process is connected with an oxygen evolution and a formation of hitherto unknown CoWO4−*x*.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tca.2006.05.002.

References

- [1] J. Wang, F. [Liu, H. Zhang, Mater. Lett. 56 \(200](http://dx.doi.org/10.1016/j.tca.2006.05.002)2) 300–304.
- [2] M.F. Joubert, A. Remillieux, B. Jacquier, J. Maugnier, B. Boulard, O. Perrot, C. Jacoboni, J. Non-Cryst. Solids 184 (1995) 341–345.
- [3] S. Neeraj, N. Kijima, A.K. Cheetham, Chem. Phys. Lett. 387 (2004) 2–6.
- [4] L.I. Ivleva, T.T. Basiev, I.S. Voronina, P.G. Zverev, V.V. Osiko, N.M. Polozkov, Opt. Mater. 23 (2003) 439–442.
- [5] Q.Y. Zhang, K. Pita, C.H. Kam, J. Phys. Chem. Solids 64 (2003) 333–338.
- [6] P. Yang, M. Lü, D. Xü, D. Yuan, G. Zhou, J. Luminescence 93 (2001) 101–105.
- [7] E. Tomaszewicz, Solid State Sci. 8 (2006) 508.
- [8] J.N. Albiston, F.R. Sale, Thermochim. Acta 103 (1986) 175.
- [9] D. Taupin, J. Appl. Cryst. 1 (1968) 78.
- [10] D. Taupin, J. Appl. Cryst. 6 (1973) 380.
- [11] D. Louer, M. Louer, J. Appl. Cryst. 5 (1972) 271.
- [12] A. Boultif, D. Louer, J. Appl. Cryst. 24 (1991) 987.
- [13] V.I. Tsaryuk, V.F. Zolin, Spectrochim. Acta A57 (2001) 355–359.
- [14] J. Hanuza, M. Maczka, J.H. van der Maas, J. Solid State Chem. 117 (1995) 177–188.
- [15] J. Hauck, A. Fadini, Z. Naturforsch. B25 (1970) 422.
- [16] M. Daturi, G. Busca, M.M. Borel, A. Leclaire, P. Piaggio, J. Phys. Chem. B101 (1997) 4358–4369.
- [17] M. Mączka, J. Solid State Chem. 129 (1997) 287-297.