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Abstract

A differential approach to the calculation of osmotic pressure of multisolvent systems within the Lewis–Randall framework is presented in this
paper. Exact differential equations relating the osmotic pressure and the system composition along paths of constant solvent chemical potential are
obtained and numerically solved. Although even for the simple case of an ideal solution no analytic expression for the osmotic pressure can be
obtained, the system of differential equations does not pose numerical difficulties to be solved. Examples of the use of the proposed methodology
are presented using the two-suffix Margules and Flory–Huggins equations, allowing an assessment of the influence of liquid-phase non-ideality on
the performance of the method, and showing that it can be applied even for systems wherein liquid–liquid phase equilibrium occurs.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

There exists a large variety of systems wherein osmotic equilibrium takes place, not only in many fields of chemical industry, but
also in apparently unrelated areas, being unnecessary to stress how significant the phenomenon itself is. However, specifically for
thermodynamic modeling, the description of osmotic equilibrium is also important for it may appear as intermediate step in phase
equilibrium calculations. For instance, the use of models based on the McMillan–Mayer [1] formalism for liquid–liquid calculations
implies the equality of osmotic pressure in both equilibrium phases as a necessary condition [2].

Besides systems wherein osmosis actually occurs, for modeling reasons many kinds of mixtures can be described as a solute
dissolved in a pure or mixed medium, e.g., an electrolyte in an aqueous solution, a protein in an aqueous saline solution. If there
exists a process underlying the calculation, the role of a constituent substance (either solute or solvent) depends on the process
itself. Just to cite a single example, for the osmotic processing of foods water is usually considered to be the only solvent, and all
soluble substances are solutes [3]. However, for the sole purpose of describing the thermodynamic state of a system, there may be
a certain degree of arbitrariness (since no real osmotic equilibrium takes place), and the choice of which compounds are solvents
or solutes depends on which model is being used to describe the system. For instance, the electrolyte is considered to be the solute
when dissolved in an aqueous alcoholic solution, and the medium properties necessary to calculate the long-range term of the excess
Gibbs energy model may be considered an average of those of water and alcohol [4,5]; however, the electrolyte is considered to be
a co-solvent when the studying the behavior of proteins in aqueous salt solutions [2].

Osmotic equilibrium calculations involving multisolvent systems often appear in the context of McMillan–Mayer descriptions
of solution properties. This kind of approach has gained increasing attention recently due to the use of this framework to describe
the phase behavior of protein solutions [6–9]: since it is very difficult to conduct Monte Carlo or molecular dynamic simulations
accounting for every present species, all substances but the protein are considered to constitute the solvent, whose properties are
calculated to be an average of theirs. Besides this one, another field wherein this approach is fundamental is the description of mixed-

∗ Tel.: +55 11 3091 1106; fax: +55 11 3091 2284.
E-mail address: pedro.pessoa@poli.usp.br.

0040-6031/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tca.2006.07.002

mailto:pedro.pessoa@poli.usp.br
dx.doi.org/10.1016/j.tca.2006.07.002
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solvent salt solutions. Following the pioneering work by Cardoso and O’Connell [4], some of the work conducted is concerned with
the conversion between McMillan–Mayer and Lewis–Randall framework [5,10]; independently of any theoretical aspect, models
for these systems within either framework are widely found in literature [11].

A methodology for calculating the osmotic equilibrium within the Lewis–Randall framework is presented in this paper. Differential
equations relating pressure and composition are obtained and numerically solved for model systems. Using this approach, not only
the osmotic equilibrium state can be calculated (which might be accomplished by solving the equilibrium conditions), but also the
whole curve of osmotic pressure as a function of solute concentration can be recovered. The approach is completely general, and
therefore can be used to describe osmotic equilibrium for any system within this framework.

2. Theoretical background

It is usual to distinguish two different categories of description in the thermodynamic modeling of solutions: the Lewis–Randall
and the McMillan–Mayer frameworks. The Lewis–Randall framework corresponds to the classic description of mixtures: expressions
for the excess Gibbs energy of mixtures are developed within it. The independent variables that define a thermodynamic state are
temperature, pressure and composition, and the chemical potential of each species can obtained as function of these independent
variables through proper differentiation. On the other hand, in the McMillan–Mayer framework a solution is described as a collection
of solute molecules in a continuum: therefore, the solvent (either pure or a mixture) is regarded simply as a medium wherein the
interactions between solute molecules occur. Models within this framework are constituted by a Legendre transform of the Helmholtz
energy, and have as independent variables temperature, volume, solute fractions and solvent chemical potential: the solute chemical
potential and the osmotic pressure can be obtained by proper differentiation. One of the most important aspects to be stressed is that
the Lewis–Randall framework establishes no a priori distinction between solutes and solvents (when asymmetric expressions for
the Gibbs energy are used, this distinction is introduced at the level of the model), whereas the McMillan–Mayer framework entails
an unambiguous dissimilarity between them. Although the subject of this paper – the calculation of the osmotic pressure – is often
related to the McMillan–Mayer framework, the whole development is based on Gibbs energy models within the Lewis–Randall
framework.

Let us consider a system with a composition ξ′
Si

, with i = 1, . . ., n (S representing the solvents, and ξ representing any fraction,
such as mass, volume or number fraction) and ξ′

R (R representing the solute), separated from other system containing only solvents
by a semi-permeable membrane that allows the exchange of solvent molecules, but not of solute ones. A general scheme of this
equilibrium is presented in Fig. 1; cell A is called “inside solution” and cell B is called “outside solution” [2]. Equilibrium can be
established if there is a difference of pressure across the membrane; the equilibrium condition, besides the equality of temperatures
in both phases, is

μ′
Si

(T, p′, ξ′
Si

, ξ′
R) = μ′′

Si
(T, p′′, ξ′′

Si
, ξ′′

R = 0), i = 1, . . . , n (1)

wherein μi is the chemical potential of compound i. One possible method to solve the system of equations thus defined would be to
simply modify existing liquid–liquid phase equilibrium algorithms. While the complexity introduced by considering the pressure to
be a defining variable is not critical itself, convergence may be slow due to the relative insensitiveness of liquid phases (when far
from critical conditions) with respect to changes in pressure.

An alternative solution can be obtained by considering that in the space of variables (ξ, P) both states belong to a subspace
wherein:

μ′
Si

(T, p′, ξ′
Si

, ξ′
R) = μSi (T, p, ξSi , ξR) (2)

Each one of the cells is specified by n + 2 variables: temperature, pressure and n fractions (recalling that the total number of compounds
is n + 1); hence, for both cells the total number of independent variables is thus 2n + 4. The equilibrium conditions impose the equality
of temperature and chemical potentials of each one of the solvents in both cells, with n + 1 restrictive equations. Therefore, the number
of degrees of freedom is n + 3. The composition, temperature and pressure of cell A are usually defined beforehand, lowering the
degrees of freedom to one: once the solute fraction in cell B is set (ξ′′

R = 0), the problem is completely defined (by hypothesis, the

Fig. 1. General scheme of an osmotic equilibrium cell for a multisolvent system.
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pressure p′ is high enough that pressure p′′ is strictly positive). Although the osmotic pressure is calculated when the solute fraction
in cell B vanishes, the problem is mathematically well posed also for any other value of ξ′′

R.
Therefore, using the solute fraction ξR as parameter, the previous Eq. (2) defines a subspace wherein:

dμSi

dξR

= 0 (3)

As stated before, within the Lewis–Randall framework the chemical potential of any species (either solvent of solute) can be expressed
as a function of temperature, pressure and composition. This previous equation can hence be written:

dμSi =
n∑

j=1

(
∂μSi

∂ξSj

)
T,p,[ξ]

dξSj +
(

∂μSi

∂p

)
T,[ξ]

dp = 0 (4)

In order to avoid excessive lettering, the subscript [ξ] is herein used to indicate that only the pertinent fractions are to be kept
constant—for each derivative, all fractions used to define the state except the fraction with respect to which the derivative is
calculated. One must also consider the restriction that:

n∑
j=1

dξSj + dξR = 0 (5)

One can arbitrarily choose one of the solvents to be used as a reference, whose composition is to be eliminated by using this previous
equation. Considering Sk as the reference solvent, the following set of equations is obtained:

n∑
j=1,j �=k

⎛
⎝(∂μSi

∂ξSj

)
T,p,[ξ]

−
(

∂μSi

∂ξSk

)
T,p,[ξ]

⎞
⎠ dξSj −

(
∂μSi

∂ξSk

)
T,p,[ξ]

dξR + V̄Si dp = 0 (6)

Along the equilibrium curve:

n∑
j=1,j �=k

⎛
⎝(∂μSi

∂ξSj

)
T,p,[ξ]

−
(

∂μSi

∂ξSk

)
T,p,[ξ]

⎞
⎠ dξSj

dξR

+ V̄Si

dp

dξR

=
(

∂μSi

∂ξSk

)
T,p,[ξ]

(7)

This is a system of n differential equations with n functions. Eq. (7) actually describes a chain of osmotic cells with infinitesimal
differences in solute concentration. Therefore, for a certain composition and pressure, it is possible to calculate how the composition
and pressure shall vary in a path wherein the chemical potential of all solvent species is kept constant. The derivative of the fraction
of compound Sk can be calculated through the following equation:

dξSk

dξR

= −
n∑

j=1,j �=k

dξSj

dξR

− 1 (8)

Thus, starting at the conditions of the inside solution, it is possible to calculate by numerical integration the composition of the
outside solution and to obtain a function Π(ξR). In a general sense this is a boundary-value problem, for the value of Π(ξ′

R) is
unknown. However, if partial volumes can be considered to be pressure-independent – which is a reasonably assumption for most
liquid solutions – the resulting set of equation is an initial-value problem. The methodology of defining differential equations that
must be satisfied through an equilibrium path is known as differential approach [12].

2.1. Application to ternary systems

Further insight in the application of this methodology can be gained if one restricts the attention to a ternary system comprising
a single solute and two solvents. In this case, one gets the set of equations:

dμS1 =
(

∂μS1

∂ξS1

)
T,p,ξS2

dξS1 +
(

∂μS1

∂ξS2

)
T,p,ξS1

dξS2 +
(

∂μS1

∂p

)
T,ξS1 ,ξS2

dp = 0 (9)

and

dμS2 =
(

∂μS2

∂ξS1

)
T,p,ξS2

dξS1 +
(

∂μS2

∂ξS2

)
T,p,ξS1

dξS2 +
(

∂μS2

∂p

)
T,ξS1 ,ξS2

dp = 0 (10)
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Following the previous procedure, one can choose solvent S1 as the reference compound. Therefore:(
∂μS1

∂ξS1

)
T,p,ξS2

(−dξS2 − dξR) +
(

∂μS1

∂ξS2

)
T,p,ξS1

dξS2 +
(

∂μS1

∂p

)
T,ξS1 ,ξS2

dp = 0 (11)

and (
∂μS2

∂ξS1

)
T,p,ξS2

(−dξS2 − dξR) +
(

∂μS2

∂ξS2

)
T,p,ξS1

dξS2 +
(

∂μS2

∂p

)
T,ξS1 ,ξS2

dp = 0 (12)

Rearranging:((
∂μS1

∂ξS2

)
T,p,ξS1

−
(

∂μS1

∂ξS1

)
T,p,ξS2

)
dξS2 −

(
∂μS1

∂ξS1

)
T,p,ξS2

dξR +
(

∂μS1

∂p

)
T,ξS1 ,ξS2

dp = 0 (13)

and ((
∂μS2

∂ξS2

)
T,p,ξS1

−
(

∂μS2

∂ξS1

)
T,p,ξS2

)
dξS2 −

(
∂μS2

∂ξS1

)
T,p,ξS2

dξR +
(

∂μS2

∂p

)
T,ξS1 ,ξS2

dp = 0 (14)

From the above equations:

dp = − 1

V̄S1

((
∂μS1

∂ξS2

)
T,p,ξS1

−
(

∂μS1

∂ξS1

)
T,p,ξS2

)
dξS2 + 1

V̄S1

(
∂μS1

∂ξS1

)
T,p,ξS2

dξR (15)

dp = − 1

V̄S2

((
∂μS2

∂ξS2

)
T,p,ξS1

−
(

∂μS2

∂ξS1

)
T,p,ξS2

)
dξS2 + 1

V̄S2

(
∂μS2

∂ξS1

)
T,p,ξS2

dξR (16)

wherein V̄i is the partial volume of compound i. Therefore:

dξS2

dξR

=
(1/V̄S2 )(∂μS2/∂ξS1 )T,p,ξS2

− (1/V̄S1 )(∂μS1/∂ξS1 )T,p,ξS2

(1/V̄S1 )((∂μS1/∂ξS1 )T,p,ξS2
− (∂μS1/∂ξS2 )T,p,ξS1

) + (1/V̄S2 )((∂μS2/∂ξS2 )T,p,ξS1
− (∂μS2/∂ξS1 )T,p,ξS2

)
(17)

It can be easily seen that:

dξS1

dξR

=
(1/V̄S1 )(∂μS1/∂ξS2 )T,p,ξS1

− (1/V̄S2 )(∂μS2/∂ξS2 )T,p,ξS1

(1/V̄S1 )((∂μS1/∂ξS1 )T,p,ξS2
− (∂μS1/∂ξS2 )T,p,ξS1

) + (1/V̄S2 )((∂μS2/∂ξS2 )T,p,ξS1
− (∂μS2/∂ξS1 )T,p,ξS2

)
(18)

The derivative of the pressure can be calculated by either equation indistinctly:

dp

dξR

= − 1

V̄S1

((
∂μS1

∂ξS2

)
T,p,ξS1

−
(

∂μS1

∂ξS1

)
T,p,ξS2

)
dξS2

dξR

+ 1

V̄S1

(
∂μS1

∂ξS1

)
T,p,ξS2

(19)

which can be simplified as

dp

dξR

=
(1/V̄S1 V̄S2 )((∂μS2/∂ξS2 )T,p,ξS1

(∂μS1/∂ξS1 )T,p,ξS2
− (∂μS2/∂ξS1 )T,p,ξS2

(∂μS1/∂ξS2 )T,p,ξS1
)

(1/V̄S1 )((∂μS1/∂ξS1 )T,p,ξS2
− (∂μS1/∂ξS2 )T,p,ξS1

) + (1/V̄S2 )((∂μS2/∂ξS2 )T,p,ξS1
− (∂μS2/∂ξS1 )T,p,ξS2

)
(20)

As might be anticipated, this expression does not depend on the solvent chosen as reference.

2.2. Simplifying assumptions

Let us suppose that an expression for the chemical potential is known, such that:

μi(T, p, ξ) = μref
i (T, pref, ξref) + RT ln ai(T, p, ξ) (21)

wherein ai is the activity of compound i. It is a usual procedure to separate the activity into two parts:

ai(T, p, ξ) = aPI
i (T, ξ)aPD

i (T, p, ξ) (22)
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The PI (pressure independent) part is that usually given by excess Gibbs energy models. The PD (pressure dependent) is given by

aPD
i (T, p, ξ) = exp

(∫ p

pref

V̄i

RT
dp

)
(23)

This part is usually ignored in low-pressure equilibrium calculations (either liquid–liquid or liquid–vapor), but must be retained in
osmotic pressure calculations. Another usual simplifying assumption is that the partial volume is independent both of composition
and pressure. Therefore, one gets for compound S1 in a ternary system, for instance:(

∂μS1

∂ξS1

)
ξS2 ,p

= RT

(
∂ ln aPI

S1

∂ξS1

)
ξS2

(24)

and (
∂μS1

∂p

)
ξS1 ,ξS2

= V̄S1 (25)

and so on. As stated before, with these assumptions the boundary-value problem is changed into an initial-value problem, therefore,
allowing a direct integration.

2.3. Gibbs–Duhem equation

For a non-isobaric change, the Gibbs–Duhem equation can be written as

xR dμR +
n∑

i=1

xSi dμSi = V dp (26)

wherein xi is the number fraction of compound i and V is the volume per amount of substance of the mixture. Along a path defined
by Eq. (7), there will be no change in the solvent chemical potential. Therefore:

xR dμR = V dp (27)

Since μR, V and p are ultimately functions of xR, Eq. (27) can in principle be integrated. Considering the general expression for the
chemical potential, Eq. (21), one gets:∫ μR(xR)

μR(xR→0)
xR dμR =

∫ xR

0
V

dp

dxR

dxR (28)

The right side of the above equation can be calculated using the results from Eq. (7), while the left term can be calculated by∫ μR(xR)

μR(xR→0)
xR dμR = xRμR|xR

xR→0 −
∫ xR

0
μR dxR = xRRT ln aR − RT

∫ xR

0
ln aR dxR (29)

This equation shall be verified not only for the cell composition, but also for any intermediate composition. Although it is tantalizing
to simplify them, these equations are to be numerically calculated, since the integration path is not known a priori. Moreover, one
cannot forget that the activity in this previous equation contains the pressure-dependent term according to Eq. (22). Eq. (29) can
thus be used to verify whether the path calculated through Eq. (7) does define a path of constant solvent chemical potential.

2.4. Implementation

The set of differential equations defined by Eq. (7) was solved using the Runge–Kutta fourth order method, using MapleTM

programming language. Final results were checked both by using the osmotic equilibrium criterion defined by Eq. (1) and by
applying the Gibbs–Duhem equation for the whole integration path. All calculations were carried out with the standard precision of
the software, although only four digits are herein presented for the sake of readability.

3. Results and discussion

The presented methodology was applied with similar efficacy to calculating the osmotic equilibrium of systems whose liquid
phase non-ideality is described by various GEX models (Margules, Flory-Huggins, Wilson, NRTL). As the objective of this work is
to establish the methodology itself, assessing the influence of the non-ideality on the performance of the method, results for model
systems are presented firstly; results for a real system (a protein in a polymer solution, described by the Flory–Huggins equation)
are shown afterwards.
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3.1. Ternary ideal solution

For a liquid phase constituted by an ideal solution the previous equations can be greatly simplified, though no analytical solution
for the composition of the outside solution can be achieved. Let the fraction ξ be the number fraction, and let Vi represent the volume
of the pure species i. Therefore:

dxS1

dxR

= − xS1VS1

xS1VS1 + xS2VS2

(30)

and, symmetrically:

dxS2

dxR

= − xS2VS2

xS1VS1 + xS2VS2

(31)

For the pressure, one gets:

dp

dxR

= RT

xS1VS1 + xS2VS2

(32)

It can be seen that no general analytical solution can be found even in this simple case. However, the same statement is true for
the integral formulation given by Eq. (1). Numerical results for calculations involving ternary ideal solutions are presented in next
section as trivial cases of the Margules equation.

3.2. Ternary non-ideal mixtures—Margules equation

In order to assess how the non-ideality of the liquid mixture can affect the efficiency of this methodology, a system whose non-
ideality is given by the two-suffix Margules equation is considered. Although this model is not widely used for phase equilibrium
calculations, it is the simplest expression for excess Gibbs energy allowing for liquid-phase non-ideality. Since the aim of this work
is to investigate the methodology itself, general conclusions shall apply independently of this choice. If one considers that there is
no excess volume upon mixing, the model is self-consistent.

The expression for the excess Gibbs energy (GEX) for a mixture of solvents S1 and S2 and a solute R is given by

GEX

RT
= AS1RxS1xR + AS2RxS2xR + AS1S2xS1xS2 (33)

wherein Aij is a adjustable parameter related to compounds i and j. Pertinent derivatives are presented in Appendix A.
In order to better characterize the mixture of solvents, a solute-free fraction yS1 is defined:

yS1 = xS1

xS1 + xS2

(34)

Some examples of osmotic equilibrium calculations are presented in Table 1, considering VS1 = 18.0 cm3 mol−1 and VS2 =
200.0 cm3 mol−1. These results allow a direct analysis of the influence of the parameters (and hence of the non-ideality) on the
calculated osmotic pressure and outside cell composition. For instance, considering systems 1–4 in Table 1, it can be seen that
positive deviations from the ideal behavior between the solvents, related to higher values of parameter AS1S2 in Eq. (33), lead to
lower values of the concentration of the solvent with smaller volume (S1) in the equilibrium cell, while negative deviations lead to
higher concentrations. From systems 5–8, it can be inferred that positive deviations from the ideal behavior between a solute and

Table 1
Results for osmotic pressure calculations for systems described by the Margules equation at 298.15 K

System AS1S2 AS1R AS2R x′
R y′

S1
x′′

S1
Π (bar)

1 0.0 0.0 0.0 0.02 0.5 0.4916 4.563
2 0.5 0.0 0.0 0.02 0.5 0.4888 4.563
3 1.0 0.0 0.0 0.02 0.5 0.4833 4.554
4 −1.0 0.0 0.0 0.02 0.5 0.4944 4.551
5 0.0 1.0 0.0 0.02 0.5 0.4966 4.544
6 0.0 −1.0 0.0 0.02 0.5 0.4866 4.559
7 0.0 0.0 1.0 0.02 0.5 0.4868 4.470
8 0.0 0.0 −1.0 0.02 0.5 0.4964 4.635
9 1.9 0.0 0.0 0.02 0.5 0.3865 4.188

10 0.0 0.0 0.0 0.1 0.5 0.4576 23.14
11 1.0 0.0 0.0 0.1 0.5 0.4173 22.93
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Fig. 2. Phase equilibrium diagram of a hypothetical system formed by a solute partially miscible in a solvent. Continuous line: binodal curve; dashed lines: tie lines.

one of the solvents increase the concentration of this solvent in the equilibrium cell, while negative deviations lead to a decrease.
Although the results seem at first to indicate no expressive difference in the composition when the outside cell is calculated, the
situation changes significantly when highly positive deviations from the ideal behavior are present: system 9, wherein the solvents
are close to partial miscibility, presents strong deviations on the calculated composition of the equilibrium cell and on the calculated
osmotic pressure. High differences from the ideal behavior also can be noticed for higher solute fractions, as inferred from systems
10 and 11; even for the ideal behavior shown in system 10, the hypothesis that the proportion between the solvents is constant in both
cells is a very poor assumption. Concerning the methodology itself, besides the fact that these equilibria could be straightforwardly
calculated, another significant feature of the presented procedure it that the computation time is insensitive to the non-ideality of the
mixture.

In order to verify whether the present approach applies also for situations wherein phase equilibrium takes place, a hypothetical
system with the phase behavior presented in Fig. 2 is considered—parameters for this system are AS1R = 0.5, AS2R = 2.5 and
AS1S2 = 0.20, and volumes of pure compounds are the same as before. Results for osmotic equilibrium calculations for the three
equilibrium compositions depicted in this figure are presented in Table 2. In all cases, calculated osmotic pressure and equilibrium
cell compositions are equal within the limit of the numeric precision. Since partial volumes were not considered to depend on
composition, this result could have been anticipated directly from Eq. (1). Concerning the methodology, one can see that it can
be applied for situations wherein phase separation occurs—since no restriction was made on the stability along the integration
path, unstable systems may exist therein. In this case, the analogy with the curve generated by a volumetric equation of state
follows straightforwardly: in Fig. 3, the osmotic pressure for systems at constant solvent chemical potential is presented, each curve
containing one of the systems presented in Table 2.

However, different results are obtained when the solvents themselves present partial miscibility—an example is given by the
Margules equation with parameters AS1R = 0.1, AS2R = 0.5 and AS1S2 = 3.0, whose equilibrium curve is presented in Fig. 4;
results for osmotic equilibrium calculations for the presented equilibrium compositions are shown in Table 3. It can be seen that
neither the calculated osmotic pressure nor the composition of the outside cells are the same. In fact, they do not even correspond

Table 2
Results for osmotic pressure calculations for systems presenting liquid–liquid separation at 298.15 K, solute partially miscible in one of the solvents

System Phase x′
R x′

S1
x′′

S1
Π (bar)

12
I 0.1712 0.05452 0.04289 58.48
II 0.7885 0.04533 0.04289 58.48

13
I 0.2060 0.1072 0.08319 66.09
II 0.7132 0.09219 0.08319 66.09

14
I 0.2567 0.1575 0.1210 74.41
II 0.6216 0.1413 0.1210 74.41
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Fig. 3. Osmotic pressure for systems at constant solvent chemical potential. Dashed line: curve for system 12 (referred to Table 2); continuous line: curve for system
13; dotted line: curve for system 14; symbols (triangles): equilibrium points.

Fig. 4. Phase equilibrium diagram of a hypothetical system formed by two solvents partially miscible. Continuous line: binodal curve; dashed lines: tie lines.

Table 3
Results for osmotic pressure calculations for systems presenting liquid–liquid separation at 298.15 K, partially miscible solvents

System Phase x′
R x′

S1
x′′

S1
Π (bar)

15
I 0.001170 0.9279 0.9291 1.311
II 0.0008302 0.07089 0.07062 0.4297

16
I 0.002339 0.9265 0.9288 2.622
II 0. 001661 0. 07105 0.07052 0.8595

17
I 0.01050 0.9166 0.9273 11.79
II 0.007490 0.07224 0.06983 3.869
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to the equilibrium compositions of a solute-free system: calculated equilibrium compositions for the solute-free system would be
xI
S1

= 0.9293 and xII
S1

= 0.07072.
A careful analysis shows that the calculated equilibrium phase that is rich in solvent S1 lies in the two-phase region, and would

naturally split into two liquid phases. This may not be a problem when describing real systems, since the pair S1 and S2 would not
be a priori considered to be a composite solvent. However, it shows that care must be exercised when modeling systems wherein
the role that the constituent compounds play in their description is arbitrary—it should be stressed that in principle all hypotheses
underlying the whole development are fulfilled. These results do not mean that it is impossible to establish an osmotic equilibrium
with a system with this composition, since the equality of chemical potentials shows that the osmotic equilibrium calculated for the
other phase fulfills equilibrium conditions, Eq. (1).

3.3. Ternary non-ideal mixtures—Flory–Huggins equation

A more severe test for the presented methodology would be a situation wherein there is a large deviation from the ideal behavior
due not only to specific interactions between the compounds, but also to differences in their volumes per amount of substance.
Therefore, the Flory–Huggins equation, which accounts for these differences, is considered:

GEX

RT
= xS1 ln

φS1

xS1

+ xS2 ln
φS2

xS2

+ xR ln
φR

xR

+ (xS1VS1 + xS2VS2 + xRVR)

Vref
(χS1S2φS1φS2 + χS1RφS1φR + χS2RφS2φR) (35)

wherein φi is the volume fraction of compound i and χij is the interaction fraction between compounds i and j. Pertinent derivatives
for the Flory–Huggins equation are presented in Appendix A; they are written in terms of volume fractions, since these are easier
calculated in this case.

Values of equation parameters were chosen so that the model is able qualitatively reproduce the behavior of bovine serum
albumin (BSA) in an aqueous solution of polyethylene glycol (PEG) of chain size 6000. Considering S1 to be the polymer
(VS1 = 5000.0 cm3 mol−1), S2 to be water (VS2 = 18.0 cm3 mol−1) and R to be the protein (VR = 60,000 cm3 mol−1), the following
parameters were used: χS2R = 0.44, as suggested by Guo et al. [13], χS1S2 = 0.37, obtained through fitting water activity data from
Gro�mann et al. [14], and χS1R = 0.00, since it is expected to be small, but there is no reliable information on this value; water was
chosen as reference compound.

The Gibbs–Duhem equation can be changed in order to eliminate the need to calculate number fractions. Eq. (27) can be rewritten
as

φR dμR = VR dp (36)

which leads to an alternative form of Eq. (29):

φR ln aR −
∫ φR

0
ln aR dφR = VRΠ(φR)

RT
(37)

The phase equilibrium that occurs when a protein in solution is precipitated by the addition of polymers is often modeled through
describing dense and light phases separately by appropriate equations. Phase equilibrium is subsequently calculated by obtaining the
composition wherein the osmotic pressure and solute chemical potential are equal [15]; as a necessary condition, outside solution
composition must be the same [2]. The above development can be useful to describe the osmotic pressure of the light phase. In this
case, the procedure is to be applied in inverse order—starting from the outside solution and obtaining osmotic pressure as a function
of solute volume fraction.

Figs. 5 and 6 present, respectively, the osmotic pressure and the polymer volume fraction as a function of protein fraction, using
the composition of the outside solution as a parameter. It can be seen that both curves are straightforwardly reconstructed, therefore
allowing in principle this kind of phase equilibrium to be calculated using excess Gibbs energy models. It must be stressed that the
decrease in polymer concentration observed in Fig. 6 does not correspond to the sole effect of adding a new component—otherwise
the proportion between φS1 and φS2 would be constant along the curves.

The behavior of the Gibbs–Duhem equation can be seen in Fig. 7. It can be noticed that the terms in the left side of this equation are
very close one to another, and the value of the right side is considerably smaller than the absolute value of any of them. Nevertheless,
absolute differences between both sides of Eq. (37), when independently calculated, were always less than 10−5.

If one restricts the attention to the curves of constant solvent chemical potential (Figs. 3 and 5), it is tempting to consider that
the presented methodology might replace usual algorithms for liquid–liquid equilibrium calculations, since the equilibrium state
corresponds to the osmotic pressure for which the solute chemical potential is equal in both phases—which may lower the number
of iterations to calculate phase equilibrium. Moreover, as can be seen in Appendix B, the procedure can be easily extended to
calculations involving any number of solutes. However, one must recall that the number of numerical operations that must be carried
out to solve Eq. (7) increases when the number of solvents increases. It is certainly possible to extend the above methodology for
flash-type liquid–liquid equilibrium calculations, but the approach may not be feasible: the absence of information on which is the
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Fig. 5. Osmotic pressure as function of solute fraction and outside cell composition. Continuous line: φ′′
S1

= 0.10; dashed line: φ′′
S1

= 0.15; dotted line: φ′′
S1

= 0.20.

composition of the outside solution at the beginning of the procedure is equivalent to not knowing the temperature in usual flash-type
calculation. While this difficulty can be overcome through introducing another iteration loop, it may lower the overall efficiency of
the whole algorithm.

As a concluding remark, a possible use of this methodology includes the relationship between McMillan–Mayer and
Lewis–Randall frameworks. There is substantial controversy about this subject, concerning not only the way a conversion between
both frameworks can be carried out, but also the very possibility of modeling multisolvent systems within the McMillan–Mayer
framework when solvents are dissimilar. Although it is not the objective of this work to resolve this controversy, it can be considered
that the presented approach facilitates the use of Lewis–Randall expressions for interpreting results obtained from experiments
and simulations usually associated with the McMillan–Mayer framework, as it allows the osmotic pressure to be straightforwardly
calculated. Although with a different reasoning, this remark is in agreement with the general conclusion of the work by Breil and
Mollerup [16], according to whom any solution theory – and hence any experimental or simulation result – can be interpreted within
the Lewis–Randall framework.

Fig. 6. Solvent (S1) fraction as function of solute fraction and outside cell composition. Continuous line: φ′′
S1

= 0.10; dashed line: φ′′
S1

= 0.15; dotted line: φ′′
S1

= 0.20.
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Fig. 7. Terms in Gibbs–Duhem equation.

4. Conclusions

In this work a differential approach for the calculation of osmotic equilibrium for multisolvent systems is presented. This
methodology avoids the use of iterative algorithms to calculate osmotic equilibrium through the definition of a set of differential
equations, which could be readily integrated for liquid phases whose volume can be considered independent of the system pressure.
Examples were presented using the Margules and Flory–Huggins equation, but the approach is completely general and independent
of the equation used to describe liquid phase non-idealities. The methodology also allows the calculation of the osmotic pressure
curve as a function of the solute fraction, and is numerically stable even when applied for situations wherein liquid–liquid equilibrium
takes place.

Appendix A. Auxiliary expressions

For the Margules equation, one gets the following expressions:

ln aPI
S1

= ln xS1 + AS1S2x
2
S2

+ AS1Rx2
R + (AS1S2 + AS1R − AS2R)xS2xR (A.1)

and (
∂ ln aPI

S1

∂xS1

)
xS2

= 1

xS1

− 2AS1RxR − (AS1S2 + AS1R − AS2R)xS2 (A.2)

(
∂ ln aPI

S1

∂xS2

)
xS1

= 2AS1S2xS2 − 2AS1RxR + (AS1S2 + AS1R − AS2R)(xR − xS2 ) (A.3)

For the Flory–Huggins equation, pertinent expressions are

ln aPI
S1

= 1 + ln φS1 − VS1

(
φS1

VS1

+ φS2

VS2

+ φR

VR

)
+ VS1

Vref
(χS1S2φS2 + χS1RφR − (χS1S2φS1φS2 + χS1RφS1φR + χS2RφS2φR))

(A.4)

and (
∂ ln aPI

S1

∂φS1

)
φS2

= 1

φS1

− 1 + VS1

VR

+ VS1

Vref
((χS2R − χS1R − χS1S2 )φS2 + χS1RφR) (A.5)

(
∂ ln aPI

S1

∂φS2

)
φS1

= −VS1

(
1

VS2

− 1

VR

)
+ VS1

Vref
((χS1S2 − χS1R)(1 − φS1 ) − χS2R(φR − φS2 )) (A.6)
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For the other compounds analogous expressions can be obtained by merely changing the subscripts, since these expressions are
symmetrical.

Appendix B. Extension to multiple solutes

The difficulty of applying the presented procedure increases only slightly in the situation wherein there are n solvents and m
solutes. In this case:

dμSi =
n∑

j=1

(
∂μSi

∂ξSj

)
T,p,[ξ]

dξSj +
m−1∑
j=1

(
∂μSi

∂ξRj

)
T,p,[ξ]

dξRj +
(

∂μSi

∂p

)
T,[ξ]

dp (B.1)

In this case, an integration path must be defined beforehand. Once one wants to integrate this system from an initial composition
(ξ0

Sj
, ξ0

Rj
) to a final composition in which solute concentrations are null, the following parameter is defined:

λ = 1 − ξRj

ξ0
Rj

(B.2)

so that λ = 0.0 corresponds to the inside solution composition, and λ = 1.0 corresponds to the outside solution composition. The
integration is to be conducted following a path wherein this proportion is constant. Therefore:

dξRj = −ξ0
Rj

dλ (B.3)

Thus, one gets:

dμSi =
n∑

j=1

(
∂μSi

∂ξSj

)
T,p,[ξ]

dξSj −
⎛
⎝m−1∑

j=1

(
∂μSi

∂ξRj

)
T,p,[ξ]

ξ0
Rj

⎞
⎠ dλ +

(
∂μSi

∂p

)
T,[ξ]

dp (B.4)

Considering the restriction that:

n∑
j=1

dξSj +
m∑

j=1

dξRj = 0 ⇒
n∑

j=1

dξSj +
⎛
⎝ m∑

j=1

ξ0
Rj

⎞
⎠ dλ = 0 (B.5)

Choosing Sk as the key solvent compound:

n∑
j=1,j �=k

⎛
⎝(∂μSi

∂ξSj

)
T,p,[ξ]

−
(

∂μSi

∂ξSk

)
T,p,[ξ]

⎞
⎠ dξSj −

⎛
⎝m−1∑

j=1

(
∂μSi

∂ξRj

)
T,p,[ξ]

ξ0
Rj

⎞
⎠ dλ + V̄i dp = 0 (B.6)

Therefore:

n∑
j=1,j �=k

⎛
⎝(∂μSi

∂ξSj

)
T,p,[ξ]

−
(

∂μSi

∂ξSk

)
T,p,[ξ]

⎞
⎠ dξSj

dλ
−
⎛
⎝m−1∑

j=1

(
∂μSi

∂ξRj

)
T,p,[ξ]

ξ0
Rj

⎞
⎠+ V̄i

dp

dλ
= 0 (B.7)

Also considering that:

dξSk

dλ
= −

n∑
j=1,j �=k

dξSj

dλ
−

m∑
j=1

ξ0
Rj

(B.8)

For a single solute, these equations have the same form as derived before.
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