
Thermochimica Acta, 41(1980) 141-146 
Elsevier Scientific Publishing Company, Amsterdam -Printed in Belgium 

141 

INVESTIGATION OF PHASE EQUILIBRIA IN THE SYSTEMS 
KZS04-Sc2(SO&, Rb2S04-Sc2(SO& AND CszSOa-Scz(SO.& 

FM. KORYTNAYA, A.N. POKROVSKY and P.A. DEGTYAREV 

Chair of General Chemistry, Department of Chemistry, Moscow State University. 
Mqscow I1 7234 (U.S.S.R.) 

(Received 5 March 1980) 

ABSTRACT 

Phase diagrams of the systems K2S0~-Sc2(S04)3, Rb2S04-Sc2(S04)3 and CS~SOQ- 
Scs(S04)a have been investigated by X-ray diffraction phase analysis and differential 
thermal analysis techniques. A salient feature of all the systems is the formation of 
MgSc(SOs)s,-which melt incongruently, and MSc(S04)*, which 
the solid state. 

on heating decompose in 

INTRODUCTION 

At present, there are numerous data in the literature on the thermal stabil- 
ity of nonaqueous double sulfates of scandium with potassium, rubidium 
and cesium of different compositions. However, the results obtained by dif- 
ferent authors for the same compounds are conflicting. Thermograms of the 
double sulfates M3S~(S04)3 and MSC(SO~)~ (M = K, Rb, Cs; see Table 1) dif- 
fer both in the number of phase transitions and in the transition tempera- 
tures. Such disagreements may, in our opinion, be explained by different 
synthesis conditions of the compounds under investigation. For instance, 
some workers [1,4] synthesized their samples from solutions in accordance 
with solubility data for the triple systems M2S04-S~2(S04)J-H20; others 
[2,5] prepared samples by a solid-phase synthesis technique by heating at 
different temperatures for 2-3 h. while Remizov et al. [3] report no data 
concerning their preparation technique. It should be taken into account that 
the phase composition of high-temperature calcination products may also 
depend on the calcination conditions because of the decomposition of scan- 

dium sulfate. 
In this work we studied the phase diagrams of the systems K,SO,- 

Sc2(SO&, Rb2S04-Sc2(S04)J and CS~SO~-SC~(SO~)~ synthesized by the 
technique used to obtain double sulfates of alkali and rare-earth elements 
(see, for instance, refs. 6-8). 

EXPERZMENTAL 

Sulfates of the alkali metals and a nonaqueous sulfate of chemically pure 
scandium were used as starting materials. The initial sulfates were precal- 
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TABLE 1 

Results of the thermographic investigation of the double sulfates MsSc(SO& and 
MSc(SO& (M = K, Rb, Cs) 

Compound Temperature 
(“C) 

Type of transformation Ref. 

KWS04)z 180- 240 Removal of crystallization water 
440- 450 Reversible phase transition 
800-1300 Incongruent melting 

410 Solid-phase decomposition 

K3WS04)3 826 
976 

\ 
180- 240 
610- 620 
800-1200 

Phase transition 
Incongruent melting 

Removal of crystallization water 
Feversible phase transition 
Ixongruent melting 

RbSc(SO& 

650 
935 

1062 

>800 

Formation of the compound 
Congruent melting 

Incongruent melting 

Decomposition into RbzS04 and 
SC203 

924 Congruent melting 

Rb3WSW3 950 Incongruent melting 

CsSc(SO4)2 1114 

>800 

Cs3SdSO4)3 900 

600 

Compound was not found 

Incongruent melting 

Decomposition into CszSO4 and 
SC203 

Compound was not found 

Incongruent melting 

Incongruent melting 

1 

2 

3 

5 

4. 

5 

cinated at 440°C to remove the adsorbed water. The samples were prepared 
in steps of 5 mole ‘% (near individual compounds, and for refining the 
eutectic the step was I-2.5 mole 7%). The synthesis was performed by anneal- 
ing mixtures of the original sulfates in alundum crucibles at 600°C for 250- 
300 h; the oven temperature was then gradually lowered to room tempera- 
ture. The samples were repeatedly washed with acetone to ensure better mix- 
ing. 

‘The phase composition of the samples was determined by X-ray diffrac- 
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tion analysis in a Guiner-De Wolf camera-monochromator (CL&I radiation). 
The thermograms were recorded by a Kurnakov FRU-64 pyrometer at a 

heating rate of lo-15°C min-‘. A Pt-PtRh thermocouple was used to 
measure the temperature to an accuracy of +lO’C. 

To elucidate the nature of the thermal effects the samples were placed in 
ampoules and tempered in water starting at different temperatures. 

RESULTS AND DISCUSSION 

The phase diagrams of the M1S04-Scz(SO~)3 (M = K, Rb, Cs) systems are 
presented in Figs. 1-3. The formation of two compounds, M3S~(S04)3 and 
MSC(SO~)~, is typical for all three systems. 

The double sulfates M$c(SO~)~ (M = K, Rb, Cs) form eutectics contain- 
ing 85, 88 and 86.5 mole % M2S04 with an alkali metal sulfate. Their melt- 
ing temperatures are 850, 830 and 780” C, respectively. Compounds 
K3S~(S04)9, Rb3Sc(S04)J and Cs3 SC(SO~)~ melt incongruently at 950, 940 
and 880°C with the formation of scandium sulfate, which at these tempera- 
tures decomposes into scandium oxide, sulfur dioxide and oxygen [9], as 
was established in a previous derivatographic investigation [lo] of these 
compounds. Diffused thermal effects at 1000°C correspond to this decom- 
position process. These effects are not presented in Figs. l-3, since this 
region is not quasibinary and is not considered in the present work. 

The endothermal effect observed at 350°C on the heating curves of 
samples containing K~SC(SO~)~ is considered to be a polymorphous transfor- 
mation of this salt. However, rapid cooling of the samples containing 95-55 
mole 70 K2S04 from 400°C did not reveal phases with other structures, prob- 

~ 

K2S04 90 80 70 60 50 40 30 20 10 ! c2’so4)3 

Fig. 1. Phase equilibrium diagram of the KzS04--Scz(S04)3 system. I, KzS04; II, 
K3Sc(S04)3; III, KSc(S04)z; IV, Scz(SO4)3; X, points of rapid cooling. 
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Rb,SO, 90 80 70 60 50 40 30 20 10 sc*Eo4)3 

Fig. 2. Phase equilibrium diagram of the Rb2S04--Sc2(S04)3 system. I, RbzSO4; 11, 
Rb~Sc(S04)3; III, RbSc(S04)z; IV, Sc2(S04)3; X, points of rapid cooling. 

ably due to the high inverse transformation rate. 
The dc,.!ble sulfates KSZ(SO~)~, RbSc(S04)2 and CSSC(SO~)~ decompose, 

while remaining in the solid state, at 450,390 and 35O”C, respectively. How- 
ever, X-ray patterns of samples containing between 70 and 5 mole % MzS04, 
cooled rapidly from 5OO”C, exhibit lines of double sulfates MSC(SO~)~ which 
may be explained by the high formation rates of these compounds. 

H+lu m*m 
I . . . * 

Cs SO 90 80 70 60 50 40 30 20 10 s (SO 1 

Fig. 3. Phase equilibrium diagram of the Cs~SO4--Sc~(SO4)3 system. I, Cs2SO4; II, 
Cs~Sc(S04)~; III, CsSc(S04)~; IV, Scz(SO4)3; X, points of rapid cooling. 
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Although double sulfates of 1 : 1 composition decompose below 6OO”C, 
the phase composition of samples annealed at 300 and 600°C was found to 
be the same, due to the reversibility of decomposition and to the high rate of 
formation. The samples were therefore synthesized at 600°C to achieve the 
equilibrium more rapidly. 

Thus, there is satisfactory agreement between the data on M3Sc(S0& 
double sulfates obtained in our work and those of other workers [1,4] the 
discrepancy in incongruent melting temperatures being lo-20°C, but in the 
case of compounds with 1 : 1 composition, our results for MSc(SO,), are not 
in agreement, in principle, with those of refs. [l-5]. 

On the whole, the phase equilibrium diagrams of &i2S04--Sc2(SO& (M = 
K, Rb, Cs) are very similar, in appearance, number and composition of the 
compounds formed, thermal stability, compositions and temperatures of the 
eutectics, to phase diagrams of Cs2S04-RZ(SO& (R = La, Nd, Gd, Yb) 
[8,11] and Rb2S04-Yb2(S04)3 [7]. 

The systems KzSO 4-RZ(S04)3 (R = Nd, Gd, Yb, Y) [6,12] and Rb2SOa- 
R2(S04)3 (R = La, Nd, Gd) [7] are more complicated, but they are also 
characterized by the formation of individual phases of M3R(S04)3 (except 
Rb2S04-La2(S04)J) and MR(S04),; compounds KjGd(SOq)j, K,Y(SO.+),, 
K3Yb(S04)3 and Rb,Gd(SO,),, like scandium double sulfates of a given com- 
position, melt incongruently under heating. A certain analogy can be detected 
in the thermal stability of potassium double sulfates of MR(S04)* composi- 
tion with rare-earth elements (at the end of the group) [13] and double sul- 
fates MSC(SO~)~ investigated in this work. The salient features of both com- 
position groups are the absence of polymorphous modifications, and the 
solid-phase decomposition at temperatures much lower than the eutectic 
melting point. This can possibly be attributed to the closeness of the ionic 
radii of scandium and rare-earth elements (Tm-Lu). 

A comparative analysis of the phase equilibrium diagrams for the systems 
studied in our work and for the systems K2S04-S~Z(S04)3, Rb2S0,- 
Sc2(SO& and CsZS04 -SC~(SO~)~ described previously [ 2,5], reveals serious 
disagreements in the results. According to Korataeva et al. [2], K3S~(S04)3 
exists only in a narrow temperature interval; the phase diagram of the 
Rb2S04-Sc2(S0& system [2] does not exhibit RbjSc(S04)3 and the dia- 
gram of CS~SO~-SC~(SO~)~ [5] does not show CSSC(SO~)~, while in refs. 
1 and 4 it was asserted that all these compounds can easily be obtained by 
solid-phase synthesis at 550-6OO”C; this has been corroborated by our 
experiments. On the other hand, we did not observe the existence of 
KSca(SO& [2] and CSSC~(SO~)~ [5]. X-Ray diffraction phase analysis of 
samples containing 25 mole % M,SO, (M = K, Cs) cooled rapidly from differ- 
ent temperatures shows the presence of a two-phase mixture of MSc(S04)2 and 
Sc2(S04)+ To elucidate these and many other disagreements, we synthesized 
individual compounds over a period of 2-3 h (as recommended in refs. 2 
and 5). The X-ray patterns of annealed stiples exhibited lines corresponding 
to two, three and even four phases. We may therefore conclude that such a 
synthesis is in no way a satisfactory technique and that Korotaeva et al. [2] 
and Remizov et al. [ 51 investigated nonequilibrium samples. 
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