THERMAL DECOMPOSITION OF METAL COMPLEXES. X. URANYL NITRATE—PHENYLUREA COMPLEXES

L. ABATE, F. CASTELLI and G. SIRACUSA

Istituto Dipartimentale di Chimica e Chimica Industriale dell'Università di Catania, Viale A. Doria 8, 95125 Catania (Italy)

(Received 17 March 1980)

ABSTRACT

The kinetics and mechanism of the thermal associative process (solid-solid interaction) and the reverse dissociative process

 $UO_2(NO_3)_2$ phenylurea_n + m phenylurea $\Rightarrow UO_2(NO_3)_2$ phenylurea_{n+m}

(where n = 2-5; m = 1-4; n + m = 3-6) is discussed. The "activation energy" and the reaction order have been evaluated. It was found that the associative reaction is chemically controlled whereas the dissociative process is physical in nature; therefore no mutual agreement was found between the E_a^* values relative to the two associative and dissociative processes.

INTRODUCTION

In a previous paper we reported on the reactivity of the phenylurea ligand with uranylnitrate in the solid phase. Complexes having a stoichiometry of $2:1\div6:1$ were studied by DSC and the enthalpy changes associated with these reactions were evaluated [1].

In all the papers in this series we have chosen the apparent activation energy, E_a^* , as an indirect measure of the bond strength, obviously within some well-defined conditions [2].

In this work we consider the kinetics and mechanism of the thermal association and decomposition of the UPh_n complexes (where $U = UO_2(NO_3)_2$; Ph = phenylurea; n = 2-6) in static air, dynamic air, and dynamic nitrogen atmospheres. The main purpose of this investigation is to determine whether the overall association or decomposition rates in the reactions under study are controlled by a chemical or a physical process [3-5]. Clearly the reaction order, n, reflects the mechanism of the various processes. Moreover, a comparison between the E_a^* values for the associative reaction

 $UPh_n + mPh \rightleftharpoons UPh_{n+m}$

(n = 2-5; m = 1-4; n + m = 3-6)

and for the reverse dissociative process can provide a direct, unequivocal confirmation of deductions made using the above reaction order criterion.

0040-6031/80/0000–0000/\$02.25 © 1980 Elsevier Scientific Publishing Company

EXPERIMENTAL

The complexes used in this study were prepared following the procedure reported previously [1].

Thermal decompositions

The simultaneous TG, DTG and DTA were performed with a Mettler thermoanalyzer in static air, dynamic air, and in dynamic nitrogen atmospheres (5 1 h⁻¹). The sample weight amounted to about 5 mg and the heating rates were 0.5 and 2°C min⁻¹. A Mettler model T-TD3 crucible holder, 0.1 ml aluminium microcrucibles and Al₂O₃ as the thermally inactive reference material were used. The "activation energy", E_a^* , and the "apparent order" of reaction, *n*, were determined by the methods described in the literature [6,7].

DSC measurements

The associative reactions were performed using a Perkin-Elmer DSC model 1B as reported previously [1]. The E_a^* values were determined by Piloyan et al.'s method [7], and the apparent order of reaction, n, was evaluated by Kissinger's method [8].

RESULTS AND DISCUSSION

The associative reactions

The thermal behaviour of the solid—solid interactions (associative reactions) $UPh_n + mPh \rightarrow UPh_{n+m}$ has been described previously [1]. The endothermic effect observed at 100°C represents the sum of several contributions. In reactions involving UPh_n ($n \neq 2$) the thermal effect represents the enthalpies associated with the formation of the UPh_{n+m} complex and the melting process of the formed product. When the starting material is UPh_2 the thermal effect also includes the enthalpy associated with the $\alpha \rightarrow \beta$ transition.

Assuming that the $E_{a_t}^*$ value (Piloyan method from DSC peak at 100°C) is the apparent activation energy of the overall process, and remembering that the associative reactions are exothermic, it is reasonable to evaluate the activation energy of the association reaction, $E_{a_r}^*$, by

$$E_{a_r}^* = E_{a_m}^* - E_{a_t}^* + E_{a_{\alpha \rightarrow \gamma}}^*$$

where m is the melting process, and $\alpha \rightarrow \beta$ is the $\alpha \rightarrow \beta$ transition. The E_a^* values are reported in Table 1.

The dissociative reactions

Thermal analysis in a dynamic nitrogen atmosphere.

All the UPh_n complexes under investigation show an endothermic effect

TABLE 1

Reaction	n	$E_{a_t}^*$	$E_{a_m}^*$	$E^*_{a_{\alpha ightarrow \beta}}$	$E_{a_r}^*$
UPh ₂ + Ph	0.7	127	176	80	129
$UPh_2 + 2 Ph$	0.7	213	200	80	67
$UPh_2 + 3 Ph$	0.7	226	199	80	53
$UPh_2 + 4 Ph$	0.7	240	177	80	17
$UPh_3 + Ph$	0.7	130	200		70
$UPh_3 + 2 Ph$	0.7	132	199		67
$UPh_3 + 3 Ph$	0.7	160	177		17
$UPh_{4} + Ph$	0.7	150	199		49
$UPh_4 + 2 Ph$	0.7	140	177		37
$UPh_5 + Ph$	0.7	150	177		27

Apparent activation energy, E_a^* (kcal mole⁻¹), and apparent order, n, of the associative reactions (solid-solid interactions)

 $E_{at}^* = activation energy of the overall process.$ $E_{am}^* = activation energy of the melting process.$ $E_{am}^* = activation energy of the <math>\alpha \rightarrow \beta$ transition of the UPh₂ reactant. $E_{ar}^* = activation energy of the associative reaction.$

at 100°C in the DTA curve. This is due to the melting process, in accordance with our earlier studies [1].

At $\phi = 2^{\circ}C$ min⁻¹ and $\phi = 0.5^{\circ}C$ min⁻¹, the complexes decompose in several steps, as indicated by the thermoanalytical TG, DTA and DTG curves

Fig. 1. The thermal behaviour of the UPh₄ complex in a dynamic nitrogen atmosphere at $\phi = 2^{\circ} \mathrm{C} \min^{-1}.$

90

(Fig. 1), according to the following scheme

for UPh₂:

UPh₂ (s) \rightarrow UPh_{1.7} (s) + 0.3 Ph (g) (endothermic) UPh_{1.7} (s) \rightarrow UPh_{1.4} (s) + 0.3 Ph (g) (endothermic) UPh_{1.4} (s) \rightarrow UPh_{0.23} (s) + 1.17 Ph (g) (endothermic) UPh_{0.23} (s) \rightarrow UO₃ (s) + gaseous products (exothermic)

for UPh₃:

UPh₃ (s) \rightarrow UPh_{0.64} (s) + 2.36 Ph (g) (endothermic) UPh_{0.64} (s) \rightarrow UO₃ (s) + gaseous products (exothermic) for UPh₄:

UPh₄ (s) \rightarrow UPh_{1.6} (s) + 2.3 Ph (g) (endothermic) UPh_{1.6} (s) \rightarrow UPh_{0.15} (s) + 1.45 Ph (g) (endothermic) UPh_{0.15} (s) \rightarrow UO₃ (s) + gaseous products (exothermic)

for UPh_5 :

UPh₅ (s) \rightarrow UPh_{0.5} (s) + 4.5 Ph (g) (endothermic) UPh_{0.5} (s) \rightarrow UO₃ (s) + gaseous products (exothermic)

for UPh₆:

UPh₆ (s) \rightarrow UPh_{3.2} (s) + 2.8 Ph (g) (endothermic) UPh_{3.2} (s) \rightarrow UPh_{0.6} (s) + 2.6 Ph (g) (endothermic) UPh_{0.6} (s) \rightarrow UO₃ (s) + gaseous products (exothermic)

The observed exothermic effect is due to the simultaneous release of phenylurea and the thermal decomposition of the nitro groups. The starting temperature of the first step of decomposition for each complex is reported in Table 2. At temperatures above 500°C UO₃ gives U₃O₈. The "activation energy", E_a^* , was calculated for the first step of the thermal decomposition at $\phi = 2$ °C min⁻¹ and the relative values are reported in Table 2.

Thermal analysis in air.

The thermal behaviour of the products in both static and dynamic air atmospheres is quite similar to that previously reported in a dynamic nitrogen atmosphere. Nevertheless, the slope of the TG curve and the starting temperature of decomposition is different for the same complex, depending upon the experimental conditions; this influences the E_a^* values (Table 2).

The exothermic effect (shown by the DTA curve) due to the simultaneous release of the phenylurea and the decomposition of the nitro groups, increases in air with respect to that observed in a dynamic nitrogen atmosphere.

As shown in Table 1, the 2/3 order was found for all the associative processes, thus indicating that the crystal structure of the reactante allows the nucleation of the new species [9–11]. Therefore the solid—solid interaction can be considered to be a chemically-controlled process. The $E_{\rm ar}^*$ values

TABLE 2

Complex	In dynamic nitrogen			In static air		In dynamic air	
	 n	T _i	E_{a}^{*}	$\overline{T_{i}}$	E_{a}^{*}	$\overline{T_{i}}$	E _a *
UPh,	0.98	178	57	172	76	170	66
UPh ₃	0.90	140	20	134	19	146	19
UPh ₄	0.95	145	23	134	21	140	20
UPh	1.2	144	20	130	17	130	19
UPh ₆	1.3	155	16	128	17	134	16

Apparent order, *n*, apparent activation energy $E_a^*(\text{kcal mole}^{-1})$ and starting temperature of decomposition, $T_i(^{\circ}C)$, of the dissociative reaction at $\phi = 2^{\circ}C \text{ min}^{-1}$

associated with the process involving UPh₂ clearly indicate that the compound reacts in the β form; this fact was previously only supposed [1]. If the α form was considered as the reactant species, negative $E_{a_r}^*$ values were found!

The trend of the $E_{a_r}^*$ values obtained for UPh_n + mPh systems confirms, as found previously, that the greater the number of identical ligand molecules, the higher the facility of phenylurea to coordinate with uranyl ion. Furthermore, the particularly higher value of $E_{a_r}^*$ for the reaction UPh₂ + Ph can be rationalized when considering that the monomeric structure of UPh₂ changes to a polymeric packing upon formation of UPh₃ [12]. In analogy, the low $E_{a_r}^*$ values observed for the formation of UPh₆ (Table 1) can be related with the monomeric structure of this product.

Turning to the dissociative reactions, no linear correlation between T_i and E_a^* values was found (Table 2). This behaviour confirms the impossibility of using the starting temperature of decomposition reaction as a parameter indicative of the metal—ligand bond strength in a series of complexes.

The apparent order of reactions (Table 2) is at variance to that found for the associative processes, thus indicating that, in the dissociation reactions, the rate-controlling step is not the U—Ph bond rupture. The same conclusion can be drawn by comparing the obtained $E_{a_r}^*$ values (Table 1) with the E_a^* of the dissociation reaction (Table 2), no mutual agreement being found.

REFERENCES

- 1 G. Siracusa, L. Abate and S. Gurrieri, Proc. 6th ICTA, to be published.
- 2 R.P. Bonomo, S. Gurrieri, S. Musumeci, E. Rizzarelli and G. Siracusa, Thermochim. Acta, 9 (1974) 373.
- 3 I. Proks, Chem. Zvesti, 20 (1966) 697.
- 4 S. Skramovsky, R. Forster and G.F. Huttig, Z. Phys. Chem., 25 (1934) 1.
- 5 G.F. Huttig, Monatsh. Chem., 85 (1954) 376.
- 6 E.S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.
- 7 G.O. Piloyan, I.D. Ryabchikov and O.S. Novokova, Nature (London), 5067 (1969) 1229.
- 8 H.E. Kissinger, Anal. Chem., 29 (1957) 1702.
- 9 L. Abate and G. Siracusa, Thermochim. Acta, 29 (1979) 157.
- 10 A.V. Nikolaev, A.A. Opalovsky and V.E. Fedorov, in R.F. Schwenker and P.D. Garn (Eds.), Thermal Analysis, Vol. 2, Academic Press, 1969, p. 793.
- 11 G. Siracusa and L. Abate, Thermochim. Acta, 36 (1980) 207.
- 12 P.S. Gentile and L.S. Campisi, J. Inorg. Nucl. Chem., 27 (1965) 2291.