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ABSTRACT 

The simplest possible non-isothermal generalization of the phenomenological isother- 
mal rate equation has been investigated. Its solution, the transformed fraction, C, is a 
functional of the temperature-time relation, T(t). Previous works, based on the existence 
of a function-type solution, C(T,t), suggest a way of generalization which is meaningless 
in the case of a functional solution. A difference is predicted by the function-type des- 
cription between the kinetic parameters determined under isothermal and dynamic condi- 
tions which is in contradiction with our experimental results on the crystallization of 
Fe75B25 metallic glass. 

It was suggested in a recent publication [l] that there is a general correc- 
tion term in the equation expressing the transformation rate under non-iso- 
thermal conditions. As this type of correction is the result of a formal 
mathematical treatment and its physical significance is not clear [Z] , we 
intend to reconsider the subject. We will show that supposing the same trans- 
formation mechanism to be valid for isothermal and dynamic cases, there is 
no general correction term in the dynamic rate equation due to the changing 
temperature. 

Most of the isothermal reactions can be described by the equation 

dC 
- = f(C) h(T) 
dt (1) 

where C and T are the actual transformed fraction and the temperature, 
respectively, while the form of f(C) depends on the type of transformation 
mechanism. Thermal activation is expressed by h(T), which is usually 
approximated by an Arrhenius-type term. In order to determine the physical 
meaning of the suggested [l] non-isothermal generalization of eqn. (1) let us 
start horn the trivial case: the same form of equation is valid under both iso- 
thermal and dynamic conditions, so the differential equation describing 
non-isothermal process will be as follows 

d; = f(C) W?(t)) 

where k( !Z’( t)) means a function of time. A solution can be obtained by the 
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the 

(2) 



integration of the separated equation 

c 

s 1, dC’ = j k(T(t’)) dt’ 
co f(C 1 0 

(3) 

where C, is the initial transformed fraction. Denoting 1 f-’ by F and its 
inverse by F-’ we get 

C{ T(t’), t} = F-’ 
C 

j k(T(t’)) dt’ + F(G,) (4) 
0 

where different types of brackets in C(T(t’), t) show that the solution is a 
functional of the heating programme and the function of the upper limit of 
the integration (time), which is in good accordance with experiments where 
the actual transformed fraction is dependent on the whole T-t path of the 
dynamic measurement. 

A different equation was suggested in ref. 1 where the transformed frac- 
tion is regarded as a function of time and the actual temperature only. It has 
a correction term in the non-isothermal rate equation, arguing that under 
isothermal conditions the 

= f(C) k(T) (5) 

partial derivative is measured only and the whole transformation rate must 
also contain the contriblrcion due to the changing temperature 

which yields 

dC 
-=k,,exp(-_&)[l+& (I-+)] f(C) 
dt 

(6) 

(7) 

using the k(T) = k, exp(-E,/RT) Arrhenius equation, where k, is the 
frequency factor, E, is the activation energy and R is the universal gas con- 
stant. It is a mathematically correct procedure as it is one of the possible 
dynamic generalizations of eqn. (l), but has no physical meaning in this case 
as it might be valid only if the transformed fraction were the function of 
time and the actzd temperature. However, we have to emphasize that the 
actual transformed fraction is dependent on the whole T-t path, and a 
C(Z’, t) function giving a fixed value for a F-t pair independently of the T-t 
curve cannot represent the thermal history of the material. The only mathe- 
matical object fit for this purpose is a functional. Appearance of the correc- 
tion teim in eqn. (6) comes from the false supposition that C is the function 
of time and the actual temperature. In the case of the functional solution the 
meaning of the expression 



ac ( 1 -zT = f(C) WW)) 
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(8) 

does not differ from that of eqn. (2) as the C{T(t’), f) functional has only 
one possible time derivative which can be obtained by its differentiation 
with respect to the upper limit of the integration. 

Our calculations are based on the supposition that the reaction rate can be 
described by the same expression under both isothermal and dynamic condi- 
tions. The validity of this assumption was discussed by Henderson [3] who 
found that for transformations involving nucleation and growth it is correct 
in a limited number of special eases. One of them is the case of zero nuclea- 
tion rate (saturation of point sites) which requires n = 3 in the Johnson- 
Mehl-Avrami equation [eqn. (9)] describing it under isothermal conditions 
C4] 

C(t) = 1 - exp (-[ko exp(-&) ;l”) (9) 

where n is the Avrami exponent characteristic to the mechanism of the 
transformation. The crystallization of Fe 75 B 25 metallic glass is a suitable 
experimental test of our generalization as it shows a single-step process, and 
the growth of a fixed number of nuclei is expected to be the mode of the 
transition. 

A Perkin-Elmer type DSC-2 calorimeter was used for the investigation of 
both isothermal and dynamic kinetics. Isothermal kinetic parameters were 
determined following the method of Funakoshi et al. [ 51. The samples were 
isothermally heat treated in the calorimeter, after which the remaining crys- 
tallization energy was measured with 10 K min-’ constant heating rate 
experiments. Results are shown in Fig. 1 [S-j, demonstrating that in the 
670490 K temperature range the process can be described with a constant 
exponent n = 2.9 + 0.1 which is very near to the expected value. The thermal 

Fe75B25 

n= 2.9 ~0.1 

Fig. 1. Determination of the isothermal kinetic exponent. 
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Fig. 2. Determination of the isothermal activation energy at different transformed frac- 
tions. 

activation energy calculated from the slope of the lntc, vs. l/Tc, plot 
(Fig. 2) is E, = 250 +- 10 kJ mole-l K-l. 

The parameters of the non-isothermal kinetics were determined from a 
series of experiments made with different heating rates, 0.31-10 K min”. 
The activation energy was calculated with the method of Ozawa [7,8] based 
on eqn. (3), and the kinetic exponent was obtained by fitting the measure- 
ments to the differential form of the Johnson-Mehl-Avrami equation [2] 

dC 
- = ho exp 
dt (10) 

This fit is shown in Fig. 3. 
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Fig. 3. Determination of the non-isothermal kinetic exponent by fitting the differential 
Johnson-Mehl-Avrarni equation to a 10 K rnir~-~ dynamic experiment. X = In dCldt + 
EJRT - In(l - C) 
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TABLE 1 

Activation energies obtained from the slope of the [Tc,(p)]-’ vs. In ? plot at different 
fixed transformed fractions 

Transformed fraction (%) E, (kJ mold’ K’) 

10 252 +5 
15 251 -c5 
20 251 -c4 
25 250 f4 
30 250 -+4 
35 249 +3 
40 248 23 
45 248 -+3 
50 249 f3 
55 249 f3 
60 249 c3 
65 248 -c3 

;: 
248 +3 
248 f3 

80 248+3 
85 248 +3 
90 249 -c3 

The activation energies obtained from the slope of the CT,-(S!‘) ] -I vs. ln 9 
plot at different fixed transformed fractions (C,) are listed in Table 1, 
demonstrating that E, is completely independent of the crystalline fraction, 
C,. Their average value, E, = 249 f 5 kJ mole” K-l, is in good accordance 
with the isothermal one, while the characteristic exponent is somewhat 
lower than that of the isothermal case: n = 2.5 + 0.3, but the difference 
between them is near to the combined error of the two types of measure- 
ments. 

These results suggest that in accordance with mathematical calculations 
there is no reason to suppose a general dynamic correction in the non-iso- 
thermal rate equation. 
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