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One of the most important problems connected with the application of 
the integral methods in nonisothermal kinetics consists of an accurate evalua- 
tion of the temperature integral [1,2]. A lot of work has been done to 
approximate the temperature integral for the case of pre-exponential factors 
independent of temperature, i.e. when the rate constant is given by the 
classical Arrhenius relationship [ 31 
k = A e-E/RT 

(1) 

Approximations of the temperature integral were also performed for the 
following two cases [4] 

A = A,,z T”’ (2) 

A =AIT (3) 

The transition state theory [ 51, as well as other modem theories of reac- 
tion rate, predict the following general relationship [5] for the temperature 
dependence of the rate constant 

k = A,Tr e--EiRT (4) 

where r are real positive or negative numbers, integers or half integers. Conse- 
quently, in this work, we aim to obtain general approximations of the 
temperature integral, mainly based on the general equation (4). In spite of 
the quite unimportant influence of the factor Tr with respect to the factor 
eSEIRT on the rate constant, the integral kinetic equations, based on the 
general relationship (4), are supposed to describe more correctly the evolu- 
tion of the chemical reaction in time or with temperature under noniso- 
thermal conditions. 

r = m/2; m = 2q + 1; q IS A POSITIVE INTEGER 

The temperature integral 

I = /I 5f--‘2 e--E/RT dT (5) 
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with the substitution 

E 
Y=E (6) 

can be written in the form 

I = (;)‘m’z’+l /’ yc;;)+2 dy 
Y 

Taking into account the following notation 

M(m/2)+2(Y) = f 

Y y 

(zzp2 dY 

relationship (7) becomes 

I CE 
0 

(m/2)+1 

‘7z L”(m/2)+2tY 1 -“(m/2)+2(Y0)1 

(7) 

(8) 

(9) 

An integration by parts in eqn. (8) leads to 

0 

ey 2 ey 
OD 

s y(m/2)+2 dy = - m + 2 y(m12i+l -Y s 
Y 

or 

2 
M(m/2)+2(Y) = - C 

ey 
m + 2 y(m/2)+1 + M(m/2*l(Y) 

1 
(11) 

which is a recurrence formula between the functions MC,,,,,,(y) and 
M(m/2)+1(Y 1. 

Repeating the integrations by parts, the function Mlm121+2(y) can finally 
be expressed by means of the function M5&), which has been tabulated for 
different values of y [4]. The integral kinetic equation for the considered 
case is then 

or 

P(m/2)+2tY 1 

(12) 

(13) 

where F(a) is the conversion integral [6] (F(Q) = (A,/a)l), a is the heating 
rate and 

P(m/2)tz(Y) = Sy” ,(f,, dy 
Y 

(14) 
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r = -m/2; m = 2q + 1; q IS A POSITIVE INTEGER 

The temperature integral 

To 0 

with the change of variable (6), can be written as follows 

*= (f)(m’2)-1 y y(m/2F2 e-Y dy 

Y 

(15) 

(16) 

or, introducing the notations 

OD 

s Y’~‘~)-’ ey dy =M2--(m/2)tyJ =RZ-(~/~)(Y) 

Y 

it is found that 

(mIsti1 
M2--(m/2)(Y) = PZ--(m/2)(Y) 

From eqn. (17), through inte,prtion by parts, we get 

(17) 

(18) 

a 

s 2 (m/2ti2 e-3’ dY = - ey 
00 

Y 2 - m 
Y 

yl_(m/2) - s 
y(m/2ti1 eY dy 

Y 

M2+m/2)(Y) =A 
C 

- Ml-(m/2)(Y) 1 

(19) 

(20) 

Form=1 

M3nCY) = 2 
e7 
~-h?_(Y) 1 (21) 
Y 

Thus, it is possible to express the function M,,(y) using the tabulated func- 
tion MIn(y) which could be tabulated. 

Taking into account eqn. (18), the integral kinetic equation for the con- 
sidered case is 

(m M-1 

F(a) = P2--<m/2)(Y) 

r = m; m IS A POSITIVE INTEGER 

For the considered case, the temperature integral 

I= {r T* emEiRT dT (23) 

(22) 
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in terms of the variable x = -E/RT, can be written as 

I = (-l)qm+l f s2 dx 
_ - 

or, with the notation 

Pm+2tX) _i $2 d=c 
- 

I= (--llm (5) m+l Pm*2(x) 

From eqn. (25), integrating by parts, one gets 

Pm+2tX) = ---&(xs -j $l q 
-0 

by means of which relationship (26) may be written as 

(24) 

(25) 

(26) 

(27) 

(23) 

’ Taking this result into account, the integral kinetic equation takes the form 

A E m+l qa) = (-l)m+l $ 
0 
z *l&l-f+l~) (29) 

T’hrough repeated integrations by parts, eqn. (25) leads to [7] 

m+l 

P~+~(x.) =-ex C 
1 

k=l (m + I) m(m - 1) . ..(m + 2 -h) xm*2+ 

so that the temperature integral and the conversion integral will be given, 
, respectively, by 

I = (-1) m+l(E)m+l[ex j$ (m+l)m(m-1) ..~(m+2-h)xm+2-A 

+ & E,(x)] (31) 

F(cK) = (-l)m+l 
$(E)m+l[ex$I (m+l)m(m-l)..t(m+2--k)Xm+24 

+ & Ei(X)] (32) 
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r = --m ; m IS A POSITIVE INTEGER 

As in the former case, the temperature integral 

I= 8 l--m e--E/RT dT 

can be brought to the form 

I = (-l)m(E)m-I j p-2 ex * 

- 

which by repeated integrations by parts leads to [8] 

I = (-I)m($)m-l e”[xmB2 -(m - 2) xmV3 + (m - 2)(m - 3) xm4 - . . . 

+ (-1)m-3(m -CC) !x + (-1)m-2(m - 2) !] 

Thus, for the conversion integral F(a), we get 

P 2-mtX) 

where 

P2,(x) = [ xme2 e* dx 

(33) 

(34) 

(35) 

(36) 

= ex [xmB2 - (m - 2) xrnm3 + (m - 2)(m - 3) xrn+ - . . . + (-1)m-3 

X (m - x) !x + (-1)m-2(m - 2) ! ] 
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