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ABSTRACT

Vapor—liquid and liquid—liquid equilibria and excess enthalpies for ternary mixtures
formed from acetonitrile, benzene, n-heptane, toluene, and carbon tetrachloride are sue-
cessfully correlated with a modified version of the associated solution theory proposed by
Lorimer and Jones in 1977, which assumes two types of self-association for acetonitrile
and binary complexes between acetonitrile and unsaturated hydrocarbons and does not
include any ternary parameters.

NOTATION

C,, D, constants of eqn. (24)

Gy exp(—;,7y)

gn binary interaction parameter

gh excess Gibbs free energy

hg standard enthalpy of head-to-head dimer formation of acetonitrile

ha standard enthalpy of chain polymer formation of acetonitrile

hagp standard enthalpy of complex formation between acetonitrile and unsaturated
hydrocarbon

RE excess enthalpy

K, equilibrium constant of head-to-head dimer formation of acetouitrile

K, equilibrium constant of chain polymer formation of acetonitrile

Kanp equilibrium constant of complex formation between acetonitrile and unsaturated
hydrocarbon

n number of moles of a particular species

p total pressure

P saturated vapor pressure of pure component i

gas constant
stoichiometric sum given by eqn. (8)

T abosolute temperature

vf" molar liquid volume of pure component 1

x, lhiquid phase mole fraction of component i
i vapor phase mole fraction of component i
Greek symbols

Q5 nonrandoumness parameter

Y2 activity coefficient of component i
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Tn (g]i - gu)/RT
A vapor phase fugacity coefficient of component i
o3 vapor phase fugacity coefficient of pure component i at system temperature T

and pressure F;
Superscripis

L liquid
0 pure acetonitrile
s saturation

;, II phases
head-to-head dimer

Subscripts

A acetonitrile, component 1

A;, A; acetonitrile monomer and :-mer, respectively

AB complex formation between acetonitrile and unsaturated hydrocarbon (=com-
ponent B)

AB acetonitrile i-mer—unsaturated hydrocarbon complex

B,C unassoclated components 2 and 3, respectively

chem chemical

f complex formation

L,j, k components

phys physical

INTRODUCTION

Lorimer and Jones [1] have derived equations for the excess Gibbs
energy, excess enthalpy, and volume of mixing from thermodynamic associa-
tion theory for complex binary liquid mixtures containing self-associating
species and binary complexes. The equations were used to correlated experi-
mental data for the three thermodynamic properties for the three binary sys-
tems formed from acetonitrile, carbon tetrachloride, and chloroform. How-
ever, a good fit to the excess enthalpy data of acetonitrile—carbon tetra-
chloride was not obtained. Furthermore, the association theory could not
represent correctly mutual solubility data for acetonitrile—n-heptane mix-
tures. This may be because nonspecific interactions among the various
species present are not well described through general nonspecific interac-
tions of the simple mixtures.

The theory has not been extended to ternary mixtures. Experimental data
are available for three ternary systems formed from acetonitrile, benzene,
n-heptane, toluene, and carbon tetrachloride. Palmer and Smith [2] pre-
sented data on isothermal vapor—liquid and liquid—liquid equilibria for the
acetonitrile—benzene—n-heptane system at 45°C, and Werner and Schuberth
[3] also measured liquid—liquid equilibria for the same system at 20°C.
Heinrich and Dojcansky [4] investigated liquid—liquid equilibria for the
acetonitrile—toluene—n-heptane system at 40°C. Missen and co-workers
[5,6] obtained excess Gibbs free energies and excess enthalpies for the
acetonitrile— benzene—carbon tetrachloride system at 45°C

In this work, we present a modification of the association theory of Lori-
mer and Jones to represent the thermodynamic properties of binary and ter-
nary liquid mixtures containing acetonitrile.
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THEORY
Excess Gibbs energy

We use a mole fraction model to describe a ternary associated solution

- rs . . .
where acetonitrile molecules (A) self-associate and interact with two other

nonassociated components (B and C). A physical interaction term for non-
polar interaction is assumed to be given by the NRTL of Renon and Praus-
n1tz [71, which is more flexible than a genera.l nonspecific interaction used
by Lorimer and Jones [1] in data reduction.

The model is summarized as follows. We assume two association reactions
for acetonitrile: dimerization corresponding to antiparallel association of
acetonitrile dipoles, and chain association corresponding to head-to-tail

association of acetonitrile dipoles.

= ’ — At 2
A +A =A; K; =xp,/%a, (1)
A = A ) 74 = an an
A]_ + 8, T a4 il s _*AH‘I/'&AleI i=z1 {2)

Acetonitrile and benzene (or toluene) molecules are assumed to form com-
plexes [8].
A +B=AB Kup xAtB/xAth =1 (3)

o [--]
XA 2 KapXa,Xp
D) xa FxW +27 xaptxp *x 1+ Kyx3 +—ABTAITB;
jpor] A, Ag A, B B; Ci 1 — KA_ AL 2V A4 1 —KAxAl
+ x31 + x01 =1 (4)
- , - . x Kainxa,X
E lx.A_f + 2xAﬂ + E lx_A_.B == ;:1 \2+ 2K2x12°.1 + 74 iB'rrA}, B1\2 =xIS
1=1 * T oa=1 ’ (L~ RaXa,) T T BaXay) (5)
= KaopXa,X
_ 1°vB1 _
27 xap X, =ABAUBL 4y =x,8 (6)
i=1 4 1 1 "'I{AxA1 1
Xcy = x3S (7)
The stoichiometric sum, S, is given by
(- -] L=- o
S=24ixa, +2xs, + 24 ixap + 2s Xap +Xp, X,
i=1 i=1 i=1
Xa K ABXa,XB; KapXa,Xp
= L + 2K,x% | + L =i + L =L + o, + xc (8)
(1—K_A_xA1)2 1 (1—KAx_A_1)2 (1_KAxA1) 1 1

where x,, x,, and x; are the nominal mole fractions of components. The



160

monomer mole fractions x4, xg,, and x¢, are obtained by solving eqns. (4)—
(8) by iteration if the equilibrium constants are known. The assumption of
AB complex formation leads to similar equations, which will not be
described here.

The excess Gibbs energy is given by the sum of g5 em and gy

gE = gcl;:hem + gghys (9)
gc?hem 1 Xs Xc
=x,In +x,In2L +x,In 2L 10
RT 1 xlxﬁll 2 Xa 3 Xa (10)
m
m .El TnanJ
phys _ =
B § 2 T (11)
E lexk
k=1
where
™ = (& — 8u)/RT (12)
Gy, = exp(—w;;Tj;) (13)

The nonrandomness parameter «,, (=a,,) was assumed to be equal to 0.3 for
all binaries studied in this work, as recommended by Renon and Prausnitz
[7], and each binary system has two adjustable parameters (g,; —g;; and
£12 —&22)- X3, is the value of x5, at pure acetonitrile state.

The activity coefficient of component i is expressed by the sum of chemi-
cal and physical contributions.

In Y= ]-n('Yi)chem + 1n(71)phys (14)
In(Y1)cnem = In(x 4, /2x:%%,) (15)
In(7Y2)chem = In(xg, /x2) (16)
1n(')'i’a)c'::mm = ln(xcllx?a) (17)
m m r m
_Zi T5:.GpX; m 27 x; Gy, 27 Xy Ty Grj
= i=1 r=1
1n(7i)phys = - + in Jm Ti; — — (18)
@ lexk E lexk E lexk
k=1 k=1 k=1
Excess enthalpy

The excess enthalpy is also given as the sum of chemical and physical con-
tributions.

B® = Rsera + WBirs (19)
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The enthalpy of complex formation is expressed by

he=hany, +ha 23 (1= 1) (s, + nap) + has 20 nap (20)
The definition of the excess enthalpy gives
hhem = he — x,hY (21)
where h? is the value of ks for pure acetonitrile.
haKax AapKapXa.X
Pinem = {RoKoxy, + —=— 281 (1 4+ K + _ABABTAITE) /s
chem [ 28324 A (1 _KAxA1)2 ( ABxBl) 1 _KAxA1
R AR Ax% x2
X3 thzxgz + ! / ~ __1 + 2K2x02 (22)
{ A —Kax3) (1 — Kax}))? A

hghys is given by differentiation of (g5, ,/T) with temperature.

m m m
_ > , 3(1:Gyy) >3 7, G, > 3(Gy,)

E — — 1ty = R
Ry _9(&pnys/T) _ RY x| o(1/T) ;=1 k=1  0(1/T)
o(1/T) 1=1 m m 2 (23)
[ 22 Gr¥x (E Gkixk)
k=1 k=1
We assume that the energy parameters change linearly with temperature.
8, —&i=C,+Dy(T—273.15) (24)

CALCULATED RESULTS

Reproduction of binary data

The equilibrium constants and the standard enthalpy changes for acetoni-
trile association are the same as those given by Lorimer and Jones [1]: K, =
8.35 and K, =2.1 at 45°C, h, = —8.9 kJ mole™ and h, = —6.7 kJ mole™.
We used K g = 0.2 at 45°C and k5 = —5.2 kJ mole™ for complex formation
between acetonitrile and benzene (or toluene). The temperature dependence
of the equilibrium constant is fixed by the van’t Hoff equation. Tables 1 and
2 list the results of binary data fit.

Vapor—liquid equilibrium calculations were performed using the following
equation [16]

¢:y:P = v1x:6;Pf exp[vl'(P —P})/RT] (25)

The fugacity coefficient ¢ is obtained fiom the volume explicit virial equa-
tion truncated after the second term and the pure component and cross-virial
coefficients are estimated by the generalized method of FHayden and O’Con-
nell [17]. Antoine constants are used to calculate the pure component vapor
pressure PS. The simplex method [18] was used to determine energy parame-
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ters from vapor—liquid equilibrium data by minimizing the sum of squares of
deviations in In(vy,/v.) for all data points. The energy parameters for the
carbon tetrachloride—benzene system at 45°C were obtained by linear inter-
polation.

Liquid—liquid equilibria provide one set of equations for each component
to calculate the compositions of two liquid phases in mutual equilibrium.

(em)t = (xem)” (26)

Figures 1—5 compare calculated values with experimental data. Agreement
with experiment seems to be acceptable. When the energy parameters for the
partially miscible binary (acetonitrile—n-heptane) were obtained from solu-
bility data, the reproduction of binary vapor—liquid equilibria is remarkably
good, as shown in Fig. 2. This suggests that these energy parameters could be
used for ternary prediction.

Ternary prediction

The accuracy of the ternary prediction of vapor—liquid equilibrium and
excess enthalpy data for two systems is given in Table 3. The RMSD of the
predicted ternary gF values based on the NRTL equation was 107.5 J mole™
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Fig. 1. Representation of vapor—liquid equilibria and activity coefficients for the acetoni-
trile (1)—carbon tetrachloride(2) system at 45°C. Experimental data of Brown and Smith
[91, ©; calculated,

Fig. 2. Representation of vapor—liquid equilibria and activity coefficients for the acetoni-
trile(1)—n-heptane(2) system at 45°C. Experimental data of Palmer and Smith [2], @;
calculated, (vapor—liquid equilibria), - - - - - - (solubility data only).
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Fig. 3. Representation of vapor—liquid equilibria and activity coefficients for the acetoni-
trile(1)—benzene(2) system at 45°C. Experimental data of Palmer and Smith [2], ©;
calculated, (A;B complex), ------ (AB complex).

Fig. 4. Representation of excess functions for the acetonitrile (1)—toluene(2) system.
Experimental: gE data of Orye and Prausnitz [10] at 45°C, ®; hE data of Sergio et al.
[15] at 41.2°C, 4; calculated,
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Fig. 5. Representation of excess enthalpies for three binary systems at 45°C. Experimen-
tal, ®: 1, data of Brown and Fock [14] for acetonitrile(1)—carbon tetrachloride (2); 2, data
of Palmer and Smith [2] for acetonitrile(1)—benzene(2); 3, data of Lien and Missen [6]
for benzene(1)—carbon tetrachloride(2). Calculated, .
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BENZENE

W
ACETOHITRILE H-HEPTANE

Fig. 6. Representation of ternary liquid—liquid equilibria for the acetonifrile(1)—ben-
zene(2)—n-heptane(3) system at 45°C. Experimental data of Palmer and Smith {21,
@— . —.—8; calculated, AB complex was assumed for acetonitrile—benzene,

...... A;B complexes were assumed.

BENZERE

ACETONITRILE 2.2 g 0.6 0.8 N-HEPTANE

Fig. 7. Representation of ternary liquid—liguid equilibria for the acetonitrile(1)—ben-
zene(2)—n-heptane(3) system at 20°C. Experimental data of Werner and Schuberth [3],
O (solubility), — « — - —® (tie line). Calculated,
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TOLUENE

J -

b= )
Fig 8. Representation of ternary liquid—liquid equilibria for the acetonitrile (1)—toluene
{2)——n=hepta“e (3) system at 40°C. Experimental data of Heinrich and Dojcansky [4],©
(solubility ), ®— - — - —& (tie line). Calculated,

for the acetonitrile—benzene—n-heptane system [19]. This was not as accu-
rate as the values obtained with the present associated solution equations.

The ternary solubility envelope and tie lines can be predicted with the
activity coefficient equations and the method of Null [20]. Figures 6—8
show observed and calculated liquid—liquid equilibria for the two systems:
acetonitrile—benzene—n-heptane and acetonitrile—toluene—n-heptane. The
predicted results based on the binary data alone agree well with the experi-
mental data except in the region of the plait point where successful predic-
tion is often difficult. Both models of A,B and AB for complex formatlon
between acetonitrile and unsaturated hydrocarbons i ts 1
ternaries as well as binaries.

et PN (PR, ¥ R —

rliein tha madifs

In conclusion, the modified version of the associated solution model of
Lorimer and Jones is able to predict well the excess thermodynamic prop-
X

erties of ternary liquid mixtures containing acetonitrile with only binary
parameters.
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