THERMODYNAMIC FUNCTIONS FOR NAPHTHALENE

J. LIELMEZS, F. BENNETT, JR. * and D.G. MCFEE

Chemical Engineering Department, The University of British Columbia, Vancouver, British Columbia (Canada)

(Received 19 February 1981)

ABSTRACT

Thermodynamic functions (heat capacity, enthalpy, entropy and free energy) have been calculated for naphthalene in the ideal gas state from 273.15 K to 1200 K at 1 atm pressure. Obtained results were critically compared with available experimental and calculated data.

INTRODUCTION

The thermodynamic properties of naphthalene in the ideal gas state have been critically studied and calculated by many investigators [1-32]. The most recent study is the work by Chen et al. [9]. Despite the satisfactory application of frequency sum and difference rules [9], there still remains an ambiguity in the certainty of the assigned fundamental frequency values, especially in frequencies representing the A_u , B_{2u} and B_{3u} species **, to warrant further review of the available spectral [1,5,6,8-32] and thermodynamic [33-45] data, and to calculate and re-evaluate the ideal gas state thermodynamic properties [1,6,9-16,18-26] of naphthalene (Tables 2, 3, 5; Figs. 2-6). On the basis of this comparison we have proposed two sets of fundamental assignments, set A and set B (Table 2).

The calculated thermodynamic function values for both sets of assignments (A and B) are found in Table 3. To ease industrial applications, all results presented (Table 3) were fitted to a five-constant polynomial of the form

$$\Lambda = a + bT + cT^2 + dT^3 + eT^4 \tag{1}$$

where Λ is the thermodynamic function at temperature T(K). The constants a, b, c, d and e [eqn. (1)] were obtained using linear least squares curve fitting methods [1] and are found in Table 4. As already noted, the assigned frequency values for both assignment sets A and B are found in Table 2,

^{*} Present address: Texaco Canada Resources, Ltd., Alberta, Canada.

^{**} In this work the nomenclature of earlier investigations [11] has been retained. In this case the reference axes are set such that the X (longer) and Y axes are oriented in the plane of the naphthalene skeleton.

while the other values of molecular parameters used are the same as those used by McFee and Lielmezs [1].

DISCUSSION

Frequency assignments

Naphthalene forms monoclinic crystals [46a—c] of space group $P2_1/a(C_{2h}^5)$ with two molecules in each unit cell located at symmetry sites C_i . Even if the naphthalene molecule is slightly distorted [46a—c] in the crystal, it may be approximated to retain full D_{2h} symmetry. Each molecule has 48 fundamental modes of vibration, of which 24 are Raman active, 20 IR active and four completely inactive. Table 1 gives the summary of selection rules for naphthalene *.

A_a Fundamentals

The nine symmetric A_g fundamentals are identified by their high intensity in both the gaseous and solid Raman spectra and by their polarization in the solid, single crystal spectra. Already, in 1955, Luther et al. [12,13] gave frequencies which were very close to the corresponding assignment of Michaelian and Ziegler [1,5] (Table 2). With the exception of the two highest fundamentals of A_g species (which contribute very little to the thermodynamic function values), all recent assignments have included very similar frequencies (Table 2). These assignments appear to be secure.

B_{1u} Fundamentals

The four B_{1u} fundamentals have been assigned by McClellan and Pimentel [14] as 176, 475, 780 and 956 cm⁻¹, and have been supported in general by subsequent studies (Table 2). We use, along with Michaelian and Ziegler [5], slightly changed values: 176, 476, 785 and 958 cm⁻¹ (Table 2). Again these assignments are considered to be secure.

TABLE 1

Class	No. of vibrations	Gas	Solid	
Ag	9	Raman	Raman	
A_{μ}	4	Inactive	IR	
Blg	8	Raman	Raman	
B_{1u}	4	IR	IR	
B_{2g}	3	Raman	Raman	
B_{2u}^{-s}	8	IR	IR	
B_{3g}	4	Raman	Raman	
B _{3u}	8	IR	IR	

Summary of frequency species

* See footnote p. 287.

B_{2u} Fundamentals

The assignment made by McClellan and Pimentel [14] of bands at 362, 620, 1125, 1268, 1355, 1601, 2942 and 3034 cm⁻¹ has, with the exception of the assignment at 620 cm⁻¹ and the two highest fundamentals, been confirmed by later studies (Table 2). Later, normal coordinate analysis treatment [18,19,21] has predicted 793 cm⁻¹ for the 620 cm⁻¹ value. On this basis, Michaelian and Ziegler [5] and others [18,20] have assigned a frequency of 747 cm⁻¹ (this value is also used in this work: assignment set A, Table 2). However, through the application of product rule, Scully and Whiffen [16,17] have predicted a band of 810 cm⁻¹. Following this, we have replaced the frequency of 747 cm⁻¹ (used in set A) by the 810 cm⁻¹ value as one of the three assignment set B frequency values (see also Table 2).

B_{3u} Fundamentals

Early assignments [11,14] based on gas phase contours, solid phase dichroic splitting and on the evaluation of the product rule, differed widely for this class. The first normal coordinate analysis by Scully and Whiffen [16] and Freeman and Ross [18] also differed, but more recent calculations [19-21] have been consistent in assigning frequencies near 619, 870, 1139, 1212, 1362, 1513 cm⁻¹ (Michaelian and Ziegler [5]) and 2987, 3076 cm⁻¹ (Sharma and Singh [6]) values. However, recent normal coordinate analysis work prefers the value of 1008 cm⁻¹ over that of 870 cm⁻¹. In this work, assignment set A contains 870 cm⁻¹, while assignment set B has the value of 1008 cm⁻¹ (Table 2), with the remainder of the assignment of B_{3u} species as given by Michaelian and Ziegler [5] and Sharma and Singh [6] (Table 2).

B_{1g} Fundamentals

There has been some disagreement over the B_{1g} fundamental frequency assignments (compare with the early values in Table 2) but more recent studies [24–26] have included frequencies similar to those given by Michaelian and Ziegler [5] at 508, 935, 1167, 124 \therefore , 1442 cm⁻¹, and 1624, 2978, and 3076 cm⁻¹ as proposed by Sharma and Singh [6] (Table 2). The assignment of 1167 cm⁻¹ has been given previously [18] as 1099 cm⁻¹ but the normal coordinate treatment by Stenman [24] supports the halonaphthalene studies of Michaelian and Ziegler [5]. In this work we accepted the assignments of Michaelian and Ziegler [5] as supplemented by Sharma and Singh [6].

B_{2g} and B_{3g} Fundamentals

The spectrographic evidence is poorly understood for separation of the seven Raman active out-of-plane B_{2g} and B_{3g} fundamentals [14]. Early assignments differed greatly in these two classes due to this difficulty and to the use of some frequencies above 1000 cm⁻¹ (Table 2) which have since been discarded. Normal coordinate analysis [16,22,23] has enabled the

Class	Pimentel and McCellan [10] 1952	Lippincott and O'Reilly [11] 1955	Luther et al. [12,13] 1955	McCellan and Pimentel [14] 1955	Mitra an Bernstei [15] 19	а 59	Scully al Whiffen [16] 19	nd 60	Freeman and Ros [18] 19	и 88 090	Scherer [19] 1962
					A b	Вb	Exp. c	Calcd. d	Exp.	Calcd.	Caled.
A_{g}	512	511	512	512	612		512	398	516	508	485
0	764	760	763	762	768		763	823	191	762	784
	778	878	1025	943	943		1025	1003	1025	1018	1004
	946	1025	1144	1024	1025		1144	1129	1144	1136	1172
	1025	1240	1379	1240	1158	1239	1379	1299	1379	1375	1380
	1380	1393	1460	1379	1405		1460	1415	1460	1462	1450
	1460	1578	1579	1576	1577		1579	1625	1679	1671	1668
	3001	3028	3004	3001	3031		3025	30.49	3004	3008	3022
	3058	3063	3055	3058	3060		3055	3075	3055	3078	3077
Au	581	400	400	400	400	195	195	207			
	726	700	740	842	698	730	581	594			
	841	875	860	1094	730	842	841	807			
	1146	1000	965	1307	915	1094	970	1022			
$B1_{d}$	390	585	617	611	585		506	372	506	458	480
0	726	1144	875	879	1145		936	987	936	921	935
	1144	1337	1168	1145	1320		1168	1127	1099	1064	1116
	1240	1440	1240	1439	1438		1240	1226	1240	1246	1246
	1440	1586	1436	1586	1483		1436	1424	1436	1466	1455
	1675	1628	1624	1625	1624		1624	1639	1624	1679	1621
	2980	3011	2980	2980	2978		3055	3064	2980	2979	3026
	3025	3051	3025	3025	3092		3055	3074	3051	3042	3076
B_{1u}	80	176	176	176	176		176	177			
ł	747	475	478	475	476		478	445			
	821	782	780	780	782		780	769			
	949	967	955	996	908		906	202			

Е 9

1

;

N N N N

. . .

) K

5 ,(

t

Summary of frequencies (in cm^{-1}) as suggested by several contributors a

TABLE 2

290

			330	793	1116	1269	1393	1589	3026	3078					637	1000	1135	1186	1372	1509	3022	3076
			387	793	1083	1182	1405	1535	2979	3044					622	816	1080	1131	1491	1546	3006	3069
			362	748	1126	1265	1389	1595	3054	3065					618	823	1008	1144	1361	1509	3005	3090
365	704	920	412	878	1144	1285	1414	1586	3064	3079	485	770	881	971	194	1032	1144	1198	1437	1643	3051	3076
392	715	945	362	810	1125	1265	1389	1595	3029	3056	600	778	875	980	618	1008	1144	1209	1361	1509	3029	3056
285	717	1158									386											
195	717	1239	359	618	1128	1267	1387	1692	3027	3060	285	770	874	1099	562	877	1011	1210	1506	1715	2987	3076
191	715	1167	362	620	1125	1268	1385	1601	2942	3034	285	588	774	1099	581	742	1012	1143	1508	1723	2984	3070
195	715	812	362	618	1125	1265	1889	1595	2968	3056	392	591	778	945	585	823	1008	1144	1509	1718	3029	3086
385	941	1168	361	752	1139	1268	1387	1595	2947	3014	191	285	715	1440	618	876	1012	1211	1510	1680	2976	3072
191	1168	1264	478	787	1129	1269	1390	1590	2942	3034	406	742	972	1624	620	779	975	1012	1214	1508	2984	3070
B_{2a}	ł		B_{2u}								B_{3d}	2			B_{3u}	I						

^a For other physical constants used, see ref. 1.
^b Two assignment sets, A and B, proposed.
^c Exp. = Experimental.
^d Calcd. = Calculated, refers to NCA.

or the states that the states after the states of the

	đ	1
	18	
	1to	
	ibi	1
	tr	١
	10	
	ĭ	
	ers	ł
	No.	
	Y.B.	1
	je l	I
	tec	
	es	I
	186	ļ
	18	
	88	İ
	÷	I
	E	
	2	
	Ξ	
-	ies	ļ
(g	ы В С	l
Ine	ne	
th	eg.	
- No	T.	ļ
್ರ	0	
2	P	
Ξ	m	
AB	Ē	1
Ē	งี	1

Class	Krainov [20] 1964		Neto [21] 1966	et al.	Suzuki et al. [22] 1968	Hanson and Gee [23] 1969	Stenman [24] 1971	Sharma and Singh [6] 1973	Michaelian and Ziegler [5] 1973	Karonen et al. 1976	Chen et al. [9] 1979	This wo	×
R	Exp. 512 758 1025 1145 1376 1460 1460	Calcd. 491 778 981 1125 1405 1452 1564	Exp. 512 763 1025 1144 1379 1460 1579	Calcd. 504 767 1013 1173 1368 1368 1445 1445			513 765 1019 1148 1385 1465 1578	612 758 1025 1145 1380 1460 1677	512 762 1019 1145 1379 1462 1674	513 765 1020 1148 1385 1465 1578	512 761 1025 1145 1380 1463 1677	A a 512 762 1019 1145 1379 1574	B a 512 762 1019 1145 1379 1574 1574
Au	3031 3060 195 581 841 970	3041 3057 192 580 841 977	3025 3055	3038 3085			3008 3057	3031 3060 400 698 915	3031 3060 213 575 843 935	3067 3057	3030 3060 191 581 841 970	3031 3060 213 575 843 935	3031 3060 213 575 843 935
Bıg	506 936 1158 1158 1438 1624 3060 3092	499 961 1145 1226 1462 1631 3056 3072	506 936 936 1240 1436 1436 1624 2980 3055	488 936 1117 1263 1442 1625 3019 8062			509 938 1169 1246 1446 1629 2975 3051	506 1145 1337 1438 1438 1483 1624 2978 2978 3076	508 935 1167 1242 1442 1624 2978 3076	509 939 1169 1246 1446 1629 2976 3051	506 936 936 1168 1242 1443 1628 3060 3092	508 935 1167 1242 1442 1624 2978 3076	508 935 1167 1242 1442 1624 2978 3076
B1u	176 476 782 958	175 471 784 958						176 476 782 958	176 476 785 958		176 472 782 958	176 476 785 958	176 476 785 958

388	724	945	361	810	1132	1270	1391	1699	3027	3060	469	783	875	979	619	1008	1139	1212	1362	1513	2987	3076
388	724	945	361	747	1132	1270	1391	1699	3027	3060	469	783	875	979	619	870	1139	1212	1362	1513	2987	3076
386	725	950	369	877	1125	1265	1389	1695	3058	3065	466	778	876	980	617	1008	1144	1209	1361	1509	3027	3090
389	726	952									469	774	880	983								
388	724	945	361	747	1132	1270	1391	1599	3027	3060	285	783	875	979	619	870	1139	1212	1362	1513	2987	3076
195	943	1158	369	618	1128	1267	1387	1692	3027	3060	285	770	874	1099	562	877	1144	1210	1506	1715	2987	3076
389	726	952									469	774	880	983								
392	727	950									388	468	772	983								
390	725	933									467	786	878	980								
			369	795	1125	1258	1379	1597	3020	3064					628	1007	1136	1186	1357	1529	3037	3084
			362	810	1125	1265	1389	1695	3029	3065					618	1008	1144	1209	1361	1509	3029	3056
390	720	946	329	777	1136	1271	1372	1593	3052	3063	459	842	873	679	606	1016	1141	1218	1360	1533	3042	3066
386	717	943	359	747	1125	1265	1389	1695	3058	3065	461	846	876	980	618	1008	1138	1209	1361	1509	3027	3090
Bgo	9 .		B_{2n}	6							$B_{3\sigma}$	\$			$B_{3\mu}$	5						

^a For other physical constants used, see ref. 1.

293

1.11

ALC: U. L'AL DU T

sources and the second second along a second second second

P. 10. 10. 1

Fig. 1. Frequency (cm⁻¹) and substituent molecular weight relation for \circ , α -halonaphthalene; and \bigtriangledown , β -halonaphthalene.

establishment of B_{2g} assignments of the $3 B_{2g}$ species close to the assigned Michaelian and Ziegler [5] values of 388, 724 and 945 cm⁻¹. These values have been retained in the present work (Table 2).

Assignment of the B_{3g} species has been less certain. Michaelian and Ziegler [5] have assigned 285, 783, 875 and 979 cm⁻¹ as fundamentals, although several authors [16,22,24-26], using normal coordinate treatment, have placed the lowest frequency near 469 cm^{-1} (Table 2). The correctness of 469 cm^{-1} as the assignment value over the 285 cm^{-1} value is also strengthened through Fig. 1, which shows for the α - and β -halonaphthalene series this particular B_{3g} frequency [5] plotted against the weight of the substituent atom X (X = H, F, Cl, Br and I). Figure 1 shows that by using 469 cm⁻¹ as the naphthalene fundamental frequency we obtain a smooth inverse relation between the frequency change and the corresponding weight of the substituent halogen atom. If we substitute the 285 cm⁻¹ value for 469 cm⁻¹, this plot (Fig. 1) becomes nearly discontinuous. Considering that this inverse frequency-atomic weight relation (Fig. 1) is valid, we would expect higher B_{3g} species values for naphthalene than for the halogen substituted α - and β -halonaphthalenes [5], i.e., assignment of 469 cm^{-1} is the preferred value. This is indirectly confirmed by Lielmezs and Vogt's [47] finding that for a series of normal paraffins, the fundamental frequencies varied inversely with the increase of *n*-paraffin chain length. In this work, for both sets of assignments (A and B), the proposed Michaelian and Ziegler [5] values were accepted except for the lowest B_{3g} frequency which was set at 469 cm⁻¹.

A_u Fundamentals

The four A_u frequencies are inactive in both the Raman and IR spectra (Table 1) but may be seen in the solid IR spectra. Because of this it was not until 1960 that Scully and Whiffen [16] were able to predict the A_u frequencies by normal coordinate analysis and not until the studies of Bree and Kydd [27], Chantry et al. [28] and Michaelian and Ziegler [5] that the lowest A_u frequency first predicted [6] at 207 cm⁻¹ was suggested to be at 213 cm⁻¹. The data of Michaelian and Ziegler [5] with frequencies of 213, 575, 843 and 935 cm⁻¹ fit the predictions of Scully and Whiffen [16] and the more recent work of Krainov [20], and are incorporated in our work (assignment sets A and B, Table 2).

Naphthalene vapour-liquid phase frequency shift

While there is evidence [48] that in the low frequency region of the IR spectrum (below about 300 cm⁻¹), gas phase frequencies may have considerably less value than those of the condensed states, this does not seem to be true for naphthalene. Careful studies [10,23,29] indicate that in the frequency range 473–1629 cm⁻¹, the average frequency shift is less than 1% (only a small number of frequencies changed as much as 1%) and this shift is not at all associated with any particular phase, but rather, the observed frequency shift associated with any phase change appears to be nearly randomly distributed. Even if vapour phase assignment values are to be preferred, these studies [10,23,29] assure that the proposed naphthalene frequency sets A and B (Table 2) containing the averaged solid state low frequencies [10,27–29] of 176, 213 and 361 cm⁻¹ are sufficiently accurate to yield acceptable ideal gas state thermodynamic functions (Tables 3 and 4) which fall well within the range of experimental certainty (Tables 5–7, Figs. 2–6).

Comparison and accuracy

To determine the degree of reliability and accuracy of the presented thermodynamic properties (Tables 3 and 4), we have compared the spectroscopically calculated values with the available experimental vapour heat capacities and the third law entropies. Table 5 presents a comparison between the available experimental data for naphthalene vapour heat capacity and third law entropies and the corresponding calculated results for a series of investigators. Tables 6 and 7 list the calorimetric measurements and vapour pressure data used to obtain the experimental thermodynamic properties shown in Table 5 and Figs. 2–6. Comparison of the experimental results (Table 5; Figs. 2–6) reveals considerable measured value disagreement. For instance, in the case of enthalpy of sublimation measurements (Tables 6 and 7), recent sublimation enthalpy values calculated from saturated vapour pressure data at 298.15 K are: 17.328 ± 0.0598 kcal mole⁻¹ [44]; 17.328 kcal mole⁻¹ [43]; 17.366 ± 0.08 kcal mole⁻¹ [39]; while the calorimetric measurements at 298.15 K are: 17.447 ± 0.069 kcal mole⁻¹ [34] and 17.220 ± 0.06 kcal

•	•	:						
Temp.	$C^{\circ}_{\mathbf{p}}$ (cal g^{-1}	mole ⁻¹ K ⁻¹)	S° (cal g ⁻¹ 1	nole ⁻¹ K ⁻¹)	—(F ^o —H ^o)/7	" (cal g ⁻¹ mole ⁻¹ K ⁻¹)	L/(₀ H— ₀ H)	cal g ⁻¹ mole ⁻¹ K ⁻¹
(Y)	A	Ē	A	B	A	B	A	В
451.00	48.52	48,24	96.10	95.85	71.35	71,26	24.75	24.59
522.70	54.77	54.51	103.72	103.44	75.27	75,16	28.45	28.28
273.15	28.88	28.62	76.89	76.79	61.50	61.48	15.39	15.32
298.15	31.90	31.62	79,55	79.43	62.90	62.87	16.65	16.56
300.00	32.12	31.84	79.75	79.63	63.00	62.97	16.75	16.65
350.00	37.98	37.68	85.15	84.98	65.78	65.73	19.36	19.24
400.00	43.45	43.16	90.58	90.37	68.54	68.48	22.04	21.89
450.00	48.43	48.15	96.99	95.75	71.29	71.21	24.70	24.54
500.00	52.90	52.64	101.33	101.06	74.03	73.93	27.30	27.13
550.00	56.89	56.65	106.56	106.26	76.75	76.63	29.81	29.63
600.00	60.45	60.23	111.67	111.35	79.45	79.31	32.22	32.04
650.00	63.64	63.44	116.63	116.30	82.12	81.97	34.52	34.33
700.00	66.50	66.32	121.46	121.11	84.76	84.59	36.70	36.51
750.00	69.08	68.92	126.13	125.77	87.36	87.18	38.77	38,59
800.00	71.43	71.28	130.67	130,30	89.92	89.74	40.74	40.56
850.00	73.65	73.42	135.06	134.69	92.45	92,25	42.61	42.43
900.00	75.49	75.37	139.32	138.94	94.94	94.73	44.89	44.21
950.00	77.27	77.16	143.45	143.06	97.38	97.17	46.07	45.90
1000.00	78.90	78.79	147.46	147.06	99.79	99.56	47.67	47.50
1050.00	80.39	80.29	151.34	150.94	102.15	101.92	49.19	49.03
1100.00	81.76	81.68	155.12	164.71	104.47	104.23	50.64	50.48
1150.00	83.03	82.95	158.78	158.37	106.75	106.51	52.02	51.86
1200.00	84.20	84.12	162.34	161.92	109.00	108.74	53.34	53.18

.

01 N.0

ישראד הארך ברבר האראה המגיע בארך און הארך בארך הארך בארך האראר ברבאי הרבר בארה הארארה האראה ברבי הארא ארפין ה

Heat capacity, entropy, free energy function and enthalpy function for naphthalene

TABLE 3

296

1

			2		
Assignment	$\mathcal{C}_{\mathrm{P}}^{\mathrm{o}}$ (rms, root mean squ	lare)			
Bet A Or D	a (rms)	b (rms)	<i>c</i> × 10 ⁻³ (rms)	<i>d</i> × 10 ⁻⁷ (rms)	e × 10 ⁻¹¹ (rms)
A	-18.03435 (0.6873604)	0.2155649 (0.4651032 × 10 ⁻²)	-0.1820894 (0.108798 × 10 ⁻⁴)	0.7439797 (0.1053801 × 10 ⁻⁷)	-1.0969430 (0.3606865 x 10 ⁻¹¹)
B	-17.78467 (0.7331244)	0.2118440 (0.4960697 × 10 ⁻²)	-0.1735626 (0.1160417 × 10 ⁻⁴)	0.6694938 (0.1123962 × 10 ⁻⁷)	0.8691946 (0.3847008 x 10 ⁻¹¹)
	S° (rms, root mean squ	are)			
	a (rms)	<i>b</i> × 10 ⁻¹ (rms)	<i>c</i> × 10 ⁻⁴ (rms)	$d \times 10^{-7}$ (rms)	e × 10 ⁻¹⁰ (rms)
A	48.71632 (0.3323961)	0.9286736 (0.2249163 × 10 ⁻²)	0.5485272 (0.5261292 × 10 ⁻⁵)	-0.7177181 (0.5096005 × 10 ⁻⁸)	0.2279522 (0.1744219 × 10 ⁻¹¹)
8	49.05392 (0.3285136)	0.9064615 (0.2222892 × 10 ⁻²)	0.5751098 0.5199840 × 10 ⁻⁵)	0.7328896 (0.5036483 × 10 ⁻⁸)	0.2313094 (0.1723847 × 10 ⁻¹¹)
·	$(H^{0}-H^{0}_{0})/T$ (rms, root	mean square)			
	a (rms)	<i>b</i> × 10 ⁻¹ (rms)	c × 10 ⁻⁴ (rms)	d × 10 ⁻⁷ (rms)	e × 10 ⁻¹⁰ (rms)
A	2.087996 (0.3686550)	0.4004266 (0.2494510 × 10 ⁻²)	0.4575870 (0.5835213 × 10 ⁻⁵)	-0.6009981 (0.5651899 × 10 ⁻⁸)	0.1987142 (0.1934486 × 10 ⁻¹¹)
æ	2.372436 (0.3695545)	0.3798670 (0.2500596 × 10 ⁻²)	$\begin{array}{c} 0.4901539 \\ (0.5849450 \times 10^{-5}) \end{array}$	-0.6233006 (0.5665687 × 10 ⁻⁸)	0.2044519 (0.1939205 × 10 ⁻¹¹)
	$-(F^0 - H_0^0)/T$ (rms, root	t mean square)			
	a (rms)	$b \times 10^{-1}$ (rms)	<i>c</i> × 10 ⁻⁵ (rms)	d × 10 ⁻⁷ (rms)	e × 10 ⁻¹¹ (rms)
A	46.62813 (0.4674780 × 10 ⁻¹)	0.5281619 (0.3163195 × 10 ⁻³)	0.9091033 (0.7399422 × 10 ⁻⁶)	0.1166925 (0.7166967 × 10 ⁻⁹)	0.2922894 (0.2453051 × 10 ⁻¹²)
ß	46.68156 (0.5120276 × 10 ⁻¹)	0.5266903 (0.3464641 × 10 ⁻³)	0.8497158 (0.8104570 × 10 ⁻⁶)	-0.1096078 (0.7849963 × 10 ⁻⁹)	0.2686478 (0.2686821 × 10 ⁻¹²)

Calculated constants a, b, c, d and e in eqn. (1) (all values of constants in cal g^{-1} mole⁻¹ K⁻¹)

TABLE 4

297

er dens ters come encourteness and to be available of the second of the second of the second of any

MARKA ADUM AUMA MAMMA ADUM MARKA
•

TABLE 5

Ref.	$C_{\rm P}^{\rm o}$ (cal	g ⁻¹ mole ⁻¹	K ⁻¹)				·	
	298.15	ĸ	451.0 K	<u> </u>	522.7 K		1000.	0 K
	Exp. a	Calcd. b	Exp.	Calcd.	Exp.	Calcd.	Exp.	Calcd.
7			48.18 c ± 0.48		54.17 ^c ± 0.54			
10		31.03		48.01		54.38		78.01
11		31.94		47.72		53.83		78.27
12.13		32.78		49.24		55.34		79.07
14		32.07		48.14		54.27		78.55
15: Assignment	A	32.09		48.23		54.37		78.55
Assignment	В	31.68		47.80		53.98		78.38
16: Exp.		31.55		48.20		54.48		78.76
Calcd.		31.63		48.09		54.34		78.61
6		31.49		47.40		53.56		78.14
9		31.53		48.13		54.40		78.67
This work:								
Assignment .	A	31.90		48.53		54.77		78.90
Assignment	в	31.62		48.24		54.51		78.79
36								
45a								
37								
38								
40								
41								
34								
35								
42D								
43								
44								

Comparison of experimental and calculated properties

^a Exp. = Experimental.

^b Calcd. = Calculated from spectroscopic data, also NCA.

^c Values proposed by author(s). Complete evaluation of experimental data.

^d The "third law" entropy value was calculated using: (i) the corresponding calorimetric value of the entropy for the crystal state taken from McCullough et al. [33], and (ii) the sublimation entropy value was obtained from this work.

^e The compression correction was made using the vapour pressure data of this work.

f Gas imperfection correction (Berthelot equation of state) neglected for this work.

mole⁻¹ [35]. The measurement uncertainties range from ± 0.0598 to ± 0.08 kcal mole⁻¹; the listed enthalpy of sublimation values disagree as much as 1.30%.

In view of this disagreement, it was felt advisable to compare the calculated spectroscopic thermodynamic functions (Table 3) with thermodynamic property values taken from the work of several investigators (Tables 5–7; Figs. 2–6). Figures 2–5 compare the calculated ideal gas state entropies of McFee and Lielmezs [1] and those of this work (assignments A and B, Tables 2 and 3) with selected "third law" entropy values obtained from vapour

		S° (cal g	⁻¹ mole ⁻¹ K	(⁻¹)			<u> </u>
298.15 K	Ξ.	451.0 K		522.7 K		1000.0 B	<u> </u>
Exp.	Calcd.	Exp.	Calcd.	Exp.	Calcd.	Exp.	Calcd.
		96.85	* <u></u>	104.41			
		± 0.44		± 0.44			
	80.30		96.55		104.11		147.73
	80.71		97.08		104.57		147.75
	80.19		97.08		104.79		148.75
	80.43		96.92		104.47		147.91
	80.37		96.89		104.46		147.93
	80.23		96.56		104.07		147.36
	79. 48		95.89		103.46		147.07
	79.89		96.28		103.84		147.35
	80.25		96.45		103.90		146.97
	79.62						147.12
	79.55		96.10		103.72		147.46
-	79.43		95.85		103,44		147.06
79.89 ^d ,e	,I						
		96.62 d,	e,g,i	104.08 d	i,e,g,i	155.70 d.	e,g,h,i
79.67 d.e.	f						
79.78 d.e.	,f						
75.15 d.e.	,f						
_	_	96.49 d,	e,g,l	104.27 d	.e,g,l	155.55 d.	e,g,h,l
80.42 d.e.	,f						
79.67 d.e.	f						
80.38 d.e.	f						
79.98 c.f							
80.04 d.e.	,f.j	96,54 d.e	s,g,k	104.22 d	,e,g,k	146.63d.	e,g,h,k

^g Gas imperfection correction included using Berthelot equation of state. The naphthalene critical state property values were taken from Weast [51].

h Estimate, temperature beyond the range of validity of given vapour pressure data.

ⁱ Entropy needed for liquid based on extrapolation of equation for heat capacity of liquid as given by McCullough et al. [33]: $C_{\text{satd.}} = 19.212 + 0.092572 T$.

^j Use made of low temperature vapour pressure equation [44].

k Use made of high temperature vapour pressure equation [44].

¹ Heat of sublimation used was taken from Ambrose et al. [44].

pressure and calorimetric data (Tables 5-7). Unexpectedly, several of the experimental data sets yielded erratic entropy—temperature behaviour patterns. Figures 2 and 3 show that for the Ambrose et al. [44] low temperature (range: 230-344 K) vapour pressure equation and, to a lesser extent, high temperature (range: 353-750 K) vapour pressure equation, the slope of the "third law" entropy vs. temperature curve is increasing with temperature rather than decreasing. Figure 5 indicates that the same "third law" entropy—temperature curvature change (temperature range: 270-310 K) is also displayed by the results of Bradley and Cleasby [36], Sherwood and

Jumma	ry of vapour pressure d	lata used				
Reť,	Temp. range (K)	Sample purity and/or method of purification	Vapour pressure measurement method	Experimental accuracy	Experimental precision	Comments
3elow 1 36 17	<i>riple point</i> (353.43 K) 279.85–293.85 273.15–311.15	Vacuum sublimation Not discussed	Effusion Weight loss of packed	Not discussed	Not discussed	
88	289.15-323.15		bed in air stream	Not discussed	Not discussed	Vapour pressure
39	230-260	99.7 mole %, zone melting	Effusion	±5% in middle of range	Not discussed	CULUM 100 101.
9 4	283.15-323.15 313.15-353.15	Zone melting 99 99 mole %,	Effusion Equilibrium	±3% Not discussed	Within 1% ±0.033 Torr	Accuracy questionable
12b 13	286.15297.06 275	Recrystallization 99.99 mole %	Effusion Gas saturation	±2.25% ±2%	Not discussed	Single vapour pressure
1 4	230—343 (low temperature range)	99.95 mole %	Equilibrium	(±2% for T) 280 K (±5% for T) 280 K	±1.6%	1uguggu
4 bove 1 15 14	triple point (353.43 K) 399.15-491.15 353.43-453 353.43-748.4 b 353.43-748.4 b (high temperature range)	99.99 mole % 99.99 mole %	Equilibrium Equilibrium Pooled vapour pressure data	Not discussed Not discussed Not discussed	ρ = '6.36 a ±0.088 Torr c	
High	(root mean square) vali temperature values que	ue of ratio of deviations o stionable.	f cbserved points from A	ntoine equation to exp	oected standard d	eviation.

• Estimate of emperimental precision of data tied to: (i) ±0.35% RMS fit to Fowler et al. [41] data, and (ii) ±0.57% RMS fit to Camin and Rossini [45a,b] data.

•

l

ן נ ז

ļ

:

1

300

TABLE 6

, ę TABLE 7

Summary	of calorimetric data use	q			
Ref.	Sample purity	Measurement			Comments
		Heat capacity	Vaporization heat	Sublimation heat	
33	99.99 mole %	Measurements from 10 to 370 K			Measurements for both solid and liquid states used in "third law" entropy
					calculations (Table 5, Fig. 2—6)
2	Not specified		11.110 ± 0.030 * kcal/deg mole at 440.9 K		
34	Reagent grade			17.45 ± 0.06 * kcal/deg ⁻¹ mole ⁻¹ at 298.15 K	
35	Organic analytic standard			17.22 ± 0.06 * kcal/deg ⁻¹ mole ⁻¹ at 298.15 K	Non-equilibrium measurement

* Single temperature measurement.

Fig. 2. Comparison of the spectroscopic calculated entropy (S^0) obtained by McFee and Lielmezs [1] (---), and this work (assignment A: ----; assignment \dot{B} : ----); and the "third law" entropy obtained from the data of Ambrose et al. [44] (+, solid range), (X, liquid range); Karyakin et al. [40] (^); and Barrow and McClellan [7] (\Box], in the temperature range 250-1250 K.

Bryant [37], and Radchenko and Kitaigorodskii [42a, b].

The disagreement between the single vapour pressure measurement value of Sinke [43] at 298.15 K and the single calorimetric measurement values of Irving [34] and Morawetz [35] at the same temperature of 298.15 K, has been noted (Fig. 5). It is of interest, however, to note that the non-equilibrium single state measurements of Morawetz [35] have yielded one of the lowest "third law" entropy values at 298.15 K (Table 5; Fig. 5). We also note that ideal gas state entropy values as calculated in this work, the work

Fig. 3. Comparison of the spectroscopic calculated entropy (S^0) obtained by McFee and Lielmezs [1] (---), and this work (assignment A: ----; assignment B: ----); and the "third law" entropy obtained from the data of Ambrose et al. [44], and Barrow and McClellan [7] (see Fig. 2 for data notation), in the temperature range 220-620 K.

of Chen et al. [9], Scully and Whiffen [16], and calculations (this work) using assignments by Krainov [20], are all below the "third law" entropy value of Morawetz [35] at 298.15 K (Fig. 6). Whether this indicates that the "third law" entropy value is still too high is an open question subject to further experimental work, not merely at low but also at moderate and elevated temperatures.

In view of the presented comparisons (Tables 5-7; Figs. 2-5), it appears that assignment set A in this work (Table 2) yields the most realistic ideal gas state thermodynamic function values. Figure 6 compares the percent deviattion in entropy values as a function of temperature for a series of calculated ideal gas state and selected "third law" entropies with respect to calculated

Fig. 4. Comparison of the spectroscopic calculated entropy (S^0) obtained by McFee and Lielmezs [1] (---), and this work (assignment A: ----; assignment B: ----); and the "third law" entropy obtained from the data of Ambrose et al. [44] (×, liquid range), (+, solid range); and Fowler et al. [41] (\diamond , liquid range), (\diamond , solid range), in the temperature range 330-370 K.

entropy values of this work (assignment set A, Table 2). The strong "third law" entropy upward curving, shown in Fig. 6, accentuates the already implied possibility that some of the vapour pressure equations may have an error in the experimental work (Figs. 2-5).

In this work, all values are in cal g^{-1} mole⁻¹ K⁻¹ units and apply to the ideal gas state at 1 atm. For internal consistency and precision, tabulated values are given in ± 0.1 cal g^{-1} mole⁻¹ K⁻¹. However, probable errors may be larger than this. Although in general there is a reasonable agreement between the calculated spectroscopic ideal gas state thermodynamic functions and thermodynamic property values obtained from the experimental data (Table 5; Figs. 2-6), the noted disagreement of experimental results (Table 5;

Fig. 5. Comparison of the spectroscopic calculated entropy (S^0) obtained by McFee and Lielmezs [1] (---), and this work (assignment A: ----; assignment B: ----); and the "third law" entropy obtained from the plata of Ambrose et al. [44] (+, solid range); Radchenko and Kitaigorodskii [42b] (\leftarrow); Bradley and Cleasby [36] (\square); Sherwood and Bryant [37] (\triangle); Gildenblatt et al. [38] (\triangleleft); Karyakin et al. [40] (\uparrow); Sinke [43] (\square); Irving [34] (\square); and Morawetz [35] (\square), in the temperature range 270-310 K.

Figs. 2-6), and the complexity of the IR and Raman spectra of naphthalene (especially A_u , B_{2u} , B_{3u} species) have as yet affected the evaluation of the certainty and reliability of the presented thermodynamic function values (assignment sets A and B, Tables 2 and 3). The percentage error ascribed below to the calculated thermodynamic functions (Table 3) is therefore an estimate. This estimate * was obtained considering errors in the molecular and structural data used, mathematical errors due to the round-off in the computer, and errors due to the inapplicability of the basic assumptions, for

^{*} For more detailed discussion see McFee and Lielmezs [1], and Butler and Lielmezs [49].

306

Fig. 6. Comparison of percent deviation in entropy (S^0) between the calculated spectroscopic value of 1, Luther et al. [12,13]; 2, McFee and Lielmezs [1]; 3, Mitra and Bernstein [15] (A); 4, McClellan and Pimentel [14]; 5, Lippincott and O'Reilly [11]; 6, Pimentel and McClellan [10]; 7, this work (Krainov's [20] assignments, calc.); 8, Mitra and Bernstein [15] (B); 9, Scully and Whiffen [16] (calc.); 10, this work (Krainov's [20] assignments, exp.); 11, Sharma and Singh [6]; 12, Chen et al. [9]; 13, Scully and Whiffen [16] (exp.); 14, this work (assignment B); zero line, this work (assignment A); and the "third law" percent deviation in entropy obtained from the data of Morawetz [35] (B); Barrow and McClellan [7] (D); Ambrose et al. [44] (+, low temperature), (X, high temperature), in the temperature range 250—1150 K.

instance the excluded anharmonicity effect: small and indeed negligible at temperatures below 500 K, but larger at higher temperatures [50]. Noting the overall reliability of the spectroscopic input data used (Table 2), it is estimated that the accuracy of the calculated thermodynamic functions (this work, sets A and B) is less than $\pm 0.5\%$ up to temperatures of 1000 K.

NOMENCLATURE

	8 u. (F ⁰ — H8)/T [⁰ — H8)/T	Angstrom heat capacity (cal mole ⁻¹ K ⁻¹) entropy unit (cal mole ⁻¹ K ⁻¹) free energy function (cal mole ⁻¹ K ⁻¹) enthalpy function, where $H_0^0 = H^0$ at 0 K cal mole ⁻¹ K ⁻¹ entropy e.u. wave number (cm ⁻¹)
0	Superscript	reference state, referring to the hypothetical state of an ideal gas at 1 atm
P	Subscript	pressure (atm)

ACKNOWLEDGEMENTS

The financial assistance of the Natural Sciences and Engineering Research Council of Canada, and the University of British Columbia Research Grant is gratefully appreciated.

REFERENCES

- 1 D.C. McFee and J. Lielmezs, Thermochim. Acta, 30 (1979) 173.
- 2 D.G. McFee and J. Lielmezs, Thermochim. Acta, 24 (1978) 39.
- 3 D.G. McFee and J. Lielmezs, Thermochim. Acta, 24 (1978) 55.
- 4 D.G. McFee and J. Lielmezs, Thermochim. Acta, 25 (1978) 21.
- 5 K.H. Michaelian and S.M. Ziegler, Appl. Spectrosc., 27 (1973) 13.
- 6 R.P. Sharma and R.S. Singh, Ind. J. Appl. Phys., 11 (1973) 618.
- 7 G.M. Barrow and A.L. McLellan, J. Am. Chem. Soc., 73 (1951) 573.
- 8 D.H. Whiffen, J. Chem. Soc., (1956) 1350.
- 9 S.S. Chen, S.A. Kudchadker and R.C. Wilhoit, J. Phys. Chem. Ref. Data, 8 (1979) 527.
- 10 G.C. Pimentel and A.L. McClellan, J. Chem. Phys., 20 (1952) 270.
- 11 E.R. Lippincott and E.J. O'Reilly, Jr., J. Chem. Phys., 23 (1955) 238.
- 12 H. Luther, K. Feldmann and B. Hampel, Z. Electrochem., 59 (1955) 1008.
- 13 H. Luther, G. Brardes, H. Günzler and B. Hampel, Z. Elektrochem., 59 (1955) 1012.
- 14 A.L. McClellan and G.C. Pimentel, J. Chem. Phys., 23 (1955) 245.
- 15 S.S. Mitra and H.J. Bernstein, Can. J. Chem., 57 (1959) 553.
- 16 D.B. Scully and D.H. Whiffen, Spectrochim. Acta, 16 (1960) 1409.
- 17 D.B. Scully and D.H. Whiffen, J. Mol. Spectrosc., 1 (1957) 257.
- 18 D.E. Freeman and I.G. Ross, Spectrochim. Acta, 16 (1960) 1393.
- 19 J.R. Scherer, J. Chem. Phys., 36 (1962) 3308.
- 20 E.P. Krainov, Opt. Spectroscopy, 16 (1964) 415.
- 21 N. Neto, M. Scrocco and S. Califano, Spectrochim. Acta, 22 (1966) 1981.
- 22 M. Suzuki, T. Yokoyama and M. Ito, Spectrochim. Acta, Part A, 24 (1968) 1091.
- 23 D.M. Hanson and A.R. Gee, J. Chem. Phys., 51 (1969) 5052.
- 24 F. Stenman, J. Chem. Phys., 54 (1971) 4217.
- 25 A. Karonen, J. Rasanen and F. Stenman, Commentat. Phys. Math. Soc. Sci. Fenn., 46 (1976) 69.
- 26 A. Karonen and F. Stenman, Commentat. Phys. Math. Soc. Sci. Fenn., 46 (1976) 85.
- 27 A. Bree and R.A. Kydd, Spectrochim. Acta, Part A, 26 (1970) 1791.

- 28 G.W. Chantry, A. Anderson and H.A. Gebbie, Spectrochim. Acta, 20 (1864) 1465.
- 29 G.C. Pimentel, A.L. McClellan, W.B. Person and O. Schnepp, J. Chem. Phys., 23 (1955) 234.
- 30 W.B. Person, G.C. Pimentel and O. Schnepp, J. Chem. Phys., 23 (1955) 230.
- 31 P.N. Prasad and R. Kopelman, J. Chem. Phys., 57 (1972) 856.
- 32 M. Hineno and H. Yoshinaga, Spectrochimica Acta, Part A, 31 (1975) 617.
- 33 J.P. McCullough, H.L. Finke, J.F. Messerly, S.S. Todd, T.C. Kincheloe and G. Waddington, J. Phys. Chem., 61 (1957) 1105.
- 34 R.J. Irving, J. Chem. Thermodyn., 4 (1972) 793.
- 35 E. Morawetz, J. Chem. Thermodyn., 4 (1972) 455.
- 36 R.J. Bradley and T.G. Cleasby, J. Chem. Soc., (1953) 1690.
- 37 T.K. Sherwood and H.S. Bryant, Jr. Can. J. Chem. Eng., 35 (1957) 51.
- 38 I.A. Gildenblatt, A.S. Furmanov and N.M. Zhavoronkov, Zh. Prikl. Khim., 33 (1960) 246.
- 39 G.A. Miller, J. Chem. Eng. Data, 3 (1963) 69.
- 40 N.V. Karyakin, I.B. Rabinovich and L.G. Pakhomov, Russ. J. Phys. Chem., 42 (1968) 9521.
- 41 L. Fowler, W.N. Trump and C.E. Voge, J. Chem. Eng. Data, 13 (1968) 209.
- 42 (a) L.G. Radchenko, Russ. J. Phys. Chem., 45 (1971) 747. (b) L.G. Radchenko and A.I. Kitaigorodskii, Russ. J. Phys. Chem., 48 (1974) 1595.
- 43 G.C. Sinke, J. Chem. Thermodyn., 6 (1974) 311.
- 44 D. Ambrose, I.J. Lawrenson and C.H.S. Sprake, J. Chem. Thermodyn., 7 (1975) 1173.
- 45 (a) D.L. Camin and F.D. Rossini, J. Phys. Chem., 59 (1955) 1173. (b) D.M. Speros and F.D. Rossini, J. Phys. Chem., 64 (1960) 1723.
- 46 (a) D.W. Cruikshank, Acta Crystallogr., 10 (1957) 504. (b) D.W. Cruikshank and R.A. Sparks, Proc. R. Soc. London, Ser. A, 258 (1961) 1056. (c) A. Almenningen, O. Bastiansen and F. Dyvik, Acta Crystallogr., 14 (1961) 1056.
- 47 J. Lielmezs and H.J. Vogt, Thermochim. Acta, 6 (1973) 27.
- 48 W.G. Fateley, I. Matsubara and R.E. Witkowski, Spectrochim. Acta. 20 (1964) 1461.
- 49 J.B. Butler and J. Lielmezs, J. Chem. Eng. Data, 14 (1969) 335.
- 50 R.E. Pennington and K.A. Kobe, J. Chem. Phys., 22 (1954) 1442.
- 51 R.C. Weast (Ed.), Handbook of Chemistry and Physics, CRC Press, Cleveland, 58th edn., 1977.