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Problems arise with the left-hand side 
integral 

F(T)=A f L(T) exp(--E/RT) dT 
l-0 

of this equation, i.e. the temperature 

(5) 

due to the unknown form of L(T). 
The simplest case is to presume L(T) = ao, which means a linear heating 

programme, but then F(T) will be expressed by an asymptotic series [5] and 
the result will always be approximate [ 5,6]. This is one of the reasons for 
the search for non-linear programmes. 

The second reason is that, during an experiment, some endothermic and/ 
or exothermic effects of the studied reaction cause deviation from linearity 
of the T(r) graph, and the mathematical model has to. represent them. We 
discuss here two of the ways to obtain F(T). 

(a) Assuming temperature programmes of the general form [7] 

L(T) =& CbiTi (6) 
i 

The problem, in this form, was studied 
From eqn. (6) he gets, by integration 

b- 
&=bJ++k-- ATi-1 

0 i#f i-l 

by Smutek for thermaI desorption. 

(7) 

where At = t - to and ATk = Tk - Z$ and aIs0 obtains F(T) for the general 
heating regime 

F(T) =f $ biTi [Eio - (%)i” .Eicx,,] 

where 

0 

E- C(X) = s t-’ evxt dt and x=E/RT. 
1 

For positive integer values of i and large values of 3c, Et<,> becomes 

e -X 
E o(x) =- 

X 

which allows us to write the exact solution of F(T) in the form 

F(T) = A f 5 biTi-’ exp(-E/RT) 
1 

(8) 

(9) 

(b) By generalization of a method earlier described by Marcu and Segal[2] 

F(T) = A 5 aiT’ exp(-E/R!Z’) 
i 

(16) 

This method selects from the beginning the solutions which fulfil the 
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condition of solving exactly eqn. (5). 
Noting 

Z(T) = 2 a,T’ 
f 

F(T) = f L(T) exp(-E/R!Z’) dT = AZ(T) exp(-E/RT) 
TO 

which, by derivation and substituting eqn. (4) for L(T) leads to 

(11) 

The integration of eqn. (12) using eqn. (11) give us the heating programmes 
as follows. 

( At=a, AT+ 

z 

+ CalAT’-’ 
i#l 

(13) 

Comparing eqn. (7) with eqn. (13), it is obvious that for small AT and 
ai(E/R) = bi the two equations give the same solution. 

With these results eqn. (lb) becomes 

1 - (1 - oLp--n 

A $ aiT’exp(-E/RT) = 
l-n 

for n # 1 

-ln(l -QI) for n = 1 
UC) 

which allows kinetic parameters to be determined. 
Using equation (lc) for 2 = 1, the kinetic parameters of Ca(COO)z - Hz0 

dehydration were determined. The results (n = 0.95; E = 24.5 kcal mole-‘; 
A = lo6 set-‘) are in good agreement with those found in the literature [I]. 
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Note 

DIFFERENCES BETWEEN EQUILIBRIUM PHASE TRANSFORMATION 
ENERGIES AT LIQUID =+ SOLID TRANSITION TEMPERATURES IN 
SATURATED POROUS MATERIALS 

LAWRENCE G. HOMSHAW * 

Station de Science du Sol, I.N.R.A., 78000 Versailles (France) 

(Received 22 April 1981) 

High resolution DSC curves [1 J monitoring reversible liquid * solid phase 
transformations within saturated porous materials occur over temperature 
ranges, the magnitudes of which depend upon the pore size distribution 
(PSD) within a particular sample [l-3]. Recent developments in design and 
modification of commercially available heat flow scanning microcalorimeters 
permit accurate quantification of the energy liberated or absorbed when 
liquids or solids change phase within an accurately known temperature inter- 
val. Thus with suitable experimental design such DSC curves (which are con- 
sidered to be envelopes corresponding to the summation of energy signals 
associated with phase transformations occurring over large temperature inter- 
vals) may be analyzed in differential elements [ 1.21. 

The lowering of phase transformation temperatures of adsorbates becomes 
more pronounced as pore size becomes smaller, as predicted by capillary 
condensation theory [5,6]. Experiment has shown that lowering of equilib- 
rium phase transformation temperature may be empirically related to pore 
size [ 2,7,8], and thus low temperature DSC curves may be used to determine 
wet PSD and the energy associated with phase transformations in pores of a 
particular size. 

Everett and Haynes [ 91 have noted that during a cooling and heating cycle 
a graph of the amount of solid present against temperature could show a 
hysteresis loop similar to that obtained in a drainage/wetting cycle. There 
will be hysteresis between freezing and melting temperatures within porous 
materials if interfacial curvatures during freezing and fusion are different [S, 

- 91. 
Ultrasonic measurements in concrete of various compositions and degrees 

of saturation have shown ice content hysteresis during freezing and thawing 
[lo]. Many other experimental data have also been published which show 
the presence of hysteresis between freezing and melting temperatures of 
water and ice in saturated porous materials (e.g. refs. 11 and 12). Providing 
suitable precautions are taken to avoid supercooling of water in pores [13], 
high resolution low temperature DSC may be used as a sensitive and power- 
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ful tool to investigate freezing/melting temperature hysteresis. Recently, a 
theory has been developed for the influence.of pore form on the equilibrium 
freezing and melting temperatures of water in porous materials [S] . This 
theory is supported by calorimetry which used the hysteresis between freez- 
ing and melting temperatures for water in two clays and never-dried poly- 
acrylonitrile fibres. Theoretical curves (analogous to de Boer’s 1141 nitrogen 
isotherm shape groups) have been presented to permit pore form to be 
assessed in water saturated porous materials containing pores which are 
either cylindrical, wedge shaped, slot shaped or lying between parallel planes 
(or combinations of these forms) [S] . 

In this short note the author wishes to draw particular attention to a con- 
clusion which does not appear to have been mentioned before in relation to 
experimental determination of phase transformation energy of liquids or 
solids within porous substances; namely, that when hysteresis exists between 
equilibrium freezing and melting temperatures of liquids or solids in saturated 
porous materials, the energy liberated when unit mass of liquid freezes in a 
saturated pore is not the same as the energy required to melt unit mass of 
solid in the same pore. 

To illustrate the magnitude of the difference between phase transforma- 
tion energies during freezing and melting we shall assume that water saturates 
a rigid porous region and that contraction of pore ice during melting results 
in melting of ice adjacent to the mouth of a pore (the ice expelled during 
freezing of the pore water) which then reenters the pore space as liquid 
water. Support for this assumption may be found in X-ray diffraction data 
obtained from studying migration of interlamellar water during freezing and 
thawing wet bentonites [15], and in calorimetric data measuring porosity 
and PSD in water saturated kaolinites [4]. 

ANALYSIS 

Let us consider a theoretical closed system involving only one pore filled 
with a mass, M, of water and surrounded by free water. Let the equivalent 
radius [16-181 of the pore be of such dimensions that equilibrium freezing 
of the pore water occurs at a temperature Z’f (Kelvin), and let the energy 
associated with this phase transformation at Tf be Lf energy units. The forces 
associated with the volume change accompanying the water + ice phase 
transformation are assumed to be dissipated by plastic flow of ice [S,lS] as 
this seems to be a reasonable interpretation of experimental data [l-4,8,21]. 

Let Tf be the temperature at which water * ice phase transformations 
take place when hysteresis is absent, and let T, be the temperature at which 
ice in the pore melts when temperature hysteresis between freezing and melt- 
ing does exist. We shall assume that when no hysteresis exists between freez- 
ing and melting temperatures, the magnitude of the amount of energy evolved 
during equilibrium freezing of unit mass of water in the pore is the same as’ 
the magnitude of the heat absorbed to melt unit mass of ice in the same 
pore. 

Let C, (2’) and Ci( 2’) refer to the specific. heats at constant pressure of 
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water or ice in the pore, respectively. Because the process is reversible, the 
amount of heat exchanged when cooling from, say, 280 to 200 K, is equal to 
the magnitude of the amount of heat absorbed when the system is warmed 
from 200 to 280 K. For&he case where no temperature hysteresis occurs, the 
amount of energy, absorbed during warming unit mass of pore ice 
through its melting po to280Kis 

E# = if Ci dT + Lf + j*’ Cw dT 
200 Tf 

(1) 

and E2y is equal in magnitude to the amount of heat exchanged during cool- 
ing of M e system from 280 to 200 K when Tf = T,. 

When hysteresis between freezing and melting temperatures occurs, the 
amomt of heat absorbed 
is Et2yL and 

Tm 

E@ = J 
280 

CtdT+Lm+ 
s 

C, dT (2) 
200 Tm 

during warming over the same temperature range 

When Tf f T,, the difference, (I& I - IL, I), between the magnitudes of 
the amount of heat liberated during equilibrium freezing and the amount of 
energy absorbed during equilibrium melting of unit mass of water or ice in 
the pore may be obtained from eqns. (1) and (2) 

(IL,1 - ILfl) = ST* Ci dT + f” C\v dT = jrn (Cw -Ci) dT 
Tm Tf Tf 

(3) 

Experience in subjecting a wide variety of water saturated porous materials 
to freezing and thawing cycles shows that the equilibrium lowering of freez- 
ing temperature is apparently always larger than or equal to the equilibrium 
lowering of melting temperature, i.e. Tf < T,. Making the reasonable assump- 
tion that the specific heat of pore water is greater than that of pore ice, 
(C, > C,), eqn. (3) shows that IL,1 > l&l when Tf < T,. In other words, 
more energy is absorbed when unit mass of ice melts at its melting point 
than the energy evolved when unit mass of water freezes (in the same pore) 
at its equilibrium freezing point when Tf < Tm. 

Experiments with an illite [Z] have shown that the lowest temperature for 
equilibrium freezing of pore water may be as low as 229.7 K, and theoretical 
considerations show that the ratio between the equilibrium freezing and 
melting temperatures of water or ice may be as large as 2 in certain pore 
forms [ 21. Equation (3) shows that for small pores of a particular form [ 81, 
the difference in magnitude between L, and Lf could be large enough to 
quantify using calorimetric investigations. If static calorimetry were used to 
measure Lf or L, of the pore water or ice at the transformation tempera- 
tures, an approximate value of (C, - Ci) in eqn. (3) could be obtained. 
However, if scanning calorimetry were used to monitor the phase transforma- 
tion energies, the area under the exothermic curve would be the same as the 
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area under the endothermic curve if a large temperature interval were chosen 
to define the baseline position, because the areas under the DSC curves 
are directly proportional (for a constant calibration function) to JM,C, dT, 
where M, is the mass and C, is the specific heat of the entire sample. There- 
fore DSC curves may be used to determine phase transition temperatures 
[20], porosity, pore form and PSD within rigid [4], swollen [3], swelling 
[ 211, mineral [4,21] or organic [l-3] water saturated porous materials, as 
long as the baselines of the DSC curves are correctly constructed. 

For the general case where we consider volume changes accompanying 
water G= ice phase transformations witbin porous materials, an additional 
term may be added to the right-hand side of eqn. (3) to account for a mass, 
AMi, of ice extruded from the pore to dissipate forces arising from the 
volume increase of water on freezing. If we assume that a mass of water 
AM, migrates into the pore during melting of pore ice and that fUI& = AM, 
and that the work done during movement of ice out of the pore during freez- 
ing is equal to the work done by water moving into the pore during melting 
of pore ice, then the aditional term to add to eqn. (3) is 

Tm 

I- AM, (Ci - Cc) dT (4) c 
l-f 

where, M is the mass of pore water freezing and where Cfi is the specific heat 
of free ice. Writing AM, 21 0.1 M, and Ci 2: C,, the contribution to eqn. (3) 
from eqn. (4) (with M = 1) would be almost negligible. A similar analysis 
applies mutatis mutandis when discussing the effect of temperature hysteresis 
on freezing and melting phase transformation energies for liquids which con- 
tract upon freezing (e.g. benzene). 

SUMMARY 

When hysteresis exists between the equilibrium temperature lowerings for 
freezing and melting of liquids or solids filling pores (in the absence of a 
vapour phase within the pores), the energy liberated during freezing of unit 
mass of pore liquid at its equilibrium freezing temperature is not the same as 
the magnitude of the energy required to melt unit mass of pore solid at its 
equilibrium melting temperature. The difference between the magnitudes of 
the two energy values (for a given ratio between the equilibrium temperature 
lowerings for freezing and melting) becomes more pronounced as the pore 
size diminishes. 

Calorimetric data obtained after monitoring phase transformations of 
adsorbates within porous materials could differ, depending upon whether 
static or dynamic (DSC) calorimetric. techniques were used to obtain the 
experimental data. 
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