THERMODYNAMIC FUNCTIONS FOR *n*-HALOGENATED HYDROCARBONS

J. LIELMEZS and T.K.C. NG

Department of Chemical Engineering, The University of British Columbia, Vancouver, B.C. (Canada)

(Received 7 January 1981)

ABSTRACT

Thermodynamic functions $[C_p^0, S^0, (H^0 - H_0^0)/T, -(F - H_0^0)/T]$ have been calculated for *n*-halogenated hydrocarbons, $n - C_m H_{2m+1} X$ (X = F, Cl, Br, I) in the ideal gas state at 1 atm pressure. The functions for the three lower members $(C_1 - C_3)$ of the series were determined by the statistical mechanical means treating the restricted internal rotational contribution by the Pitzer-Gwinn method. The applicability of CH₂-group increment values as obtained from *n*-alkanes to determine the thermodynamic function values for higher member *n*-alkyl halides was examined and a linear property increment equation was proposed to extend the thermodynamic property values for *n*-heptyl halides and higher. The agreement between the computed results and the available experimental data was found to be excellent

INTRODUCTION

The ideal gas state thermodynamic functions $[C_p^0, S^0, (H^0 - H_0^0)/T]$, and $-(F^0 - H_0^0)/T]$ have already been calculated at 1 atm pressure for lower members of the *n*-alkyl halide series [1-11] defined as $n \cdot C_m H_{2m+1} X$, where X = F, Cl, Br, I. However, recent structural and spectroscopic data [6-27] have made it possible to compare and re-assess these calculations; therefore, computations were performed for each successive member in the given series, from C₁ to C₃, inclusive *. Assuming that the interaction effects of the substituent halogen atoms become negligible only when there are more than seven carbon atoms in the straight paraffin chain [2-4; 28-32], modified CH₂-group increment values (obtained from differences of halogenated compounds, C₁-C₂ and C₂-C₃) were obtained, thus permitting to extend the calculated (C₁-C₃) thermodynamic function values from C₃ to C₇. Further extension, from C₇ to the next higher members of the *n*-alkyl halide series, has been made possible through the linear relation [3,4]

$$\Lambda_T = K_T + \Delta_T (n - 7) \tag{1}$$

where $\Lambda_T = any$ one of the thermodynamic properties, C_p^0 , $(H^0 - H_0^0)/T$, S^0 , and $(-F^0 - H_0^0)/T$, at given temperature T (K); $K_T = homologous$ series constant, or axial intercept; $\Delta_T =$ thermodynamic property per methylene group [3,4] for the given *n*-alkyl halide series; and n = number of carbon atoms

^{*} Because several references (Table 4) list calculation or measurements at 298.16 K (reference to the triple point of water, 273.16 K), we have also performed calculations at this temperature. Equation (2) would allow calculation to be made at 298.15 K.

Extrapolation constants for n-halogenated hydrocarbons [eqn. (1)]

(all values in cal g mole⁻¹ $^{\circ}$ K⁻¹)

Temp.	KT					Δ_{T}					
(v)	c"	Substituer	t halogens			ΔC_n	Substitu	ent halogei	JS		
		Ŀ	G	ñ	I		Ŀ	G	Br	I	Н
$\Lambda_{T'} = C_{\mathbf{p}}^{0}$											
298.16	C4	24.80	25.46	2586	26.18	$C_3 - C_4$	5.36	5.35	534	5.35	
	່ບ້	30.21	30.86	31.26	3159	C4-C5	541	5 40	5.40	5.41	
	ັບັ	35 65	36.30	36.70	37 04	$c_{s}-c_{6}$	5.44	544	5.44	5.45	
	່ບໍ	41.11	41.77	42.17	42.51	$c_{6}^{-}c_{7}^{-}$	5.46	5.47	5.47	547	
	ັບ	46.58	47.24	47.64	47 98	$C_n - C_{n+1}$ $n > 7$	5 47	5.47	5.47	5.47	5.47
400.00	C4	31.45	32.21	32.46	3280	$c_3 - c_4$	6 95	6.94	6.90	6.90	
	ິບັ	38.39	39 15	39.38	3972	C4-C5	6.94	6.94	692	6.92	
	່ບໍ	45.33	46.09	46.32	4666	$c_{s} - c_{b}$	6.94	694	6.94	6.94	
	°.	52.27	53.03	53.26	5360	$c_{6}^{-}c_{7}^{-}$	6.94	6.94	6.94	6.94	
	ັບ	59 29	59.97	60.02	60.54	$C_n - C_{n+1}$ $n \ge 7$	6.94	6.94	6.94	6.94	6.94
500.00	C4	37 27	38.05	38 22	38 56	$C_3 - C_4$	8.30	8.27	8.22	8.21	
	່ບ້	45.55	46.31	46.44	46.78	$c_4 - c_5$	8.28	8.26	8.22	8.22	
	ີ ບໍ	53.81	54 57	54.67	55.01	C, -C,	8.26	8.26	8.23	8.23	
	'ບ໌	62.07	62.82	62.91	63.25	$c_{6}-c_{7}$	8.26	8.25	8.24	8.24	
	ັບຶ	70.32	71.07	71.16	71.50	$C_n - C_{n+1}$ $n \ge 7$	8.25	8.25	8.25	8.25	8.25
600.009	C4	42.19	43.00	43.14	43.48	$C_3 - C_4$	9.42	9.42	9.39	9.39	
	ີບິ	51.58	52.39	52.51	52.85	$C_4 - C_5$	9.39	9.39	9.37	9.37	
	ບຶ	60.95	61.76	61.87	62.21	$c_{s}-c_{6}$	9.37	9.37	9.36	9.36	
	<u>ن</u>	70.29	71.10	71.22	71.56	C ₆ -C,	9.34	9.35	0.35	9.35	
	లో	79.63	80.44	80.56	80.90	$C_n - C_{n+1}$ $n \ge 7$	9.34	9.34	9.34	9.34	9.34
$\delta \Lambda_T = (H^c$	`-H_0)/'	Т									
298.16	C4	16.05	16.43	16 85	16.95	$C_{3}-C_{4}$	3.00	3.03	3.08	3.02	
	రో లి	19.22 22.49	19 61 22 88	20.07 23.37	20.15 23.42	C4-C2	3.17	3.18	3.22 3.30	3.20	
	ໍ່	01.97	20.11	10.01	11.04	02 CD	1		~~~~	1	

38

	Ċ,	25 81	26.20	26 69	2674	$C_{6}-C_{7}$	3.32	3.32	3.32	3.32	
	ີບຶ	29 14	29.53	30 02	30 07	$C_n - C_{n+1}$	3.33	3.33	3,33	3.33	3.33
						<i>n</i> ≥ 7					
400 00	C4	19.15	19.60	19.96	20.12	$C_3 - C_4$	3,82	3.82	3.84	3.82	
	ັບິ	23.06	23.54	23 92	24.06	C4-C5	3.94	3.94	3.96	3.94	
	ပိ	27.11	27.56	27 94	28.08	$c_{s}^{-}c_{b}$	4.02	4.02	4.02	4.02	
	5	31.16	31 61	31.99	32.13	C ₆ -C ₇	4.05	4.05	4.05	4.05	
	ပိ	35.22	35.67	36.05	3619	$C_n - C_{n+1}$	4.06	4.06	4.06	4.06	4.06
						$n \ge 7$					
500.00	C4	22 20	22.66	23.01	23.20	$C_3 - C_4$	4.57	4.52	4.55	4.50	
	ີບີ	26 89	27.29	27.68	27.80	$C_4 - C_5$	4.69	4.63	4.67	4.60	
	່ບໍ່	31.64	31.99	32 41	32.47	C, -C,	4.75	4.70	4.73	4.67	
	ິ ບົ	36.41	36.73	37.18	37.20	c, -c,	4.77	4.74	4.77	4.73	
	C ₈	41.18	41.50	41.95	41.97	$C_n - C_{n+1}$	4.77	477	4.77	4.77	4.77
						$l \ge n$					
600.009	C4	25.07	25.76	25.93	26.18	$c_3 - c_4$	5.22	5.35	5.22	5.22	
	C,	30.39	31.16	31.25	31.50	C4-C5	5 32	540	5.32	5.32	
	ູ່. ບໍ	35.78	36.60	36.64	36.89	c, c,	5.39	5.44	5.39	5.39	
	°ú	41.21	42.04	42 07	42.32	$c_{6}^{-}c_{7}^{-}$	5.43	5.44	5.43	5.43	
	ິບຶ	4645	47.48	47.51	47.76	$C_n - C_{n+1}$	5,44	5.44	5.44	5.44	5.44
						<i>n</i> ≥ 7					
$\Lambda_T = S^0$											
298 16	C4	83 14	85.81	88.72	90.40	$c_{3}-c_{4}$	9 68	9.68	9.68	9.58	
	ပံ	92.66	95.33	98.24	99.88	$C_{4}-C_{5}$	952	9.52	9.52	9.44	
	C,	10206	104.73	107.64	109.23	$c_{s}-c_{6}$	9.40	9.40	9.40	9.35	
	с,	111 37	114.04	11695	118.54	c,c,	9.31	9.31	$9\ 31$	9,31	
	C ₈	120.68	123.35	$126\ 26$	127.85	$C_n - C_{n+1}$	9.31	9.31	9.31	9.31	9.31
						n ≥ 7					
400.00	C4	91.48	94.21	97 23	99.08	$C_3 - C_4$	11.48	$11 \ 43$	11.48	11.43	
	c,	102.79	105.48	10854	11035	င္ရင္	11.31	11 27	11.31	11 27	
	ပိ	113.99	116.67	119.74	121.54	$c_{s}-c_{6}$	11 20	$11 \ 19$	11.20	11.19	
	c,	125.13	127.81	130.88	$132\ 68$	C, -C,	11 14	11 14	11.14	11.14	
	C ₈	136.25	138.93	142.00	143 80	$c_{n-c_{n+1}}$	11 12	11.12	$11 \ 12$	11 12	11.12
						n ≥ 7					
500.00	C4	99 22	102.03	105.04	106 95	$C_3 - C_4$	13 17	1310	13.10	13.05	
	ငိ	112 19	114.96	117.97	11985	$c_4 - c_5$	12.97	12.93	12.93	12 90	
	C,	125.05	127.81	$130\ 82$	132~78	ငးငဖ	1286	1285	1285	12.85	
	c,	137.87	140.63	14364	145.52	$c_{6}-c_{7}$	1282	1282	12.82	1282	
	C ₈	150 69	153.45	156.46	158 34	C,-C,+1	12.82	1282	12.82	$12\ 82$	1282
						<i>l.</i> ≷ u					

Temp.	K_T					Δ_{T}					
(v)	c_n	Substituen	t halogens			ΔC_n	Substitu	ent haloger	SI		
		Ŀ	cı	Br	I		E.	a	Bŗ.	I	Н
600.00	చిచిచిచి	106.94 121 97 136.43 150.84 165.25	109.91 124.94 139.40 153.81 168.22	112.94 127.97 142.43 156.86 171.25	114.91 129.91 144.35 158.76 173.17	C3 C4 C4 C5 C6 C6 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	15.19 15.03 14.46 14.41 14.41	15.19 15.03 14.46 14.41 14.41	15,19 15,03 14,46 14,41 14,41	15 14 15.00 14.44 14.41 14.41	14.41
$\Lambda_T = -(F^{\prime}$ 298.16	_H 0)/5 C ⁴ C ⁶ C ⁶ C ⁶	r 67.09 73.44 79.57 85.56	69.38 75.22 81.85 87.84	71.87 78 17 84.27 90.26	73.49 79.73 85.81 91.80	ာင္ရင္လင္ရင္ ၂၂၂၂၂ ၁၁၀၀၀	6.68 6.35 5.99 7.99	6.65 6.34 6.13 5.99	6,59 6,30 5,99 7 08	6.56 6.24 5.99 8.09	2 5 12
400.00	ు చేచ్చేర్లో	72.33 79.73 86.88 93.97 101.03	74.01 81.96 89.11 96.20 103.26	77.27 84.62 91.80 98.89 105.95	78.96 86.29 93.46 100.55 107.61		7.66 7.40 7.15 7.09 7.06	7.61 7.35 7.15 7.09 7.06	7.64 7.35 7.18 7.09 7.06	7.64 7.33 7.17 7.09 7.06	7.06
500.00	రిచిచిచిచి	77.02 85.30 93.41 101.46 109.51	79.37 87.67 95.82 103.90 111.95	82.03 90.29 98.41 106.46 114.51	83.75 92.05 100.23 108.32 116.37	္ သိုင္ရင္ကိုင္ရန္က ၂၂၂၂၂ ၂၂၂၂၂	8.60 8.28 8.11 8.05 8.05	8.58 8.30 8.15 8.08 8.03	8.55 8.12 8.12 8.05 8.05	8.55 8.30 8.18 8.09 8.05	8.05
600,00	င်င်င်ငံ	81.87 91.58 100.65 109.63 118.60	84.15 93.78 93.78 102.80 111 77 120.74	87.01 96.72 105.79 114.77 123.74	88 73 98.41 107.46 116.44 125.41	" ငိုင်ငိုင်ငံ " – ငိုင်ငိုင်ငံ " – ငိုင်ငိုင်ငံ	9.97 9.71 9.07 8.98 8.97	9.84 9.63 9.02 8.97 8.97	9.97 9.71 9.07 8.99 8.97	9.92 9.68 8.98 8.97	8.97

40

TABLE 1 (continued)

(per molecule) in a straight unbranched chain issuing from the functional group.

Equation (1) can be generalized for the multi-substituted *n*-alkyl halides. The constants needed for the application of eqn. (1) are given in Table 1. Several Λ_T —*n* relations are shown in Figs. 1 and 2. The internal rotational barrier contribution was treated by means of the Pitzer—Gwinn method [33-35].

The obtained results (calculated for C_1 and C_3 , Table 2) were fitted to give a constant polynomial of the form

$$\Lambda_T^* = a + bT + cT^2 + dT^3 + eT^4 \tag{2}$$

where Λ_T^* is any thermodynamic function calculated from C_1 to C_3 at temperature T (K). The constants a, b, c, d and e [eqn. (2)] were obtained using linear least squares curve fitting methods and are found in Table 3. Comparison of computed and experimental values has been made in Table 4. As seen,

Heat capacity, entropy, enthalpy function and free energy function for n-halogenated hydrocarbons, C_{1-3}

													1
Temp	n-Alkyl f	luorıdes		<i>n</i> -Alkyl c	chloudes		n-Alkyl b	romdes		n-Alkyl n	odides		
(v)	Methyl	Ethyl	n-Pìopyl	Methyl	Ethyl	n-Ptopyl	Methyl	Ethyl	<i>u</i> -Propyl	Methyl	Ethyl	n-Propyl	i I
Cp (cal g n	10le ⁻¹ K ⁻¹												1
298 16	8.96	14 21	19.43	9 74	14 97	20 11	10.14	$15\ 36$	20.52	10.54	15.62	20.83	
300 00	8.99	14.27	19.53	9.77	15.03	20.20	10 18	15.42	20,61	10.57	15.69	20.92	
350.00	973	16 00	22.04	10.63	16.80	22 77	11.06	1717	23.12	11.46	17.41	23.45	
400.00	10.56	17 71	24 50	11.51	18.54	25.27	11.94	18.87	25.56	12.33	19.08	25.90	
450.00	11.41	19 34	26.81	12.37	20.16	27 61	12.78	20.46	27.87	13.15	20.66	28.21	
500.00	12.26	20,86	28.97	13.19	21.65	29.78	13.56	21.93	30,00	13.92	22.10	30,35	
550.00	13.07	22.27	30.95	13.95	23.02	31.76	14.30	23.27	31,96	14.62	23.42	32.30	
600.00	13.84	23 56	32 77	1466	24.28	33.58	14.98	24.50	33.75	15.28	24.64	34.09	
650 00	14.56	2475	34 45	15.32	25.43	35.24	15.61	25.63	35,39	15.89	25.74	35.73	
700 00	15.23	25.85	36.00	1594	26.49	36.78	16.20	26.67	36,90	16.45	26.77	37.23	
750.00	15.87	26.87	37.44	16.51	27.47	38,19	1675	27.64	38,30	16.98	27.72	38.62	
800.00	16.46	27.82	38.78	17.05	28,38	39 49	17.27	28.53	39,60	17.48	28.60	39,90	
850 00	17.01	28.70	40.02	17.55	29.23	40.71	17.75	29.36	40.79	17.94	29.42	41.09	
00 006	17.53	29.52	41.17	18.02	30.02	41.83	18.20	30.13	41.91	18.38	30.18	42.20	
950.00	18.01	30.29	42.24	18.46	30.75	42.88	18.63	30.86	42,95	18.79	30,90	43.22	
1000.00	1845	31.00	43.25	18.87	31.43	43.85	19.02	31.53	43.91	19.17	31.56	44.17	
1050.00	18 87	31.66	44.18	19.26	32.07	4476	19 39	32.16	44.81	19.53	32.18	45,06	
1100.00	19.26	32 28	45.05	19.62	32.66	45.60	19.74	32.74	45.64	19.87	32.76	45.88	
1150.00	19.62	32.86	45.85	19.95	33.21	46.38	20.07	33.29	46.42	20.18	33.30	46.64	
1200.00	1996	33.39	46.61	20.27	33.73	47 11	20.37	33.80	47.14	20.48	33.81	47.35	
S° (cal g m	ole ⁻¹ K ⁻¹	~											
298.16	53.25	63.34	73.46	55.97	65.92	76.13	58.70	68.71	79.04	60.64	70.68	80,86	
300.00	53.50	63.43	73.58	56.03	66.01	76.25	58.76	68.81	79.16	60.70	70.77	80.98	
350.00	54.74	65.76	76.84	57.60	68.92	79.67	60.39	71.90	82,52	62.40	73.32	84.38	
400.00	56.10	68.00	80.01	59.08	71.11	82.79	61.93	73.95	85.75	63.98	75.75	87.65	
450.00	57.39	70.19	83.08	60.49	73.10	85.90	63.38	76.04	88.89	65.49	78.10	90.32	
500.00	58.63	72.30	86.05	61.83	75.30	88.93	64.77	78.27	91.94	66.91	80.35	93,90	
550.00	59.84	74 36	88.95	63,13	77.43	91.87	66.10	80.43	94,89	68.27	82,52	96.88	
600.00	61.01	76.35	91.75	64.37	79.49	94.72	67.37	82.50	97.75	69.57	84.61	99.77	
650.00	62.15	78.28	94.47	65.57	81 48	97.49	68.60	84.51	100.52	70.82	86.62	102.56	

700 00	63.25	80.16	97 10 00 ce	66 73 67 95	83 40 of 96	100 16	69 77 70 01	86 45 88 29	103.20	72.02	88.57 90.45	106.27 107 88
00,001	04 32 65 37	01.90	00 88 1 00 1 3	01 00 68 93	07.00 87.07	105 26	10 62	90 32	108.32	74 28	72.26	110.42
850 00	66.38	85.46	104 53	69 98	88 81	107 70	73 07	91,89	110.76	75.36	94.02	112.87
900.006	67.37	87.12	106 87	71 00	90.51	110.06	74.10	93.59	11312	76.39	95.73	115.26
950.00	68 33	88 73	109.13	71.98	92 15	112 36	75.09	95.24	$115 \ 42$	77.40	97.38	117.57
1000.00	69,27	90.31	111 34	72.94	9374	11459	76.06	96.84	11765	78.37	98.98	119.81
1050.00	70.18	91.84	113 48	73.87	95.29	116.75	77 00	98.39	119.81	79.32	100.53	121 99
1100.00	71.06	93.32	115.56	74 78	96 79	11885	77.91	06. 60	121.92	80.23	102.05	124.10
1150.00	71.93	04 77	117.59	75.66	98.26	12090	78.79	101 37	123.97	81.12	103.51	126.16
1200.00	72.77	96 18	11956	76 51	69 66	122.89	79.65	102.80	125.96	81,99	104.94	128.16
$(H^{0}-H_{0}^{0}))$	T (cal g me	ole-i K ⁻¹	(
298 16	8,12	10.29	$13\ 05$	8 35	10.63	13.40	8.51	1090	1376	8 67	11.11	13.93
300.00	8 13	10.31	13 09	8 36	10.66	13.45	8 52	10.93	13.80	8.68	11.14	13.98
350.00	8,30	11 00	14.19	8 62	11 41	14 59	8.82	11 70	1495	902	11.91	15.14
400.00	8.53	11 73	1533	8 93	12.19	1578	9.15	12 49	16.12	9.38	12.70	16.33
450.00	8.81	12.49	16.49	9.26	1299	16.96	9,51	13.29	17.30	9.75	13.50	17.52
500.00	9.11	13.25	17.63	9.61	13.78	18,14	9.87	14.08	18.46	10.13	14.29	18.70
550.00	9.43	14 01	1876	9 97	14.56	$19\ 29$	10 24	14.85	19.60	10.51	15,06	19.85
600.009	9.77	14.75	19.85	1034	$15\ 32$	20.41	10.61	15.61	20.71	10.88	15.81	20.96
650.00	10.11	15 47	20.91	10.69	16.05	2148	10.97	16.33	21.77	11.24	16.53	22.03
700.00	10.45	16.17	21 93	11 05	16.76	2252	11.32	17.04	22.80	11.59	17.23	23.07
750.00	10.79	16.85	22.92	11.39	17 45	2352	11.67	17.71	23.79	11.93	17.90	24.06
800.00	11.13	17 51	2386	11.73	18.10	2447	12.00	18 36	24.74	12.26	18.53	25.01
850.00	11.46	18.14	24 78	12.06	1873	25.39	12.33	18.98	25.64	12.58	19.15	2592
900.006	11 78	18 75	25.66	12.38	19.33	26.27	12.64	19 58	26.52	12.89	19.74	26.79
950 00	12.09	19 34	26.50	1268	19 92	27 12	12.94	20 15	27.35	13 19	20.31	27.63
1000 00	12 40	19 90	27 31	12.98	20.47	2793	13.24	2070	2815	13 48	20 85	28.43
1050 00	12 70	20.45	28 09	13.27	21.01	28 71	1352	21.23	28.92	13.76	21.38	29.20
1100.00	12 99	20.97	28 84	1355	21.52	2946	1380	2174	29.66	14.03	21.88	29.94
1150.00	13 27	21 48	29 56	13.83	$22\ 02$	30.17	14 06	22 23	30.38	14.29	22.37	30.64
1200.00	13.54	21 96	$30\ 26$	14.09	2250	30 86	14.32	22.71	31 07	14.55	22 84	31.33
-(F ⁰ H ⁶)/ <i>T</i> (cal g	mole ^{-t} K	-1)									
298 16	45 12	53 05	6041	47.62	55.29	6272	50 19	57 81	65 28	51.97	59,56	66.92
300,00	45.17	53.11	60 49	47.68	55.35	62.81	50.24	57.88	65.36	$52\ 02$	59.63	67.01
350 00	4644	54 75	$62 \ 65$	48.98	57 05	64.97	5158	59 62	67 57	53 38	61.41	69.23
400 00	47 56	$56\ 27$	64.67	5015	58 63	67 01	52.78	61 24	69 63	54.61	63.05	71 32
450.00	48 58	57 69	66 59	$51\ 22$	60 11	68.94	53 87	62.75	71 60	5573	64,59	73.30

LE 2 (continued)	
TAB	

	(commune)	·,											
Temp.	n-Alkyl f	luorides		<i>n</i> -Alkyl c	hlorides		n-Alkyl b	romides		n-Alkyl i	odides		
	Methyl	Ethyl	n-Propyl	Methyl	Ethyl	n-Propyl	Methyl	Ethyl	n-Propyl	Methyl	Ethyl	n-Propyl	
500.00	49.53	59,05	68.42	52.22	61 52	70.79	54.90	64.19	73.48	56.78	66.06	75.20	
550.00	50 41	60.35	70.19	53.15	62.87	72.59	55.85	65.57	75.29	57.76	67.45	77.03	
600.009	51.24	61.60	71.90	54,04	64.17	74.32	56.76	66.90	77.05	58.69	68.80	78.81	
650.00	52.04	62.81	73.56	54,88	65.42	76.01	57 62	68,18	78.75	59.58	70,09	80.53	
700.00	52.80	63.98	75.17	55.68	66.64	77.64	58.45	69.41	80.40	60.43	71.34	82.20	
750.00	53,53	65.12	7674	56.46	6782	79.23	59.24	70.61	82.01	61.24	72.55	83.83	
800.00	54.24	66.23	78.27	57.20	68.97	80.79	60.01	71.78	83.58	62.02	73.73	85.41	
850.00	54.93	67.31	7975	57.92	70.09	82.31	60.74	72.91	85.11	62.77	74.87	86.96	
900.006	55.59	68.37	81.21	58.62	71.17	83.79	61.46	74.01	86.60	63.50	75.98	88.46	
950.00	56.24	69.40	82.63	59.30	72.23	85.24	62.15	75.08	88.06	64.20	70.77	89.94	
1000.00	56.86	70.40	84.02	59,96	73.27	86.65	62.82	76,13	89.49	64.89	78.13	91.38	
1050.00	57.48	71.39	85.39	60,60	74.28	88.04	63.47	77.16	90.89	65.55	79.16	92.78	
1100.00	58.07	72.35	86.72	61.22	75.27	89.40	64.11	78.16	92.25	66.20	80.16	94.17	
1150.00	58.66	73.29	88.03	61.83	76.24	90.72	64.73	79.13	93.59	66.83	81.15	96.51	
1200.00	59,23	74.22	89.31	62.42	77.19	92.03	65.33	80,09	94,89	67.44	82.11	96.83	

Fig 2. Heat capacity of C_{1-10} n-alkyl halides. Compounds identified in Fig. 1.

the calculated values check closely with the available experimental and calculated values. Tables 5 and 6 present the values of the molecular parameters used to calculate thermodynamic functions.

CALCULATED THERMODYNAMIC FUNCTIONS

Methyl halides

Earlier calculations are summarized by Morgan and Lielmezs [3] and Rodgers et al. [6]. Their values are in excellent agreement with the measured quantities (Table 4) and the values of the complete tabulated thermodynamic functions given in this work (Table 2).

Ethyl halides

The agreement between the results presented (Table 2) and the values obtained either by experiment or by comparative calculations (Table 4) is quite satisfactory.

4	6	;

Calculated	constants a,	b, c	e, d	and	е	ın	eqn.	(2)
(all values	in cal g mole	-1 I	ζ-1)				

Compound		$b \times 10^{-1}$	$c \times 10^{-3}$	$d \times 10^{-6}$	e × 10 ⁻¹⁰
Fluoromethane Chloromethane Bromomethane Iodomethane	C5 17.0532 15.3945 15.2635 15.2090	-0.72936 -0.57348 -0.53478 -0.50165	0 21148 0 17964 0.17066 0.16276	0.20580 0.17999 0.17231 0.16544	0.68438 0.60961 0.58666 0.56588
Fluoroethane Chloroethane Bromoethane Iodoethane	1.187537 0.7981608 1.284856 1.70321	0.4987770 0.5740156 0.5744455 0.569216	$\begin{array}{c} -0.02059188\\ -0.03633131\\ -0.03808707\\ -0.038183\end{array}$	0.002754048 0.009935297 0.01193172 0.0122862	$\begin{array}{c} 0.03271143 \\ -0.003790807 \\ -0.01050440 \\ -0.0117390 \end{array}$
<i>n</i> -Fluoropropane <i>n</i> -Chloropropane <i>n</i> -Bromopropane <i>n</i> -Iodopropane	11 55458 11.36479 12.42056 12.46555	-0.007615089 0.04020452 0.007776432 0.02227305	0.1372143 0.1295581 0.1339901 0.1317055	-0.1633543 -0.1586420 -0.1615813 -0.1602511	0.5836946 0.5732860 0.5808061 0.5780222
	$(H^{\circ}-H^{\circ}_{0})/T$				
Fluoromethane Chloromethane Bromomethane Iodomethane	8.67196 7.84871 7.51583 7.22827	$\begin{array}{c} -0 \ 08399 \\ -0.03131 \\ -0 \ 00474 \\ 0.01998 \end{array}$	0.27889 0.20879 0.16698 0.12740	-0.21637 -0.17628 -0.14795 -0.12071	0.58752 0.50151 0.42921 0.35877
Fluoroethane Chloroethane Bromoethane Iodoethane	7.183535 6 830003 6.835320 6 92958	0 05205376 0.08701352 0 1029329 0 110683	0 2359418 0 1900651 0.1602114 0.144434	-0.2289460 -0.2037848 -0.1814993 -0.169608	0.6812940 0.6309140 0.5701419 0.538086
<i>n</i> -Fluoropropane <i>n</i> -Chloropropane <i>n</i> -Bromopropane <i>n</i> -Iodopropane	7.168521 7 167343 7.476758 7.460487	0 1507775 0.1656818 0.1698225 0.1794872	0 2205453 0 2110863 0.2001294 0.1869847	-0.2453040 -0.2460529 -0.2385566 -0.2293550	0.7541024 0.7691513 0.7535551 0.7256200

n-Propyl halides

. The agreement between the presently computed results (Table 2) and the available calculated literature values (Table 4) is satisfactory. Table 6 presents the molecular parameters used in calculations.

Proposed linear relationship

Figures 1 and 2 indicate the general validity eqn. (1) for *n*-alkyl halide series. In this work we have assumed that the various steric and electronic interaction effects of the substituent halogen atoms become negligible for n > 7, when

$$(\mathrm{d}\Delta_T/\mathrm{d}n)_{n>7}=0$$

The use of eqn. (1) subject to the restrain of eqn. (3) reflects this [2-4, 28-32,49,50] and so we tacitly assume that the slope is merely the thermo-

(3)

a	$b \times 10^{-1}$	$c \times 10^{-4}$	$d \times 10^{-7}$	$e \times 10^{-11}$
S° 43.1853 44.7241 46.7894 48.0919	0.39475 0.44602 0.47759 0.50843	-0.22499 -0.26769 -0.30573 -0.34394	0.12371 0.13679 0.15876 0 18157	-032652 -0.32938 -0.37910 -0.43250
47.90629	0.5658684	-0.1699914	0.02852108	0.003850687
49.36250	0.6166984	-0.2210476	0.05299568	0.04858181
51.52282	0.6491122	-0.2667166	0.08342156	0.1267479
53 06179	0.670977	-0.29803	0.104243	0.180020
51.84741	0 7884640	-0.2206871	0.02140197	0 05712388
54 25912	0.7942075	-0.2060806	0.003840408	0 1128569
56 79680	0.8136261	-0.2343692	0 02272479	0 06512881
58.30811	0.8267987	-0.2453127	0 02857433	0 04942982
$-(F^{\circ}-H_{0}^{\circ})/T$ 34.5132 36.8755 39 2738 40.8635	0.47875 0 47735 0.48231 -0 48847	-0.50392 -0 47647 -0.47268 -0.47138	0 34012 0.31307 0 30669 0.30232	-091420 -0.83090 -0.80823 -079141
40.72070	0 5139156	-0.4061777	0.2577147	-0.6860257
42 52806	0.5299368	-0.4116635	0.2572755	-0 6810716
44 68201	0.5464970	-0.4276128	0.2655273	-0.6987924
46 12625	0.560542	-0.44313	0.274521	-0 720215
44.67899	0 6376803	-0.4412144	0.2666861	-0 6969039
47 09183	0 628519	-0.4171442	0.2498656	-0.6561865
49 31972	0.6438237	-0.4345372	0.2613127	-0.6885150
50 84714	0.6473446	-0.4323736	0.2580034	-0.6764460

dynamic function per CH_2 -group increment for the given substituent atom [3,4]. It is of interest to note, however, that although statistical-mechanical justification for the use of this type of universal linear increment has already been made by Pitzer [51] (see also refs. 49 and 50), recently it has been asked [31,32,52] whether the incremental enthalpy of formation for the addition of a CH_2 -group to an existing alkyl carbon framework is independent of a terminal substituent atom. Indeed, Montgomery and Rossini [52] have found experimentally that the differences between the observed and extrapolated values of incremental enthalpy of formation for alkyl type carbon series can be related to the electronegativities of the constituent atoms of the terminal group. To what extent our proposed relations [eqn. (1), Table 2] are subject to this type of interaction, is a question worthy of further study.

Comparison of computed and experimental values

(All values in cal g mole⁻¹ K⁻¹)

Compound	Temp.	Experiment	al	Computed	
	(V)	C ^{to}	So	C ⁰	Sa
Methyl fluoride	298.16 400.00			8 96 [6], 8.94 [3], 8.96 (this work) 10.56 [6], 10.56 [3], 10.56 [5],	53.25 [6], 53.24 [3], 53.25 (this work) 56.09 [6], 56.08 [3], 56.10 [5],
	1000.00			10.56 (this work) 18.45 [6], 18.43 [3], 18.44 [5], 18 45 (this work)	56.10 (this work) 69.26 [6], 69.21 [3], 69.26 [5], 69.27 (this work)
Methyl chloride	248.96 298.16 400.00		54.27 [36] 55.94 [36]	9.74 [6,3], 9.73 [5], 9.74 (this work) 11 51 [6], 11.51 [3], 11.50 [5], 11.51	54.29 [6], 54.29 (this work) 55.81 [3], 55.99 [5], 55.97 (this work) 59.08 [6], 58.92 [3], 59.09 [5], 59.08
	1000,00			(this work) 18.87 [6], 18.86 [3], 18.86 [5], 18.87 (this work)	(this work) 72.94 [6], 70.83 [3], 72.93 [5], 72.94 (this work)
Methyl bromide	276.71 298.16 400.00		57.90 [37] 58.61 [37]	10.14 [1], 10.15 [3], 10.14 (this work) 11.92 [1], 11.94 [3], 11.94 (this work)	58.02 [9], 57.95 (this work) 58.82 [1], 58.82 [3], 58.70 (this work) 62.04 [1], 62.05 [3], 61.93 (this work)
Methyl iodide	298.16 298.16 400.00			19.01 [1], 19.01 [3], 19.02 (IIIS WORK) 10.55 [1], 10.55 [3], 10.54 (this work) 12.36 [1], 12.36 [3], 12.33 (this work) 19.20 [1], 19.19 [3], 19.17 (this work)	76.16 [1], 76.18 [3], 76.06 (fnis work) 60.47 [1], 60.47 [3], 60.64 (fhis work) 63.84 [3], 63.83 [1], 63.98 (fhis work) 78.24 [1], 78.24 [3], 78.37 (fhis work)
Ethyl fluoride	298.16 400.00 1000.00			13.73 [3], 14.21 [10], 14.21 (this work) 17.23 [3], 17.71 [10], 17.71 (this work) 31.43 [3], 31.00 [10], 31.00 (this work)	62.78 [3], 63.34 [10], 63.35 (this work) 67.30 [3], 68.00 [10], 68.01 (this work) 89.54 [3], 90.31 [10], 90.31 (this work)

Ethyl chloride	200.00 280.00	11.82 [38] 14.02 [38]		11 75 [7], 11.69 [4], 11.75 (this work) 14 33 [7] 14 14 [4] 14 33 (this work)	
	285.37		62 31 [39]		65.27 [7], 65.27 (this work)
	298,16		65.91 [39]	14.97 [7], 14 72 [3], 15.01 [2], 14.97 (this work)	65 91 [7], 65.93 [3], 65.99 [2], 65.92 (this work)
	315.15 500.00	157 [40]	74 7 [41] 76 8 [42]	15.50 [7], 15.50 (this work) 21 66 [7], 21.44 [3], 21.65 (this work)	75.30 [7], 75.17 [3], 75.35 [2], 75.30
	1000.00			31.85 [3], 31.45 [2], 31.43 [7], 31.43 (this work)	(una work) 93.67 [3], 93.83 [2], 93.74 [7], 93.74 (this work)
Ethyl bromide	298.16 400.00			15 42 [2], 15.19 [3], 15.36 (this work) 18.89 [11], 18 93 [2], 18 64 [3], 18.87 (this work)	68.80 [2], 68.94 [3], 68.71 (this work) 73.67 [11], 74.04 [2], 73.89 [3], 73.72 (this work)
	1000.00			31 53 [11], 31 56 [2], 31 96 [3], 31.53 (this work)	96.81 [11], 96.70 [2], 97.04 [3], 96.84 (this work)
Ethyl iodide	298 16 400.00 1000.00			15.47 [3], 15.62 (this work) 19.08 [11], 18.92 [3], 19.08 (this work) 31.56 [11], 32.07 [3], 31.56 (this work)	70.65 [13], 70.68 (this work) 75.71 [11], 75.68 [3], 75.75 (this work) 98.93 [11], 98.99 [3], 98.98 (this work)
<i>n</i> -Propyl fluoride	298 16 400.00 1000 00			19 02 [3], 19 43 (this work) 24 06 [3], 24.50 (this work) 44.62 [3], 43 25 (this work)	71.81 [3], 73.46 (this work) 78.10 [3], 80.01 (this work) 110.95 [3], 111.34 (this work)
<i>n</i> -Propyl chloride	298 16 400.00 1000 00			20.24 [2], 19 69 [3], 20.11 (this work) 25.36 [2], 24.84 [3], 25.27 (this work) 43.59 [2], 44 76 [3], 43.85 (this work)	76.27 [2], 75.90 [3], 76.13 (this work) 82.93 [2], 82.36 [3], 82.79 (this work) 114.55 [2], 114.18 [3], 114.59 (this work)
<i>n</i> -Propyl bromide	298.16 400.00 1000.00			20.66 [2], 20.11 [3], 20 52 (this work) 25.70 [2], 25 21 [3], 25.56 (this work) 43 70 [2], 44 30 [3], 43.91 (this work)	79.08 [2], 79.29 [3], 79.04 (this work) 85.85 [2], 85.94 [3], 85.75 (this work) 118.11 [2], 117.94 [3], 117.65 (this work)
<i>n-</i> Propyl iodıde	298.16 400.00 1000 00			20 60 [3], 20.83 (this work) 25.68 [3] 25 90 (this work) 44.33 [3], 44 17 (this work)	79.43 [3], 80 86 (this work) 86.20 [3], 87.65 (this work) 119.17 [3], 119.81 (this work)

TABLE	5
-------	---

Molecular parameters	for	methyl	and	ethyl	halides
----------------------	-----	--------	-----	-------	---------

Methyl fluoride ^a	Methyl chloride	Methyl bromide ^a	Methyl iodide ^a
Fundamental frequencies, v	(cm ⁻¹)		<u> </u>
1049, 1182, 1182, 1462, 1467, 1467, 2930, 3006, 3006	732, 1017, 1017, 1355, 1452, 1452, 2937, 3039, 3039	611, 955, 955, 1306, 1443, 1443, 2935, 3056, 3056	533, 882, 882, 1251, 1436, 1436, 2933, 3060, 3060
Principal moment of inertia 5.9373 × 10 ⁻¹¹⁷ [6]	product (g ³ cm ⁶) 21.155 × 10 ⁻¹¹⁷ [6]	39.5675 × 10 ^{−117} [43]	65.9376 × 10 ⁻¹¹⁷ [14]
Reduced moment of inertia	of CH_3 -group (g cm^2)		
Barrier to internal rotation,	CH3-group (cal g mole ⁻	¹)	
Symmetry number, 0 3 [3]	3 [12]	3 [12]	1 [12]
Molecular weight 34 0334	50.488	94 944	141 939

^a The gas phase assignments were taken from Shimanouchi [12].

^b In general the frequency values adopted were taken from Durig et al. [23] Other changes or additions made are noted in separate footnotes.

Accuracy

Generally, the calculated thermodynamic functions for methyl and ethyl halides are expected to be highly accurate [6,7,11] (Tables 4 and 5) because of the availability of reliable vibrational frequencies and molecular parameters (Table 5).

The calculated thermodynamic functions for *n*-propyl halides, especially *n*-propyl fluoride, are expected to be less accurate than their ethyl halide counterparts because of the corrections required for two internal rotations and the uncertainties in the frequency assignments (Table 6). However, the availability of recent and reliable vibrational data and molecular parameters permits us to suggest (even if experimental data are not available to substantiate these estimates) that the uncertainties in the calculated thermodynamic function values of *n*-propyl halides are roughly $\pm 1.5\%$ for *n*-fluoropropane and most ± 1.0 for chloro, bromo, and iodo-propane at low to moderate temperatures. At temperatures in excess of 1000 K, the total errors could be as high as $\pm 3\%$, especially due to the neglected anharmonicity

Ethyl fluoride ^a	Ethyl chloride ^a	Ethyl bromide ^a	Ethyl 10dide ^b
243, 415, 810, 880, 1048, 1048, 1108, 1277, 1365, 1395, 1449, 1449, 1479, 2915, 2941, 3003, 3003, 3003	251, 336, 677, 786, 974, 974, 1081, 1251, 1289, 1385, 1448, 1448, 1463, 2881, 2946, 2967, 2986, 3014	247, 290, 583, 770, 964, 964, 1061, 1248, 1252, 1386, 1451, 1451, 1451, 2880, 2937, 2988, 2988, 3018	230 c, 258, 511 d, 741, 954 d, 1049, 1054, 1201, 1207 d, 1382 d, 1429, 1447, 1462, 2931 d, 2973, 2986, 2989, 3025
212.72 × 10 ⁻¹¹⁷ [20]	699.66 × 10 ⁻¹¹⁷ [7]	1492×10 ⁻¹¹⁷ [44]	5456.83 × 10 ^{−117} [3]
4.333 × 10 ⁻⁴⁰ [20]	4.615×10^{-40} [7]	4.917×10^{-40} [2]	5.03×10^{-40} [3]
3306 [8]	3691 [7]	3684 [16]	3660 [22]
1 [12]	1 [12]	1 [12]	1 [3]
48 060	64.515	101.971	155.966

^c The torsional frequency value taken from Morgan and Lielmezs [3].

d Proposed values, this work.

effects [53]. In view of our corrected input data *, it is felt that the overall accuracy of the presented thermodynamic function values [eqn. (1), Table 2] for the higher order (C₄ and higher) alkyl halides may well be within the range of the experimental certainty.

ACKNOWLEDGEMENTS

The financial assistance of Natural Sciences and Engineering Research Council of Canada and the University of British Columbia Research Grant is gratefully acknowledged. Thanks are expressed to H. Aleman and F. Bennett, Jr. for some of the calculations.

^{*} In order to obtain the proposed linear relation [eqn. (1)] we first used the calculated alkyl halide (C_1-C_3) values, Table 1, while the higher order (C_4-C_7) alkyl halide methylene group increment values (Table 2) were obtained taking into account the possible halogen atom electrostatic and steric substitution effects.

Molecular parameters for n-propy	yl haltdes		
n-Propyl fluorde a	n-Propyl chloride ^b	n-Propyl bromide c	n-Propyl 10dide d
Fundamental frequencies, v (cm ⁻ Trans-form 98, 211, 266, 374, 747, 856, 923, 1006, 1055, 1077, 1157, 1187, 1926, 1375, 1395, 1410, 1450, 1455, 1465, 1470, 2950, 2950, 2950, 2950, 2950, 2950,	'') 130, 212 e, 242, 364, 743 f, 745 f, 861, 903, 1032, 1079, 1108, 1212, 1258, 1300 h, 1335, 1389, 1441, 1450, 1467, 1464, 2870 t, 2870 t, 2870 t, 2950 t, 2950 t, 2950 t, 2950 t	122, 217, 223 J, 311, 660, 752, 848, 895, 1033 k, 1033 k, 1099 l, 1213 l, 1217, 1296, 1340, 1383, 1443, 1461, 1461, 1464, 2900 l, 2960 l, 2960 l, 2960 l, 2960 l, 2960 l,	116, 197, 203 o, 285, 602, 726 P, 823, 895, 1013, 1024, 1089, 1185, 1185, 1291, 1332, 1383, 1428 q, 1443, 1458, 1460 q, 2900 r, 2900 r, 2960 r, 2960 r, 2960 r, 2960 r,
Gauche-form 161, 302, 323, 478, 802, 856, 923, 970, 1003, 1007, 1157, 1187, 1296, 1375, 1395, 1410, 1450, 1455, 1465, 1470, 2950, 2950, 2950, 2950, 2950, 2950, 2950	130, 207, 288, 422, 663, 793, 857, 898, 1042, 1067, 1108, 1212, 1258, 1307, 1352, 1389, 1431, 1450, 1457, 1464, 2870 ¹ , 2870 ¹ , 2870 ¹ , 2950 ¹ , 2950 ¹ , 2950 ¹ , 2950 ¹	127 m, 298, 268, 401, 572, 780, 836, 883, 1033 n, 1033 n, 1085 n, 1200, 1236, 1288, 1348, 1393, 1443, 1451, 1451, 1464, 2900 i, 2960 i, 2960 i, 2960 i, 2960 i, 2960 i, 2960 i	90 °, 189, 256, 388, 518, 765, 812, 880, 1013, 1035, 1076, 1195 ^t , 1195 ^t , 1279, 1343, 1383, 1435, 1438, 1443, 1460 u, 2900 r, 2900 r, 2900 r, 2960 r, 2960 r, 2960 r, 2960 r
Pruicipal moment of inertia prod Trans-form	uct (g ³ cm ⁶) 1002	[[1]] []] [] [] [] [] [] [] [] [] [] [] []	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1663.240 × 10 ¹¹⁷ [10] <i>Gauche-form</i> 1866 100 × 10 ⁻¹¹⁷ [18]	[11] 01 × 21 10721	[11] OLALATIC	[111] OL A D. A. B.
Energy of isomerization, $\Delta E_{\rm lso}$ (-470.0 [18] Internal rotational barrier (methy	cal g mole ⁻¹) -50.0 [17] v ^l rotating group) (cal g mole ⁻¹)	190 0 [15]	290 0 [17]
1 rans-torm 2690 0 [18] Gaude form	2780.0 [17]	2360.0 [17]	2470.0 [17]
2870 0 [18]	2960 0 [17]	2650 0 [17]	2770 0 [17]
Reduced moments of mertia (me Transform	thyl 1 otating group) (g cm²)		
5,303 × 10 ⁻⁴⁰ [18]	4 591 × 10 ⁻⁴⁰ [17]	4 594 × 10 ⁻⁴⁰ [17]	4 602 x 10 ⁴⁰ [17]
сансис-толи. 5 303 x 10 ⁻⁴⁰ [18]	5 198 x 10 ⁻⁴⁰ [17]	5 248 × 10 ⁻⁴⁰ [17]	5 275 x 10 ⁻⁴⁰ [17]

52

Trans-form $3610.0 [17]$ 2910.0^{V} $3610.0 [17]$ 2910.0^{V} $3860.0 [17]$ $3360.0 [17]$ $4240.0 [17]$ $3360.0 [17]$ $4240.0 [17]$ $3360.0 [17]$ $4240.0 [17]$ $3360.0 [17]$ 21.670×10^{-40} 15.291×10^{-40} $[17]$ 21.670×10^{-40} 21.670×10^{-40} 591×10^{-40} $[17]$ 21.380×10^{-40} 591×10^{-40} $[17]$ 21.380×10^{-40} 591×10^{-40} 10^{-40} $15 291 \times 10^{-40}$ 10^{-40} 11^{O} 21.380×10^{-40} 11^{O} 12^{O} 11^{O}] 3680] 4650 $oup) (g cm^2)$ 4650 $oup) (g cm^2)$ $24 41$ $0^{-40} [17]$ $25,38$ $0^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $25,38$ $1^{-40} [17]$ $1^{-40} [$	0 [17] 0 [17] 0 × 10 ⁻⁴⁰ [17] 0 × 10 ⁻⁴⁰ [17] 0 × 10 ⁻⁴⁰ [17] for this work. for this work. for this work. for this work. for this work. for the form th	4070.0 [17] 5200.0 [17] 26 650 × 10 ⁻⁴⁰ [17] 28.320 × 10 ⁻⁴⁰ [17] 1 1 1 1 1 69.993 n the gas state assignments of Ogawa et he gas state assignments of Ogawa et al. Ogawa et al [13], Since no CH-stretch of Other changes or additions made are
Gauche-form $4240.0 [17]$ $3360.0 [17]$ $4240.0 [17]$ $Reduced$ moments of mertia (ethyl rotating group) $Trans-form$ $17rans-form$ 15.291×10^{-40} w 21.670×10^{-40} 591×10^{-40} [17] 21.380×10^{-40} 81 metry number, σ 1 1 N umber of minima per revolution of rotating top 3 4 3 4 3 4	1 4650 $oup)$ (g cm^2) 24 41 0^{-40} [17] 24 41 0^{-40} [17] $25,39$ 0^{-40} [17] $25,32$ 1 2 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 <	 0 [17] 0 × 10⁻⁴⁰ [17] 0 × 10⁻⁴⁰ [17] 0 × 10⁻⁴⁰ [17] for this work. for this work. for this work. for this work. for the taken from the pyl lodide were taken from taken	5200.0 [17] 26 650 × 10 ⁻⁴⁰ [17] 28.320 × 10 ⁻⁴⁰ [17] 28.320 × 10 ⁻⁴⁰ [17] 1 1 1 1 169.993 169.993 169.993 n the gas state assignments of Ogawa et al. Ogawa et al [13]. Since no CH-stretch of Other changes or additions made are
Reduced moments of mertia (ethyl rotating group) Trans-form 15.291 × 10 ⁻⁴⁰ w $21,670 \times 10^{-40}$ Gauche-form 15 291 × 10 ⁻⁴⁰ [17] $21,380 \times 10^{-40}$ Symmetry number, σ 1 Number of minima per revolution of rotating top 3 Molecular weight 78,543 a Liquid state assignments used by Morgan and Lik b In general, frequency values for both the <i>trans</i> - al. [13]. In separate footnotes we note changes or add d In general, the quencies of both isomers, tran assignment is available for <i>n</i> -iodopropane, the con noted in separate footnotes.	$(oup) (g cm^2)$ $0^{-40} [17] 24 41$ $0^{-40} [17] 25.39$ $0^{-40} [17] 25.39$ 1 1 1 123.(1	.0 x 10 ⁻⁴⁰ [17] 0 x 10 ⁻⁴⁰ [17] 0 x 10 ⁻⁴⁰ [17] for this work. for this work. for this work. for this work. for the from the from the form the	26 650 × 10 ⁻⁴⁰ [17] 28.320 × 10 ⁻⁴⁰ [17] 1 3 169.993 169.993 n the gas state assignments of Ogawa et he gas state assignments of Ogawa et al. Ogawa et al [13]. Since no CH-stretch of Other changes or additions made are
Trans-form Trans-form 15.291 × 10 ⁻⁴⁰ w 21.670 × 10 ⁻⁴⁰ <i>Gauche-form</i> 21.380 × 10 ⁻⁴⁰ 15 291 × 10 ⁻⁴⁰ [17] 21.380 × 10 ⁻⁴⁰ Symmetry number, σ 1 Number of number, σ 1 Number of numma per revolution of rolating top 3 Molecular weight 78.543 Molecular weight 78.543 a Liquid state assignments used by Morgan and Lie 1 a Liquid state assignments used by Morgan and Lie 1 a Liquid state assignments used by Morgan and Lie 1 a Liquid state assignments used by Morgan and Lie 1 a Liquid state assignments used by Morgan and Lie 1 a Liquid state assignments used by Morgan and Lie 1 a Liquid state assignments used by Morgan and Lie 1 a Liquid state assignments used by Morgan and Lie 1 a Liquid state assignments used by Morgan and Lie 1 a Liquid state assignments used by Morgan and Lie 1 a Liquid state assignments used by Norgan and Lie 1 a Liquid state assignments used by Norgan and Lie 1 a Liquid state assignments used by noth is transit 1	0^{-40} [17] 24 41 0^{-40} [17] 25.39 0^{-40} [17] 25.39 1 1 1 1 1 1 1 1 1 1	0 x 10 ⁻⁴⁰ [17] 0 x 10 ⁻⁴⁰ [17] 00 x 10 ⁻⁴⁰ [17] for this work. for this work. arate footnotes. i bromide were taken from the pyl lodide were taken from the pyl	26 650 × 10 ⁻⁴⁰ [17] 28.320 × 10 ⁻⁴⁰ [17] 1 3 169.993 169.993 n the gas state assignments of Ogawa et he gas state assignments of Ogawa et al. Ogawa et al [13]. Since no CH-stretch of Other changes or additions made are
Gauche-form15 291×10^{-40} 17 21.380×10^{-40} Symmetry number, σ 1 Number of mumber, σ 1 Number of muma per revolution of rolating top3 3 Molecular weight 78.543 $Molecular weight$ 78.543 $Molecular weight78.543Molecular weight78.543$	0 ⁻⁴⁰ [17] 25,39 10 <i>p</i> 11 123.(123	0 x 10 ⁻⁴⁰ [17] 00 for this work. arate footnote were taken fron arate footnotes. i bromide were taken from t pyl iodide were taken from to for 1-bromopropane were use	28.320 × 10 ⁻⁴⁰ [17] 1 3 169.993 n the gas state assignments of Ogawa et he gas state assignments of Ogawa et al. Ogawa et al [13]. Since no CH-stretch of Other changes or additions made are
Symmetry number, σ 1 1 Number of muma per revolution of rotating top 3 Notecular weight 3 4 Molecular weight 78.543 62.807 78.543 62.807 78.543 a Liquid state assignments used by Morgan and Lie b In general, frequency values for both the <i>trans</i> - al. [13]. Frequencies added or changes made in ass c Again, in general, frequency values for trans- and [13]. In separate footnotes we note changes or add d In general, the frequencies of both isomers, tran assignment is available for <i>n</i> -todopropane, the con noted in separate footnotes.	1 1 top 3 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.6 123.7 123.6 123.6 123.6 123.7 123.6 123.7 123.6 123.7 123.6 123.7 123.6 123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7	000 for this work. ropylchloride were taken fron arate footnotes. A bromide were taken from t pyl iodide were taken from (or 1-bromopropane were use	1 3 169.993 n the gas state assignments of Ogawa et he gas state assignments of Ogawa et al. Ogawa et al [13]. Since no CH-stretch of Other changes or additions made are
Number of mnima per revolution of rotating top 3 Molecular weight 78.543 62.807 78.543 a Liquid state assignments used by Morgan and Lie b In general, frequency values for both the <i>trans</i> - al. [13]. Frequencies added or changes made in ass c Again, in general, frequency values for <i>trans</i> - and [13]. In separate footnotes we note changes or add d In general, the frequencies of both isomers, <i>tran</i> assignment is available for <i>n</i> -iodopropane, the con noted in separate footnotes.	top 3 123.(123.(d Lielmezs [3] were adopted n-p rans- and gauche-forms of n-prop n-prop n assignments are noted in set n-prop rans- and gauche-forms of n-prop n-prop r trans- and gauche- orms of n-prop n-prop e corresponding assignments assignments assignment of Brown and Sh assignment	000 for this work. ropylchloride were taken fror arate footnotes. A bromide were taken from t pyl iodide were taken from (for 1-bromopropane were use	3 169.993 n the gas state assignments of Ogawa et he gas state assignments of Ogawa et al. Ogawa et al [13]. Since no CH-stretch cd. Other changes or additions made are
Molecular weight78.54362.80778.54362.80778.543a Liquid state assignments used by Morgan and Lie b In general, frequency values for both the <i>trans</i> - al. [13]. Frequencies added or changes made in ass c Again, in general, frequency values for <i>trans</i> - and [13]. In separate footnotes we note changes or add d In general, the frequencies of both isomers, <i>tran</i> assignment is available for <i>n</i> -todopropane, the con noted in separate footnotes.	123.(d Lielmezs [3] were adopted rans- and gauche-forms of n-p in assignments are noted in sej er and gauche-forms of n-prop or additions made. i, trans- and gauche-, of n-pro e corresponding assignments e assignment of Brown and Sh apare with gas state assignmen	000 for this work. ropylchloride were taken fron aarate footnotes. A bromide were taken from t pyl iodide were taken from (for 1-bromopropane were use	169.993 n the gas state assignments of Ogawa et he gas state assignments of Ogawa et al. Ogawa et al [13]. Since no CH-stretch of Other changes or additions made are
a Luquid state assignments used by Morgan and Lie b In general, frequency values for both the <i>trans</i> - al. [13]. Frequencies added or changes made in ass c Again, in general, frequency values for <i>trans</i> - and [13]. In separate footnotes we note changes or add d In general, the frequencies of both isomers, <i>tran</i> assignment is available for <i>n</i> -iodopropane, the connoted in separate footnotes.	d Lielmers [3] were adopted rans- and gauche-forms of n -p in assignments are noted in sej - and gauche-forms of n -propy r additions made. , trans- and gauche-, of n -pro e corresponding assignments = assignment of Brown and Sh apare with gas state assignmen	for this work. ropylchloride were taken fron parate footnotes. A bromide were taken from the pyl iodide were taken from for 1-bromopropane were use	n the gas state assignments of Ogawa et he gas state assignments of Ogawa et al. Ogawa et al [13]. Since no CH-stretch ed. Other changes or additions made are
e This value was adopted from the liquid state assi f This value has been adopted, this work Compare g This value has been adopted, this work. h This is liquid state adopted, this work. h This is liquid state assignment, see Ogawa et al. [1 The CH-stretch assignment was taken from Kom J This value was adopted (liquid state) from Brown k This corresponding gas state assignment was take I This is liquid state assignment was take This sourcesponding gas state assignment was take This sourcesponding gas state assignment was take This C_2H_5 torsion for gauche-1-bromo-propane n These gas state assignments were taken from Koi o This value taken from Brown and Sheppard [45] p Liquid phase assignments r Values taken from the corresponding assignment s This C_2H_5 torsion value adopted from Morgan ai t This value taken from the liquid state assignment u Liquid phase assignment.	al. [13]. Komaki et al. [46] work. Srown and Sheppard's work [i taken from Komakı et al. wo ane was adopted from Radch n Komakı et al. [46]. [45] liqud state assignments [45] liqud state assignments [46] liqud state as	eppard [5]. ts made by Komaki et al [46 ts]. tk [46]. ffe and Wood [17]. ane. d [45]. and Lielmezs [48].	,

REFERENCES

- 1 E. Gelles and K.S. Pitzer, J. Am. Chem. Soc., 75 (1953) 5259.
- 2 J.H. Green and D.J. Holden, J. Chem. Soc., (1962) 1974.
- 3 J.P. Morgan and J. Lielmezs, Ind. Eng. Chem., Fundam., 4 (1965) 383.
- 4 H. Kennedy and J. Lielmezs, Ind. Eng. Chem., Fundam., 6 (1967) 310.
- 5 Joint Army, Navy and Air Force (JANAF) Thermochemical Tables, NSRDS-NBS, 1971, p. 37.
- 6 A.S. Rodgers, J. Chao, R.C. Wilhoit and J.B. Zwolinski, J. Phys. Chem. Ref. Data, 3 (1974) 117.
- 7 J. Chao, A.S. Rodgers, R.C. Wilhoit and B.J. Zwolinski, J. Phys. Chem. Ref. Data, 3 (1974) 141.
- 8 S.S. Chen, A.S. Rodgers, J. Chao, R.C. Wilhoit and B.J. Zwolinski, J. Phys. Chem. Ref. Data, 4 (1975) 441.
- 9 S A. Kudchadker and A.P. Kudchadker, J. Phys. Chem. Ref. Data, 4 (1975) 457.
- 10 S.S. Chen, R.C. Wilhoit and B.J. Zwolinski, J. Phys. Chem. Ref. Data, 5 (1976) 571.
- 11 S.A. Kudchadker and A.P. Kudchadker, J. Phys. Chem. Ref. Data, 8 (1979) 519.
- 12 T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Vol. 1, NSRDS-NBS, 1972, p. 39.
- 13 T Ogawa, S. Imazeki, H. Yamaguchi, H. Matsuura, I. Harada and T. Shimanouchi, Bull. Chem. Soc. Jpn., 51 (1978) 51.
- 14 H. Matsuura and J. Overend, J. Chem. Phys., 56 (1972) 5725.
- 15 M.W Anderson, J.A. Taylor and C.T. Walker, J. Chem. Phys., 64 (1976) 2695.
- 16 C. Flanagan and L. Pierce, J. Chem. Phys., 38 (1963) 2963.
- 17 K. Radcliffe and J.L. Wood, Proc. Faraday Soc., 62 (1966) 1679.
- 18 E. Hirota, J. Chem. Phys., 37 (1962) 283.
- 19 R.H. Schwendeman and G.D. Jacobs, J. Chem. Phys , 36 (1962) 1245.
- 20 L. Nygaard, Spectrochim. Acta, 22 (1966) 1961.
- 21 J.R. Durig, C.M. Player and J. Bragin, J. Chem. Phys., 54 (1971) 460.
- 22 J.R. Dürig, W.E. Bucy, L.A. Carreira and C.J. Wurrey, J. Chem. Phys., 60 (1974) 1754
- J.R. Durig, J.W. Thompson. V.W. Thyagesan and J.D. Witt, J. Mol. Struct., 24 (1975) 41.
- 24 G A. Crowder, J. Mol. Spectrosc., 48 (1973) 467.
- 25 S Suzuki, J.L. Bribes and R. Goafres, J. Mol. Spectrosc., 47 (1973) 118.
- 26 R. Goafres and M. Bejand-Bianchi, Spectrochim. Acta, Part A, 27 (1971) 2249.
- 27 F. Winther and D.O. Hummel, Spectrochim. Acta, Part A, 25 (1969) 425.
- 28 W B. Person and G.C. Pimentel, J. Am. Chem. Soc., 75 (1953) 532.
- 29 H.J Bernstein, J. Chem. Phys., 19 (1951) 140.
- 30 S.M. Binder, J. Am. Chem. Soc., 97 (1975) 978.
- 31 P. Sellers, G. Stridh and S. Sunner, J. Chem. Eng. Data, 23 (1978) 250.
- 32 S. Sunner, J. Chem. Thermodyn., 12 (1980) 505.
- 33 K.S. Pitzer and W.D. Gwinn, J. Chem. Phys., 16 (1980) 505.
- 34 K.S. Pitzer, Quantum Chemistry, Prentice-Hall, Englewood Cliffs, NJ, 1953.
- 35 K.S. Pitzer and L. Brewer, Thermodynamics, McGraw-Hill, New York, 2nd end., 1961.
- 36 G.H. Messerly and J.G. Aston, J. Am. Chem. Soc., 62 (1940) 886.
- 37 C.J. Egan and J.D. Kemp, J. Am. Chem. Soc., 60 (1938) 2097.
- 38 A Eucken and E.U. Franck, Z. Elektrochem., 52 (1948) 195.
- 39 J. Gordon and W.F. Giauque, J. Am. Chem. Soc., 70 (1948) 1506.
- 40 M. Senftleben and H. Gladisch, Z. Phys., 125 (1949) 683.
- 41 M.R. Lane, J.W. Linnett and H.G. Oswin, Proc. R. Soc. London, Ser. A. 216 (1953) 361
- 42 K.E Howlett, J. Chem. Soc., (1955) 1784.
- 43 C.C. Costain, J. Chem. Phys., 29 (1958) 864.
- 44 W.H. Bennett and C.F. Meyer, Phys. Rev., 32 (1978) 888.
- 45 J.K. Brown and N. Sheppard, Proc. Faraday Soc., 50 (1954) 1164.

- 46 C. Komaki, I. Ichishima, K. Kuratani, T. Shimanouchi and S. Mizushima, Bull. Chem. Soc. Jpn., 28 (1955) 330.
- 47 J. Lielmezs and J.P. Morgan, Nature (London), 202 (1964) 1106.
- 48 J. Lielmezs, Thermochim. Acta, 12 (1975) 1.
- 49 N.B. Chapman and J. Shorter (Eds.), Advances in Linear Free Energy Relationships, Plenum Publishing Corporation, New York, 1972.
- 50 N.B. Chapman and J. Shorter (Eds.), Correlation Analysis in Chemistry, Plenum Publishing Corporation, New York, 1978.
- 51 K.S. Pitzer, J. Chem. Phys., 8 (1940) 711.
- 52 R.L. Montgomery and F.D. Rossini, J. Chem. Thermodyn., 10 (1978) 471.
- 53 R.E. Pennington and K.A. Kobe, J. Chem. Phys., 22 (1954) 1442.