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ABSTRACT 

An approximation to the integral of the Arrhenius function is found by incorporating 
a nearly-constant integrating factor. The solutions, which can be determined graphically, 
are of an accuracy comparable to that of the rational approximations. 

INTRODUCTION 

The general kinetic equation for non-isothermal investigations 

remains the subject of many efforts to obtain solutions of high accuracy and 
relative simplicity. Numerous approximations to the integral of the Arrhenius 
function Cl-43 have been demonstrated, each having a high degree of accu- 
racy but requiring computer-assisted, non-linear curve-fitting techniques. 
Two noteworthy attempts at providing solutions which can be graphed [ 5,6] 
with comparable simplicity to isothermal kinetic systems have long been 
abandoned because of the inherent errors introduced by the approximations 
on which they are based. An approximate solution will be discussed here 
which can be readily graphed or evaluated by a linear least-squares method, 
and yields activation energies and Arrhenius factors of an accuracy compara- 
ble to that of the rational approximations. 

DISCUSSION 

It has been shown [7] that a near-constant integrating factor for the Arr- 
henius integral is provided by the approximation 

[ 
_T,el-Ti/T ’ 
T 1 

s 1 (2) 

where Ti is a constant whose evaluation will be discussed in detail later. Sub- 
stitution into eqn. (1) results in the integrated form 
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and a plot of In g(a) vs. l/T is linear with negative slope E/R + 2Ti. The prior 
methods developed by Van Krevelen et al. [5] and Horowitz and Metzger 
[6] were based on expansions of the integrand of eqn. (1) about T = Ti and 
resulted in the solutions 

da) =$ E,;i_ T 

E/RTi+l 

i 

and 

e-2E/RTi eETiRTz 

(4) 

(5) 

respectively. In these two cases Ti has usually been selected as the inflection 
point in the a-T curve, thereby being determined by the experimental data. 
Regardless of how Ti is selected, the sensitivity of the calculated activation 
energJi and Arrhenius factor to Ti in eqns. (3)-(5) can be evaluated and the 
results are tabulated in Table 1. 

Considering that the value of Ti will usually be within the limits of the 
temperature range of the experiment, it is obvious that the methods of Van 
Krevelen and Horowitz and Metzger are extremely sensitive to the proper 
selection of Ti, and that for E/RT, > 5 they would be of questionable value 
for evaluating the Arrhenius factor. Since it can be shown that the inflection 
point is not the optimum temperature for the assignment of Ti, activation 
energies calculated from eqns. (4) and (5) were also frequently in consider- 
able error. Unfortunatily, the awkward functional forms of these prior 
approximations do not lend themselves to formulation of proper criteria for 
the selection of the best temperature constant. The approximation described 
here allows the Arrhenius factor to be calculated with the same accuracy 
that the prior methods had for the activation energies, and for E/RZ’i > 5 the 
activation energy can now be calculated to high accuracy almost indepen- 
dently of the value of Ti. 

A significant advantage of eqn. (3) is that its functional form is quite sirni- 
lar to those of the rational approximations. This simikity can be used bene- 
ficially, with moderate effort, to devise an analytic relationship for the eval- 

TABLE 1 

Relative en-ors in calculation of A and E 

d In A/dTi X 100 d In E/dTi X 100 
(%I (%I 

Resent approximation 
Van Krevelen et al. [ 51 
Horowitz and Metzger [S ] 

2OO/Ti (~OOIT~YWI~TI) 
(lOO/Ti) (EIRTi) lOO/Ti 

(2OW’i) (WRTi) ZOO/Tf 
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uation of Ti . Such a meaningful selection of Ti renders the present approxima- 
tion of comparable accuracy with the rational approximations, as will be 
demonstrated. 

For illustrative purposes we will use the Gorbachev (or first-order rational) 
approximation [4] as a true representation of the .Arrhenius integral. 

Figure 1 illustrates the relationship between eqn. (6) and eqn. (3) in a loga- 
rithmic plot. Within the range T1 to T2 a unique temperature T, exists at 
which the slope of the experimental data is the same as the slope of the fit- 
ted straight line. Equating the first derivatives with respect to the inverse 
temperature of the logarithmic forms of eqns. (3) and (6) one obtains 

++2Ti=s+Te + 
E/R 

E/RT, + 2 
(7) 

Rearranging and solving for Ti yields 

Ti = T* I_- T* 
E/R + ZT, 1 (8) 

Finally, introducing the slope S from the left-hand side of eqn. (7) to elimi- 
nate E/R, and making the assumption that the difference T, - Ti is negligible 
compared to the magnitude of the slope, we arrive at the following condition 

Ti=T, [I-$] 

If instead higher order rational approximations are used to relate Ti to T, 

(9) 

then additional terms are added in an alternating series 
of eqn. (9). For the accuracy desired, the following 
essential terms 

Ti = T, 1 

In q(a) 
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to the right-hand side 
equation contains all 

(19) 

Fig. 1. Representation of the relationship between the Arrhenius integral ( -) and 
the linear approximation (- - -). 



It remains to be shown that in any temperature range a value of T, can be 
assigned which is independent of the details of the experiment and is a func- 
tion only of the end points of the temperature range. A general expression 
for the assignment of T, is not readily found. One can, for example, represent 
the logarithm of the Arrhenius integral to great accuracy by a function of 
the form 

in g(o!) = a +++* (11) 

where a, b, and c are fitting constants. In the interval T1 to Tz a straight-line 
fit to this function gives, independently of a, b, and c 

T* = (T,T,)“2 [ I- gj (T2 ; T1 )1+ . ..I 
1 

(12) 

For T2 < l.4T1, T, differs from the geometric mean of the end points of the 
temperature range by less than 1%. Alternative representations to eqn. (11) 
support the conclusion that T, is adequately given by the geometric mean, 
Tg. Equation (10) can then be rewritten 

Ti = Tg 
[ 

1 
T2 

-%+2g 1 
Rewriting eqn. (3) in logarithmic form 

(13) 

e”Tf 1 E/R + 2Ti 

@E/R +2Ti - T (14) 

A plot of In g(a) against l/T gives a line of negative slope E/R + 2Ti. Sub- 
stitution of eqn. (13) for Ti allows evaluation of E/R from the slope and 
A/Q from the intercept. Table 2 demonstrates the accuracy of the applica- 
tion of eqn. (14) to a series of hypothetical TGA curves. The function g(a) 
has been generated [8] at intervals of 10” over the temperature ranges 
shown. The ranges were selected to simulate observable extents of reaction 
for first-order kinetic schemes. In the vicinity of E/RT = 5 the approxima- 
tion yields an Arrhenius factor and activation energy within 1% of the actual 
values, and for E/RT > 5 the agreement is comparable to that which could 
be achieved using any rational approximation. 

TABLE2 

Comparison of linear approximation with generated kinetic data 

Generation parameters 

T2 A/@ 

WI 
EIR 

EIRT Fittedvalues 

Al@ E/R 

180 350 5.000 1500 4.3- 8.3 5.007 1490 
310 430 13000 5000 11.6-16.1 13040 4997 
650 810 1.000x10' 15000 18.5-23.1 1.002x107 14997 
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