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ABSTRACT 

This paper discusses the factors which influence the choice and implementation of 
computer methods to evaluate the Arrhenius integral, IA = JFo exp(-E/RT)dT. It also 
identifies the sources of computational error and inefficiency. It is shown that, amongst 
numerical integration techniques, the classical trapezoidal and Simpson rules have little 
to recommend them compared with the method of Gaussian quadrature. A technique for 
preserving the accuracy of the Gauss method at very high values of EJRT, is also 
described and evaluated. Rational (Pad&) approximation is found to compare favourably 
with Gaussian quadrature in efficiency and accuracy, and is simpler to use. The discus- 
sion also reveals that six decimal-digit arithmetic is adequate for all practical purposes. 

INTRODUCTION 

The Arrhenius integral, I,, is important in solid-state kinetics because of 
its frequent occurrence in the analysis of non-isothermal kinetic data [l-5]. 
The integral can be written as 

IA = s’” exp(--E/RT) dT (1) 
0 

where E is the activation energy, R is the gas constant (8.314 J mole-’ K-l) 
and Tcr is the thermodynamic temperature at which the extent of reaction is 
0~. The form of IA means that the definite integral has no analytical solution 
and it must therefore be evaluated using a numerical method. Methods 
reported in the literature include the composite trapezoidal rule [3], Gauss 
quadrature [l] and rational approximation [ 43. 

The features required of any numerical method for estimating IA are 
firstly, high accuracy; in particular, the error introduced by the computa- 
tional method must be negligible compared with the experimental error, and 
secondly, efficient use of computer time; this is particularly important in 
real-time applications. 

The choice of method usually involves a compromise between these crite- 
ria. Although several studies [l-5] have discussed the evaluation of IA, the 
nature of this compromise has received little attention, primarily because it 
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is seldom a limiting factor for mainframe computers on which most work has 
been carried out to date. It can, however, be of considerable importance 
with mini- or microcomputers, which are becoming increasingly common in 
both research and routine analytical laboratories. 

This paper considers the factors that influence the choice and implementa- 
tion of numerical methods used to estimate IA. The results are derived 
mainly for small computers, but they are also relevant to the evaluation of 
I, on larger machines. 

COivIPUTER EVALUATION OF THE ARRHENIUS INTEGRAL 

As eqn. (1) shows, the Arrhenius integral is the area under the curve f(T) = 
exp(-E/ET) between the bounds 2’ = 0 and 2’ = T,. A closed numerical inte- 
gration method approximates this area by a weighted sum, I,,,, of the func- 
tion values, f(T,), as shown in eqn. (2) 

num = 2 @Vi) , I 0 < Ti < Ta 
i=O 

In this equation, the weight factors, Wi, are determined by the method, and 
the function values, f(Ti), are computed at each of n + 1 base points, Tis 

When implemented on a computer, all calculations involved in the estima- 
tion of I,,, are carried out in floating-point arithmetic [6] in which a real 
number, P, i.e. a number with a fractional part (which can be zero) is repre- 
sented as 

(3) 

In eqn. (3), _a is the fractional part of the number, normal&d so that the 
first digit is non-zero, fl is the number base of the computer and b is the 
exponent. On a machine using binary arithmetic, /3 = 2 and 0.5 G la I < 1. 
The floating-point representation is implemented as a sequence of binary 
digits (bits) which is divided into two parts to hold the fraction and the 
exponent. Since, however, the sequence of bits is of finite length, the frac- 
tion can only be held to a finite number of significant digits and the expo- 
nent can only vary over a finite range. The limited number of significant 
digits in the fraction is the origin of the build-up of round-off error in float- 
ing-point calculations while the exponent, operating in conjunction with the 
number -base of the machine, determines the number range. Typically, the 
range of real numbers which can be represented on a large, mainframe com- 
puter is 5.4 X lo- ” < irl < 7.2 X 1O75 and the precision to which these num- 
bers are held is 7D (seven, significant decimal digits) for single-precision 
arithmetic and 16D for double-precision arithmetic. In contrast, minicom- 
puters typically have a real number range of 1.5 X 1O-3g < Irl < 1.7 X 103’ 
with 6D in single-precision and, depending on the machine, 9-16D in 
double-precision working. 

Since numerical integration methods evaluate the function f(Ti) = exp- 
(-E/RTi_) over the integration range, [O, T,], some of the evaluations at the 
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lower end of the integration range can generate numbers that are too small 
to be represented by the computer and are thus indistinguishable from zero. 
On many machines, this “exponent underflow” results in the unreported set- 
ting of the function evaluations to zero. This is potentially a major source of 
error since the smaller Z’, becomes (for any particular activation energy), the 
greater is the proportion of function evaluations set to zero. The conditions 
under which this error becomes troublesome are discussed in the nextsec- 
tion. 

Thermogravimetric data from a single experiment, coupled with the evalu- 
ation of IA, typically yield an activation energy with a maximum error of 
about 210%. To ensure that computational error makes no significant contri- 
bution to this figure, the calculation errors should therefore be no more than 
about 0.01%. With 6D arithmetic, the machine error is well below this figure 
at ~10-~% and the desired accuracy can therefore be achieved provided 
the numerical method and its implementation are chosen carefully. 

COMPARISON OF METHODS USED FOR THE EVALUATION OF IA 

In the results reported here, values of IA have been estimated for physi- 
cally-reasonable values of E, from 100 to 350 kJ mole-‘, and temperatures 
from 300 to 1100 K. These limits correspond to the range 11 <E/RZ’, < 
140. 

The integrals were determined by different numerical methods on a Texas 
Instruments 980B minicomputer which has 6D in single-precision arithmetic 
and a range of 1.5 X 1O-3g C Irl < 1.7 X 103’. Reference values of IA were ob- 
tained from standard tables [7] and, where necessary, by using a 32-point 
Gauss quadrature formula (see later) with double-precision arithmetic on an 
ICL 2960 mainframe computer. All reference values are accurate to at least 
9D. The computer programs were written in FORTRAN IV. 

In the calculation of IA, the total relative error of integration is computed 
as a percentage from the relationship 

etotal = 100 ucef - Lml)l&ef 

where Iref is the reference value and I,,, is the corresponding numerical 
estimate of a given value of 1,. 

The discussion so far identifies round-off and underflow errors as the 
cause of discrepancies between Iref and I,.,,,. We must now consider the 
error contributed by the numerical method itself. 

New ton-Co tes methods 

The most common numerical integration techniques belong to the class 
known as composite, Newton--Cotes methods [8]. The essential features of 
these methods are the division of the integration range into a number of con- 
stant-width subintervals, and the piecewise approximation of the original 
function over each subinterval, or group of subintervals, by a polynomial of 
low degree. If the degree is one, the approximating function is a straight line 
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and the procedure is known as the composite trapezoidal rule. When the 
degree is two, the integrand is approximated over each pair of subintervals 
by a parabola to give the composite Simpson rule. In either case, replace- 
ment of the original function introduces an approximation or truncation 
error, which makes a third contribution to the total integration error. 

The Newton--Cotes methods have the advantage that they generate 
straightforward integration formulae with simple weight factors. Thus, for 
the trapezoidal and Simpson rules, the numerical integrals InumVT and Inurns 
that approximate IA are 

n-l 

I nun&T = h[;CftO) + f(T,)} + zl f(T,)] 

I num.S = th/3)Ef(0) + f(Ta) + ng: aif(Ti)l 

(4) 

(5) 

where f(0) (note that f(0) = 0) and f(T,) are the function values at the end- 
points of the interval, the subinterval width, h = f(Ti+l) - f(Ti), is the sepa- 
ration between consecutive base points, and n = T,/h is the number of sub- 
intervals. The weight factors, Uli, of eqn. (2) are seen to be functions of h 
and, in eqn. (5), the coefficient ai is 4 when i is odd and 2 when i is even. 

The truncation errors are also defined by comparatively simple expres- 
sions [S] and, for integration with n subintervals over the range [0, T,], the 
percentage errors are 

%rull.T 2 -100 (hZ/12) f’(T,)/I,,, 

(3run.S = -100 (h4/180) f”‘(T,)/I,,, 

where f’(T,) and f”‘(T,) are the first- and third-order derivatives of the func- 
tion f(T) = exp(-E/RT) evaluated at T,. Clearly, in both cases, truncation 
error can be decreased in magnitude by increasing the number of subinter- 
vals, n, and thereby decreasing the subinterval width, h. Since, however, 
IE trun,sI is proportional to h4 whereas ietrun_TI is proportional to h’, the 
truncation error of the Simpson rule decreases much more rapidly. 

Unfortunately, the benefit of the simplicity of these methods is offset by 
the comparatively large number of subintervals needed to reduce truncation 
error to an acceptable level. Not only are the necessary calculations very 
time-consuming but they increase the upper limit on round-off error [8], 
which is roughly proportional to l/h, and the bound on a fourth error com- 
ponent, exponential algorithm error [S], which arises from the com- 
puter routine used to evaluate exp(-E/RT). A theoretical analysis of how 
these various errors combine would be difficult and of limited value since it 
would depend upon the numerical method, the computer, and the system’s 
software. We can observe, however, that the combined error is dominated by 
truncation effects at low n and by computational errors at high n, causing 
the magnitude of the total error to go through a minimum as n increases. 
Because of the rapid decrease of Ietrun,S I noted earlier, this minimum is 
smaller, and occurs at lower n, for the Simpson method than for the trape- 
zoidal rule. 
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These points are illustrated for the evaluation of IA by the results pre- 
sented in Table 1. The data were obtained on the TI980B machine with 6D 
accuracy using E = 200 kJ mole-’ and E/R!I’, = 60 (Z’, = 400 K). Under 
these conditions, IA is approximately 5.67 X 10Bz6. For both methods, trun- 
cation error is negative and is clearly the major contribution to the total 
error at low n. As n increases, however, the round-off and exponential algo- 
rithm errors become relatively more important and, at high n, the total error 
fluctuates within the approximate range +6 X 10s4%. Simpson’s rule takes 
only 500 subintervals to reach this level whereas the trapezoidal method 
needs over 4000 subintervals. In both cases, there is no advantage in increas- 
ing n beyond the values stated, and in fact the acceptable level of 0.01% 
error is realised with -150 Simpson, and -2000 trapezoidal subintervals, 
respectively. 

In this discussion we have ignored the effect of underflow error which 
occurs when the value of IA approaches s: the smallest positive number that 
the computer can distinguish Tom zero. This error, which has not previously 
been reported in this context, allows the return of a non-zero function value 
f(T) only when 

f(T) = exp(-E/RT) > s 

i.e. when E/RT < -ln s (In s is of course a negative quantity). Equivalently, 
for a given value of E there exists a threshold temperature, Tt given by 

Tt = -.E/Rln s (6) 

below which all function evaluations are set to zero. For large n (e.g. n 2 
500), the percentage, p, of function evaluations set to zero by underflow 
error over the range [0, T,] is approximated well by the expression 

p = 100 TJT, (7) 

As indicated above, a typical minicomputer has s z 1.5 X 10m3’ and so -ln 
s 2~ 89.4 giving Tt = E/89.4R and 

p = 1.12 E/RT, 

Values of p calculated from this last equation for feasible values of E and T, 
are shown in Table 2. 

The percentages are surprisingly large under all conditions. For example, 
the values of E/R!I’, in Table 2 range from 11 to 140 and p > 50% whenever 
E/RT, > 44.7. The most obvious consequence of exponential underflow is 
therefore the highly inefficient use of computer time and this is all the more 
important with the Newton-Cotes methods which need so many function 
evaluations to produce acceptable accuracy. 

We must now examine the contribution of the underflow error to the 
total error in IA. Taking E = 200 kJ mole-’ and T, = 1000 K (p = 26.9%), we 
find f(Tar) z 3.6 X lo-I1 whereas the first non-zero function evaluation 
involved in the integral summation is close to the negligible quantity s N 
1.5 x lo-jg. Naturally, the importance of underflow error increases as the 
upper limit Ta approaches the threshold temperature Tt. To reveal the 
extent of the problem, IA has been calculated with E = 200 kJ mole-’ and 



318 

TABLE 1 

Effect of number of subintervals, n, on percentage error, e, in the evaluation of IA by 
Newton-Cotes methods (E = 200 kJ mole-r; E/RT, = 60) 

n 

150 
250 
500 

1000 
2000 
4000 

10000 
20000 

etrun,T et.0 ta1.T 

-1.38 
-4.96 X 10-l 
-1.24 X 10-l 
-3.10X lo-' 
-7.75X 10-3 
-1.94 X 10-s 
-3.10 X 10-J 
-7.75 x 10-s 

-1.37 
-4.95 x10-1 
-1.23 X 10-l 
-3.06X 1O-2 
-7.27 x 10-s 
-1.44 x 10-a 
-5.58 X lo-’ 
-3.82 X lo-” 

Etrun.S G0tal.S 

-1.32 X lo-* -1.29 x 10-2 
-1.72 X 1O-3 -1.26 X 1O-3 
-1.07 x 10-U 3.24 X IO-4 

-6.71X 1O-6 3.24 X1O-4 
-4.19x 10-7 5.01x 10-U 
-2.62 X lo+ 5.01 x 10-G 
-6.71 X lo-lo -2.05 X lo-” 
-4.19 x 10-l r -2.05 X 1O-4 

E/RT, = 85 (p = 95%) using 6D arithmetic and Simpson’s rule with 500 sub- 
intervals. The numerical integral is I,,, = 3.902 X 1O-35 whereas the refer- 
ence value is Iref = 3.957 X 10T3’ . Although the integral is very small in mag- 
nitude, the error in IA of 1.4% caused by underflow is unacceptably large 
compared with the errors discussed previously and may cause difficulties in 
subsequent calculations with the computed estimate. 

Because of the extended number range, underflow error is unlikely to 
cause any serious trouble on mainframe computers for which frequently 
-1n s = 180.2 and p = 0.55 E/RT,. Thus, to obtain p = 95% it is necessary 
to have E/RT, 2 169, a ratio which is physically quite unrealistic. 

The impact of underflow on the efficiency and accuracy of small machine 
calculations can be reduced very simply but, in view of the comparatively 
high truncation error and low computational efficiency of Newton-Cotes 
methods, it seems better to reserve these improvements for a more effective 
technique. 

Gauss quadrature 

Whereas the composite Newton-Cotes methods use piecewise polynomial 
approximation, the technique of Gauss quadrature [ 81 uses a single approx- 

TABLE 2 

Percentage, p, of function evaluations set to zero for the Newton-Cotes methods (-ln s = 
89.4) 

T,(K) E(kJ mole-r) 

100 150 200 250 300 350 

300 44.8 67.3 89.7 100 100 100 
500 26.9 40.4 53.8 67.3 80.7 94.2 
700 19.2 28.8 38.4 48.0 57.6 67.3 
900 15.0 22.4 29.9 37.4 44.8 52.3 

1100 12.2 18.3 24.5 30.6 36.7 42.8 
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imating polynomial over the entire integration range. To do this, the Gauss 
method dispenses with the constant subinterval width imposed by the com- 
posite methods and positions the base points so that the summation of eqn. 
(2) minimises the truncation error. To implement the procedure, the integra- 
tion range for IA must be shifted Tom [0, Tar] to C-1, l] by the simple 
change of variable 

z = 2T/T, -1 or T=(T,/Z)(z+l) (8) 

With this transformation, 

IA = jh f(T) dT = (T&/2) 
0 

where 

dT = (T,/2) dz, and the integral becomes 

1 

s la4 dz 
-1 

g(z) = exp[+Z/RT,(z + l)] 

= exp(=) 

= exp(-E/RT) = f(T) (9) 
The summation of eqn. (2) for a polynomial of degree m (m + 1 base points) 
then becomes 

I num = ulY/2) go w&4 , -l<q< 1 (10) 

The weight factors and (16) base points for the test polynomial of degree 
m = 15 used in this work are given in Table 3. Data for (Gauss-Legendre) 
polynomials of degree up to 95 are tabulated in ref. ‘7. 

As this description shows, the disadvantages of the Gauss approach are the 
need to transform the integration range, and the awkwardness of the weight 
factors and base points which renders the technique unsuitable for hand cal- 
culation. A further difficulty is the complex analysis of truncation error [ 81. 
However, for computer implementation, these constraints are far outweighed 
by the potentially very high accuracy of the method. In fact, the number of 
function evaluations needed to reduce truncation error to an acceptable level 
is so small that the summation of eqn. (10) is extremely rapid and suffers 
negligible contamination from the build-up of round-off error. 

T+BLE 3 

Weight factors, Wi, and base points, Zi, for a Gauss quadrature polynomial of degree m = 

15 

wi +zi Wi ?Zi 

0.189451 0.095013 0.124629 0.755404 
0.182603 0.281604 0.095159 0.865631 
0.169157 0.458017 0.062254 0.944575 
0.149596 0.617876 0.027152 0.989401 
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These points are demonstrated (Table 4) by computing IA with 6D arith- 
metic and a fixed polynomial degree, m = 15, i.e. 16 function evaluations. 
With E = 200 kJ mole-’ and values of E/RT, from 10 to 80 (6.62 X 1O-35 < 
I, < 9.21 X 10s3) the total error is usually comparable with the machine’s 
minimum error and is lower in magnitude than the error found with 250 
Simpson subintervals. When these calculations are repeated with 9D arith- 
metic, the error peaks observed at E/RT, = 40 and 80 are reduced signifi- 
cantly, suggesting that the high values are due mainly to exponential error. 
The higher-precision results show an increase in total error above the round- 
off level as E/RT, increases, and this trend is probably due to truncation 
effects. 

Although the Gauss procedure is faster and generally more accurate than 
the New-ton-Cotes methods, it is still susceptible to inefficiency and error 
due to underflow when E/RT, 21 -In s. Thus, the function value f(z) will be 
set to zero for all z below a threshoid value obtained from eqns. (6) and (8) 
as 

zt = 2Tt/To: - I= -.!Z/(RT, In s) - 1 

For several reasons, however, it is not possible to use this value of zt to write 
an expression analogous to eqn. (7) for p, the percentage of function evalua- 
tions set to zero. Firstly, the number of function evaluations is too small to 
make the approximation used to derive eqn. (7) valid for Gauss quadrature. 
Secondly, the value of p depends upon the polynomial degree, m, which 
determines the values of z at which f(z) is evaluated and, finally, small frac- 
tional weight factors can make the product w,g@) -C s. 

To indicate the potentially disastrous nature of underflow we attempt to 
calculate I, with nz = 15, E = 200 kJ mole-’ and E/RT, = 85 on a machine 
having -1n s = 89.4. Only the two largest values of zi shown in Table 3 give 
g(zi) > s and the smaller of these gives a quantity less than s when multiplied 
by the appropriate weight factor. Thus, only one of the function evaluations 
returns a non-zero value and the estimated integral of 2.971 X 10m3’ differs 
from t.he reference value, 3.957 X 10m3’, by 24.9%! This quite unacceptable 
error is reduced drastically by multiplying the function values, g&), in eqn. 
(10) not by uli, but by the product WiTa/2- This simple inclusion of the con- 
stant T&/2 within the summation, normally regarded as a highly inefficient 

TABLE 4 

Effect of polynomial degree on percentage error, E, in the evaluation of I, by Gauss qua- 
drature (G) and rational approximation (R) (E = 200 kJ mole-‘) 

EIRT, Eto tal.Gl5 Etotal.RB 
m = 15 m=3 

%otal.R4 
m=4 

%otal.RB 
m=5 

10 2.55 X lo* 1.67 X 1O-3 1.47 x 10-4 3.8 X 10-S 
20 6.34 X 1O-4 6.34 X lo-’ -2.50 X 1O-4 -2.50 X 1O-4 
40 1.00 x 10-3 3.44 x 10-4 3.44 x 10-4 3.44 x 10-4 
60 3.24 X 1O-4 3.24 X 1O-4 3.24 X 1O-4 3.24 X 1O-4 
SO 9.87 x 10-S 5.07 x 10-G 5.07 x 10-4 5.07 x 10-4 
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procedure, retrieves the second non-zero function evaluation and reduces the 
observed error to 0.94%. 

Although this reduction is considerable, the remaining error is still not 
acceptable if I,+ is to be used in subsequent calculations. The effect of under- 
flow error can be reduced further, however, simply by adding a positive 
quantity, y, to the index of the exponential function in eqn. (9) so that 
exp(y -x) is evaluated instead of exp(--z) for all x > 85. When the modi- 
fied summations are complete, the total is multiplied by exp(T) before 
adding to the unaltered sum obtained with x < 85. This device is naturally 
only of value if the modified sum is greater than or equal to exp(y)s. This 
criterion is satisfied for the test integration and the inclusion of the device in 
the algorithm reduces the total error to an acceptable level of 1.09 X 10m3%. 
The same device can be used to extend artificially the number range of a 
mainframe computer but the available number range is usually sufficient to 
render the extension unnecessary. 

The results described in this section show that the modified Gauss 
of degree 15 is always preferable to the Newton-Cotes methods 
evaluation of IA. 

Rational approximation 

method 
for the 

A rational approximation is a ratio of polynomial functions [lo] of the 
type 

Rrn~(x) = &n(‘d/Q&) 

where Rmk iS an approximation t0 afUnCtiOn,f(X),and~,(X) and &(X)are 

polynomials of degree at most m and k, respectively. Such approximations 

are used extensively in computer algorithms 191 to calculate transcendental 
functions such as cos(x), exp(x), log(x), etc. The incentive behind their use 
to evaluate IA springs horn the ease with which the Arrhenius integral can 

be expressed in terms of the exponential integral,El(X), forwhichthere are 

manya.lternativerationalapproximations [ll]. 

IA is related to E, by making the linear change of variable x = E/RT in 

eqn. (l).NotingthatdT/dx = -E/Rx2,we have 

IA = (E/R) 1 xm2 exp(T) dx 
XCY 

where x, = E/RT,. Integration by parts 

1, = (WR)Cexp(~,)/x, - Wx,)l 
which involves the exponential integral 

27,(x,) = J x-l exp(3) d3c 
XlY 

then yields 

This approach was developed by Senum and Yang [4] who studied the 
truncation error involved in replacing E,(x,) by a series of Pad6 approxima- 
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tions [lO,llj, [exp(lc,)/x,] I&, in which the polynomial degrees m 
and k were equal. For example, with m = k = 2 

EI (x,) = bw(-x,)/~,l JM=c,) 
= [exp(--x,)/x,] (x’, + 53c, + 2)/(x: + 6x, + 6) 

and the corresponding approximation to the Arrhenius integral is 

I, = T, exp(-x,)D - %2(~dl 

= [Ta exp(-, 11 (~a + 4)/(x: + 6x, + 6) (11) 

Luke [ll] tabulates the polynomial coefficients of Rmh(&) for values of m 
and k from 1 to 6 and it is worth noting that the approximation errors 

’ decrease as m and k increase and are smallest, for a given total degree m + k, 
when m = k or k + 1. As eqn. (11) also shows, rational approximation 
involves negligible build-up of round-off error, no build-up of exponential 
algorithm error and no underflow error at all (until total underflow occurs). 
This is because there is only one exponential function evaluation and the 
number of arithmetic operations is very small. The values of total percentage 
error obtained with rational approximations of degrees m = k = 3, 4 and 5 
are shown in Table 4 together with the Gauss quadrature results discussed 
earlier. At high values of E/RT, (= x,), the third-degree rational approxima- 
tion to. E l(x,) yields estimates of IA which are comparable in accuracy to the 
Gaussian values. At lower values of E/RT,, the rational approximation is 
much less accurate and the overall degree of the approximation must be 
increased to obtain acceptable truncation error. The value of ctotal,Rm 
increases with decreasing E/RT, for all values of m studied but when m = 4, 
the total error is comparable with machine error over the whole range of 
B/RT,. Recalculation with higher-precision arithmetic reduces the errors ob- 
tained to the levels recorded by Senum and Yang. 

These results reveal that a rational approximation of degree m = 4 for IA is 
comparable with or superior to the Gauss method in accuracy and is compu- 
tationally much simpler. In fact the calculation is so straightforward that it 
can be implemented with ease on a hand calculator. Finally, if the value of 
E/RT, is close to --In s, the remaining problem of finite number range may 
be avoided entirely by taking the logarithm of the rational approximation 
Rrnk (&) and using 

h IA = WT,Cl --Rmdqd13 -x, 
in subsequent calculations. 

CONCLUSIONS AND RECOMMENDATIONS 

The work described here produces several clear-cut recommendations for 
computer evaluation of the Arrhenius integral, IA. The results show that the 
classical trapezoidal and Simpson methods of numerical integration have 
nothing to recommend them beyond simplicity. In contrast, Gauss quadra- 
ture is a very rapid method and a 16-point formula reduces total integration 
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error to <10m3% under all practical conditions if evaluation of the exponen- 
tial function is modified for high E/RT,. However, the inefficiency and 
underflow error to which these numerical integration methods are suscept- 
ible are avoided by the use of a rational approximation technique which is 
also simpler and more accurate. Accordingly, a Pad6 approximation of 
degree four is recommended for calculation of IA when E/RT, > 10. At 
lower values of E/RT,, a Gauss procedure or a rational approximation of 
higher degree should be used. 

Most mini- and mainframe computers carry out single-precision calcula- 
tions with six or seven digit accuracy, i.e. an arithmetic operation has a rela- 
tive error of magnitude <10B4%. This level of error is quite satisfactory for 
most applications involving the computation of I, and so the Gauss and 
rational methods can be implemented without recourse to double-precision 
arithmetic. 

FORTRAN function subprograms implementing the Gauss and rational 
methods are available from the authors on request. 
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