THERMOCHEMISCHE, KRISTALLOGRAPHISCHE UND INFRAROTUNTERSUCHUNGEN AN CALCIUMKUPFERHYDROXYCHLORID-HYDRATEN

E. ERDÖS, E. DENZLER und H. ALTORFER

Abteilung Forschung und Entwicklung, Gebrüder Sulzer Aktiengesellschaft, Winterthur (Schweiz)

(Eingegangen am 2 Oktober 1980)

ABSTRACT

Copper immersed in 1 N CaCl₂ solution containing NH₃ corrodes in the presence of oxygen with the formation of blue crystals of the compound 4 Cu(OH)₂ · CaCl₂ · 3.5 H₂O. The unit cell is tetragonal with a = 9.392 Å, c = 15.077 Å, c/a = 1.605; Z = 4. The calculated density is 2.818 g cm⁻³ and the observed density 2.80 g cm⁻³ at 22°C. The crystallographic aspect is $P4_2**$. Heating up to 400°C results in stepwise decomposition without sharp separation of the steps. The first step (165°C) gives 4 Cu(OH)₂ · CaCl₂ · 0.5 H₂O, tetragonal body centered, $a = 9.34_2$ Å, $c = 7.53_3$ Å, $c/a = 0.806_4$. The second step (215°C) gives CuO + 2 Cu(OH)₂ · CuO · CaCl₂ · H₂O, cubic primitive (pseudocubic?) $a = 5.74 \pm 0.017$ Å and the third step (260°C): 4 CuO + CaCl₂.

The first and the third step rehydrate in air at ambient temperature, the first step to the original material and the 3rd step to $CuO + 3 Cu(OH)_2 \cdot CaCl_2 \cdot H_2O$. This compound is hexagonal $a = 6.66_3$ Å, $c = 5.81_5$ Å, $c/a = 0.872_7$.

The decomposition process is characterized by pseudomorphosis. At least for the first decomposition step, a topotaxial relationship is assumed.

Diffraction and infrared data of the different compounds are given.

ZUSAMMENFASSUNG

Bei der Korrosion von Kupfer in NH₃ haltiger 1 N CaCl₂ Lösung kommt es in Gegenwart von Sauerstoff zur Bildung blauer Kristalle der Verbindung 4 Cu(OH)2 · CaCl2 · 3.5 H₂O. Deren Elementarzelle ist tetragonal a = 9,392 Å, c = 15,077 Å, c/a = 1,605. Für Z = 4 beträgt die berechnete Dichte 2,818 g cm⁻³, gemessen wurde 2,80 g cm⁻³. Der Aspekt im Kristallsystem ist P42**. Beim Erhitzen bis 400°C tritt ein mehrstufiger Zerfall unter Abgabe von Wasser ein, dessen Stufen jedoch nicht scharf getrennt sind: 1. Stufe (165°C): 4 Cu(OH)₂ · CaCl₂ · 0,5 H₂O, Kristalle tetragonal-raumzentriert, a = 9,34₂ Å, $c = 7,53_3$ Å, $c/a = 0,806_4$. 2. Stufe (215°C): CuO + 2 Cu(OH)₂ · CuO · CaCl₂ · H₂O primitiv-kubisches (pseudokubisches?) Gitter, $a = 5.74 \pm 0.017$ Å. 3. Stufe (260°C) 4 CuO + CaCl₂. Die erste und die dritte Stufe rehydratisieren bei Lagerung an Luft, und zwar die erste Stufe zurück zum Ausgangsprodukt und die dritte Stufe zu CuO + 3 Cu- $(OH)_2 \cdot CaCl_2 \cdot H_2O$. Letztere Verbindung hat ein hexagonales Kristallgitter $a = 6,66_3$ Å, $c = 5,81_5$ Å, $c/a = 0,872_7$. Der Zersetzungsvorgang geht unter Pseudomorphose vor sich. Topotaxie wird mindestens für den ersten Zersetzungsschritt angenommen. Beugungsreflexe und Infrarotspektren der erwähnten Verbindungen (4000-800 cm⁻¹) sind tabelliert.

0040-6031/81/0000-0000/\$02.50 © 1981 Elsevier Scientific Publishing Company

EINLEITUNG

Calciumkupfer(II)hydroxychloride werden vornehmlich in der Patentliteratur (z.B. Lit. 1 und 2) als antikryptogame Mittel beschrieben. Über ihre kristallographischen, optischen und thermochemischen Eigenschaften ist jedoch wenig bekannt. Willaume und Binder [3] machen Angaben zur Ultraviolett-Absorption der Verbindung 3 Cu(OH)₂ · CaCl₂ · H₂O. Fontana und Fabbri [4] haben das Infrarotspektrum von 3 Cu(OH)₃ · CaCl₂ untersucht und finden eine vom Atacamit 3 Cu(OH)₂ · CuCl₂ abweichende Struktur. Fratini und Fumasoni [5] haben die Verbindung 3 Cu(OH)₂ · CaCl₂ · H₂O hergestellt und gaben ein nicht indiziertes Diffraktogramm wieder. In der Thermoanalyse: (TGA/DTA) beobachten sie einen einstufigen Zerfall mit einem Maximum bei 350°C in 3 CuO + CaCl₂ + 4 H₂O↑ Ah-Dong Leu et al. [6] synthetisierten nach einem Verfahren von Feitknecht und Maget [7] 4 Cu(OH)₂ · CaCl₂. Diese Verbindung zersetzt sich einstufig bei 360°C in 4 CuO + CaCl₂ + 4 H₂O↑.

HERSTELLUNG

Unsere eigenen Synthese-Versuche gingen von Lit. 7 aus. Späne aus Elektrolytkupfer wurden in einer wässrigen Lösung von 500 ml 1 N CaCl₂ + 10 ml NH₃ aq. conc. im Sauerstoffstrom bei Raumtemperatur korrodiert. Nach 350 h waren auf der Metalloberfläche und den Wänden des Glassgefässes dunkelblaue Kristalle abgeschieden. Diese wurden isoliert, mit Wasser und Aethanol gewaschen und bei 60°C getrocknet. Das Aussehen der Kristalle

Abb. 1. 4 Cu(OH)₂ · CaCl₂ · 3,5 H₂O synthetisiert.

Abb. 2. Thermoanalyse in Argon. $dT/dt = 4^{\circ}C \min^{-1}$.

war plättchenförmig (Abb. 1) *. Mit energiedispersiver Röntgenanalyse konnten Cu, Ca und Cl nachgewiesen werden.

CHEMISCHE ANALYSE UND DICHTEBESTIMMUNG

Cu \bar{x} = 44,75%	s = 1,15%	n = 4
Ca $\bar{x} = 7,55\%$	s = 0,31%	n=4
Cl $\bar{x} = 13,20\%$	s = 0,75%	n = 3

Gewichtsverlust bei Erhitzen auf 400° C 23,0–24,1%.

Dichte gemessen bei 22°C: 2,80 g cm⁻³.

Die Analysenwerte kommen einer Formel $4 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot 3,5 \operatorname{H}_2O$ sehr nahe; für diese ergeben sich die folgenden theoretischen Werte: Cu 45,04%, Ca 7,22%, Cl 12,57%, Gewichtsverlust 23,95% (bei Zerfall in $4 \operatorname{CuO} + \operatorname{CaCl}_2 + 7,5 \operatorname{H}_2O^{\uparrow}$).

 $4 \text{ Cu}(\text{OH})_2 \cdot \text{CaCl}_2 \cdot 3,5 \text{ H}_2\text{O}$ ist als eine Idealformel zu betrachten, wobei von Präparat zu Präparat das Verhältnis Cu: Ca und der Wassergehalt etwas schwanken kann.

^{*} Aufnahme mit Stereoscan MkIIA (Cambridge Instruments).

THERMOCHEMICHES VERHALTEN

Abbildung 2 zeigt die Ergebnisse der Thermoanalyse (Mettler Thermoanalyzer I, $dT/dt = 4^{\circ}C$ min⁻¹, Referenz α -Al₂O₃, Argon). Die Zersetzung beginnt bei ca. 120°C und erfolgt in 3 Stufen. Die Plateaus des Thermogramms sind stark geneigt und die Reaktionen demnach nicht scharf getrennt.

		Gewichts	verlust (%)
4 Cu(OH)₂ · ·	$CaCl_2 \cdot 3,5 H_2O$ (blau)	gemessen	berechnet
165°C	-3 H ₂ O	9,74	9,58
4 Cu(OH) ₂ -	ČaCl ₂ - O,5 H ₂ O (dunkelgrün)		
215°C	-1,5 H ₂ O	4,75	4,79
CuO + 2 Cu($\stackrel{\downarrow}{OH}_2 \cdot CuO \cdot CaCl_2 \cdot H_2O \text{ (schwarz)}$		
260°C	-3 H ₂ O	9,41	9,58
40.0.0.0			

 $4 \text{ CuO} + \text{CaCl}_2 \text{ (schwarz)}$

Das Endprodukt der Zersetzung 4 CuO + CaCl₂ ist an normaler feuchter Luft nicht beständig. Es tritt Rehydratisierung ein mit einer Gewichtszunahme von 16,78%. Dies entspricht der Aufnahme von 4 Molekülen Wasser (berechneter Wert 16,79%). Aufgrund röntgenographischer Untersuchungen (siehe unten) lautet die Reaktion der Rehydratisierung

 $4 \text{ CuO} + \text{CaCl}_2 + 4 \text{ H}_2\text{O} \rightarrow \text{CuO} + 3 \text{ Cu(OH)}_2 \cdot \text{CaCl}_2 \cdot \text{H}_2\text{O}$

Die Thermoanalyse des Gemisches CuO + 3 Cu(OH)₂ · CaCl₂ · H₂O führt zu einstufiger Zersetzung bei 250°C.

Die erste Stufe der Rehydratisierung

$$4 \operatorname{Cu}(OH)_{2} \cdot \operatorname{CaCl}_{2} \cdot 3,5 \operatorname{H}_{2}O \xrightarrow[+3 \operatorname{H}_{2}O, 25^{\circ}C]{} 4 \operatorname{Cu}(OH)_{2} \cdot \operatorname{CaCl}_{2} \cdot 0,5 \operatorname{H}_{2}O$$

ist bei Raumtemperatur an feuchter Luft reversibel, wie durch Röntgenbeugung und Infrarotspektrum gefunden wurde.

RÖNTGENBEUGUNG

Die Untersuchungen wurden mit einer Guinier—de Wolff Kamera (ENRAF—Nonius II) und CuK_{α} Strahlung ($\lambda = 1.5418_4$ Å) ausgeführt. Zusätzliche Aufnahmen erfolgten mit CrK_{α} Strahlung ($\lambda = 2,2910$ Å).

$4 Cu(OH)_2 \cdot CaCl_2 \cdot 3,5 H_2O$

Die Reflexe dieser Verbindung können auf ein tetragonales Gitter indiziert werden, a = 9,392 Å, c = 15,077 Å, c/a = 1,605. Die berechnete Dichte

I	d (A) beobachtet	hkl	d (A) berechnet	Calume Cu(OH,	tit [12] Cl) ₂ · 2 H ₂ O
				I	d (A)
20	9,40	100	9,392		
100	7,54	002	7,539	100	7,50
20	6,08	111	6,078		
40	4,48	201	4,484		
10	4,196	210	4,200		
40	3,777	004	3,769	50	3,76
40	3,428	203	3,431	30	3,42
70	3,320	220	3,321	30	3,30
10	3,128	300	3,131		
80	3,037	222	3,039	60	3,02
10	2,917	311	2,914		
10	2,768	312	2,763		
10	2,554	313	2,557		
90	2,492	224	2,492	80	2,481
70	2,348	40 0	2,348	30	2,341
10	2 ,276	410	2,278		
30	2,242	402	2,242		
40	2.080	421	2,080		
10	2,003	226	2,004		
40	1,993	404	1,993	30	1,993
10	1,958	207	1,958		
20	1,938	423	1,938		
10	1,88 6	008	1,885		
10	1,878	500/430	1,878		
10	1,743	317/520	1,744/1,744		
40	1,716	406	1,716	30	1,709
60	1,660	440	1,660	20	1,656
40	1,640	228	1,639	20	1,635
50	1,621	442	1,621		
30	1,557	601	1,557		
20	1,520	444	1,519		
40	1,485	620	1,485		
30	1,470	408	1,470	20	1,465
50	1,457	622	1,457		1 070
50	1,381	624	1,382	20	1,378
20	1,373	2210	1,373		
20	1,278	626	1,278		
20	1,270	635	1,270		
_		4010	1,269		
20	1,262	643	1,261		
20	1,258	41 <u>10</u>	1,257		
		00 <u>12</u>	1,256		
30	1,247	448	1,246		
		3310	1,246		
40	1,174	800	1,174		
		2212	1,175		
20	1,166	628	1,166		
20	1,160	802	1,160		

TABELLE 1

Indizierte Reflexe von 4 $Cu(OH)_2 \cdot CaCl_2 \cdot 3,5 H_2O$

beträgt 2,818 g cm⁻³. Z = 4 (Anzahl der Formeleinheiten pro Elementarzelle). Tabelle 1 enthält die Liste der beobachteten und berechnet Reflexe.

Überlegungen zur Raumgruppe

Die beobachteten Reflexe entsprechen folgenden Auslöschungsregeln: hkl = P, hkO = P, Okl = P, hhl = P, OkO = 1n, hkO = 1n, OOl = 2n demnach ist der Aspekt $P4_2$ **. Als Raumgruppen kommen $P4_222$, $P4_2m$ und $P4_2$ in Frage.

Es ist dabei zu beachten, dass bei frischen Präparaten fast alle Reflexe (Ausnahme d = 9,40 Å) auf ein tetragonal-raumzentriertes Gitter a' und c' zu indizieren sind, wobei a' = a/2 und c' = c. Die anderen Reflexe, die das grössere, primitive Gitter verlangen, sind erst bei älteren, über einen Monat gelagerten Präparaten deutlich sichtbar. Sie sind jedoch alle sehr schwach und diffus.

RÖNTGENBEUGUNG BEI ERHÖHTER TEMPERATUR BZW. VON WÄRMEBE-HANDELTEM MATERIAL (Abb. 3)

Mit einer Guinier-Huber Kamera und CuK_{α} Strahlung wurden die Zersetzungsvorgänge bei erhöhter Temperatur auch röntgenographisch verfolgt. Dabei erhielten wir die Pulverdiagramme der aus dem Thermogramm ersichtlichen Zwischenstufen. Wurde die Ausgangssubstanz, d.h. 4 Cu(OH)₂ · CaCl₂ · 3,5 H₂O je 1 h auf 165°C bzw. auf 215°C erhitzt, so ergaben sich die gleichen Diagramme.

(1) Zwischenstufe 4 Cu(OH)₂ · CaCl₂ · 0,5 H₂O. Tetragonal-raumzentrierte Elementarzelle $a = 9,34_2$ Å, $c = 7,53_3$ Å, $c/a = 0,806_4$. Beobachtete und berechnete Reflexe sind in Tabelle 2 aufgeführt. Nach 6 Tagen an Luft hat eine Rehydratisierung zu 4 Cu(OH)₂ · CaCl₂ · 3,5 H₂O stattgefunden.

(2) Zwischenstufe CuO + 2 Cu(OH)₂ · CuO · CaCl₂ · H₂O. Das etwas diffuse Pulverdiagramm zeigt, dass es sich um eine Mischung von CuO (Tenorit) und einer — primitiv — kubischen (pseudokubischen?) Verbindung $a = 5,74 \pm$ 0,017 Å handelt (vgl. Tabelle 3).

Abb. 3. Guinier–Huber Röntgenogramm. 1, 4 $Cu(OH)_2 \cdot CaCl_2 \cdot 3,5 H_2O; 2, 4 Cu(OH)_2 \cdot CaCl_2 \cdot 0,5 H_2O; 3, CuO + 2 Cu(OH)_2 \cdot CuO \cdot CaCl_2 \cdot H_2O; 4, 4 CuO + CaCl_2.$

I	d (A) beobachtet	hkl	d (A) berechnet	
40	6,60	110	6,606	
60	5,87	101	5,864	
30	4,68	200	4,671	
100	3,306	220	3,808	
20	2,956	310	2,954	
90	2,336	400	2,336	
30 br	2,084	420	2,089	
50 br	1,654	440	1,651	
80	1,636	224	1,636	
40 br	1,556	600	1,557	
30 br	1,518	442?	1,512	
50 br	1,477	620	1,477	
30 br	1,466	404	1,466	

Indizierte Reflexe von 4 Cu(OH)₂ · CaCl₂ · 0,5 H₂O

(3) Endstufe 4 CuO + CaCl₂. Das Diagramm, welches in der Hochtemperaturkamera bei 350°C bzw. 400°C aufgenommen wurde, zeigt beide Verbindungen. Bei Raumtemperatur zerfliesst das hygroskopische CaCl₂ sofort an Luft.

(4) Rehydratisierung der Endstufe an Luft nach 190 h bei Raumtemperatur. Wir nehmen die Bildung von $3 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot H_2O$ aus zwei Gründen an: (a) Gewichtszunahme (siehe oben) (b) Diffraktogram der rehydratisierten Substanz.

TABELLE 3

TABELLE 2

Indizierte Reflexe von 2 Cu(OH)₂ · CuO · CaCl₂ · H₂O + CuO

I	d (A) beobachtet	hki	d (A) berechnet	Bemerkung
100	5,76	100	5,74	
30	3,305	111	3,314	
60	2,874	200	2,870	
10	2,750		•	CuO 110
90	2,570	210	2,567	
50	2,53		-	CuO 002/111
80	2,327	211?	2,343	CuO 111/200
20 br	2.125		•	?
50	2,028	220	2,029	
10	1.865		•	$CuO 20\overline{2}$
70	1,657	222	1,657	
50	1.592	320	1.592	
30 br	1.437	400	1,435	
20 br	1,39	410	1,392	

I	d (Å) beobachtet	hkl	d (A) berechnet	d (A) [5]	
100	5,806	001	5,815	5 74	<u> </u>
40	5,780	100	5,770	0,14	
20	4,094	101	4,096		
30	3,333	110	3,332	3,33	
40	2,906	002	2,908	9 80	
$80_{\mathbf{D}}$	2,892	111	2,891	2,00	
		200	2,885		
40	2,597	102	2,597	0 5 9	
90	2,581	201	2,585	2,38	
60	2,049	202	2,048	2,044	
10	1,938	003	1,938		
30	1,836	103	1,837	1.005	
30	1,825	301	1,826	1,800	
30	1,745	212	1,745	1,743	
50	1,666	220	1,666	1,666	
40	1,609	203	1,609	1 004	
50	1,600	221	1,601	1,604	
		310	1,600		
50 br	1,445	213	1,449		
	,	222	1,445	1,446	
		400	1.443		
40	1.400	401	1,400	1.394	
40	1,298	204	1.298	,	
40	1.293	402	1,292		
30	1,264	223	1.263		

Indizierte Reflexe 3 Cu(OH)₂ · CaCl₂ · H₂O

Dieses ist mit dem von Fratini und Fumasoni [5] für $3 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot H_2O$ angegebenen identisch, wenn auch diese Autoren keine Gitterebenenabstände, sondern nur die Diffraktometerkurve veröffentlicht haben.

Die Elementarzelle der gut kristallisierten Verbindung ist hexagonal, $a = 6,66_3$ Å, $c = 5,81_5$ Å, $c/a = 0.872_7$. Der Aspekt im Kristallsystem is primitiv. (Liste der beobachteten und berechneten Reflexe siehe Tabelle 4.)

Die Rehydratisierung zu $3 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot H_2O$ hängt von den Bedingungen der vorhergehenden Dissoziation

 $4 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot 3,5 \operatorname{H}_2O \rightarrow 4 \operatorname{CuO} + \operatorname{CaCl}_2 + 7,5 \operatorname{H}_2O$

ab. Wird das Ausgangsprodukt 4 h auf 430°C erhitzt, so tritt die nachfolgende Bildung des rehydratisierten Produkts nur zögernd auf.

Ein Vergleich der Gitterkonstanten der verschiedenen Verbindungen, die sich bei Zersetzung und Rehydratation bilden, lässt auf deren nahe kristallographische Verwandtschaft schliessen (Tabelle 5).

Die Form der Kristallite während der Erhitzung wurde am Rastermikroskop * mit Erhitzungszusatz bis 350°C im Vakuum verfolgt (Abb. 4). Es ist

TABELLE 4

^{*} Stereoscan S4.

	Verhindung	a (Å)	h (Å)	<i>c</i> (A)	A	Volumen (A ³)
	Brinning	() m	/> >	1/ -		
I	4 Cu(OH)2 · CaCl2 · 3,5 H2O	9,392	(9,392)	15,077	90°	1329,9
II	4 $Cu(OH)_2 \cdot CaCl_2 \cdot 0,5 H_2O$	$9,34_{2}$	$(9, 34_2)$	7,533	90°	657,43 = (1/2)1314,8
		$a_{\Pi} \sim a_{\Pi}$		$c_{\rm II} \sim (1/2) c_{\rm I}$		
Ħ	$2 \operatorname{Cu}(OH)_2 \cdot \operatorname{CuO} \cdot \operatorname{CaCl}_2 \cdot H_1O$	5,74	5,74	5,74	90°	189,12
		$a_{\rm III} \sim a_{\rm I} \sqrt{3/8}$				
١V	CuO	4,684	3,425	5,129	$99,47^{\circ}$	81,16 = (1/8)649,30
		$a_{\rm IV} \sim (1/2) a_{\rm I}$				
٧	$3 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot \operatorname{H}_2 O$	6,663	(6,663)	5,815	$\gamma = 120^{\circ}$	223,57
		$a_{\rm V} \sim a_{\rm I}/\sqrt{2}$				

TABELLE 5

Vergleichende Tabelle der Gitterkonstanten

•

im Ganzen keine Veränderung der Kristalle sichtbar, doch tritt oberhalb $\sim 200^{\circ}$ C eine Keimneubilding auf. Wir haben es bei der mehrstufigen Zersetzung mit einer Pseudomorphose zu tun. Inwieweit es sich um echte topotaktische Umwandlungen handelt, wird an Hand von Strukturbestimmungen zu entscheiden sein. Mindestens für den ersten Schritt 4 Cu(OH)₂ · CaCl₂ · 3,5 H₂O \Rightarrow 4 Cu(OH)₂ · CaCl₂ · 0.5 H₂O ist Topotaxie mit grösster Wahrscheinlichkeit anzunehmen.

INFRAROTSPEKTRUM

Von allen Produkten wurden IR Spektren (Gerät Perkin-Elmer 283, Bereich 4000-ca. 300 cm⁻¹, KBr Pille) aufgenommen (Abb. 5).

Zur Bestimmung der OH und H₂O Banden wurden auch ein deuteriertes Produkt mit D₂O und ND₃ hergestellt (nur 4 Cu(OD)₂CaCl₂ · 3,5 D₂O). Alle

TABELLE 6

Infrarotspektrum von 4 Cu(OH)₂ · CaCl₂ · 3,5 H₂O

Intensität *	Wellen: u (cm ⁻¹	zahl)	Deuteriert (cm ⁻¹)	ν _{OH} /ν _{OD}
mst s (S) mst ms (S)	3620 3610 3580 3490 3440		2680 2670 2645 2560	1,35 1.35 1,35 1,35
st st st ss (S)	3360 3155 3120 2940	^р Он, ^р Н ₂ О	2480 2355 2330	1,35 1,34 1,34
m ms (S) mst	2090 1660 1610	δ _{H2O} + ρ _{H2O} δ _{H2O}	1530 1220 1195	1,37 1,36 1,35
st m (S) st st	1070 990 925 900	δ _{OH}	780 725? 695 675	1,37 1,37? 1,33 1,33
m ms (S) m (S) - st m (S) s s s s s s	750 630 590 477 465 400 375 305 290	ρ _{H2} O ν _{Cu—O}	470? 435? 385 470	1,34? 1,36? 1,35

* Intensitätsskala: st = stark; mst = mittelstark; m = mittel; ms = mittelschwach; s = schwach; ss = sehrschwach; (S) = Schulter.

Abb. 5. A, $4 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot 3,5 \operatorname{H}_2O$; B, $4 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot 3,5 \operatorname{H}_2O + 4 \operatorname{Cu}(OD)_2 \cdot \operatorname{CaCl}_2 \cdot 3,5 \operatorname{D}_2O$; C, A $(165^{\circ}C/1 \text{ h}) \rightarrow 4 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot 0,5 \operatorname{H}_2O$; D, A $(210^{\circ}C/1 \text{ h}) \rightarrow \operatorname{CuO} + 2 \operatorname{Cu}(OH)_2 \cdot \operatorname{CuO} \cdot \operatorname{CaCl}_2 \cdot \operatorname{H}_2O$; E, A $(350^{\circ}C/1 \text{ h} + 2 \text{ Tage an Luft bei } 22^{\circ}C) \rightarrow \operatorname{CuO} + 3 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot \operatorname{H}_2O + \operatorname{Spur CaCO}_3(\operatorname{Calcit}).$

Intensität	Wellenzahl v (cm ⁻¹)	
ms (S)	3630	
ms (S)	3580	
st	3530	
st	3490	
ms (S)	3460	
m	3370	
m (S)	3140	
st	2950	
mst	2260	
s	2140	
S	2030	
m	1620	
SS	1450	
mst	1170	
st	1145	
st	1090	
m (S)	1070	
st	990	
st	8 9 0	
st	735	
mst	630	
st	500	
m	400	
ms (S)	375	
mst	310	

Infratotspektrum	von	4 Cm	(ሰ ዘ ነ_	· CoCl ·	05	$\mathbf{H}_{-}\mathbf{O}$
mina o topensi ann	1011	- 04	U1172	U aUI	0,0	1120

TABELLE 7

Spektren sind durch das Auftreten zahlreicher Banden gekennzeichnet, wobei wir 5 Bandengebiete unterscheiden können. (vgl. Tabellen 6–9).

$3700-2500 \ cm^{-1}$

In diesem Gebiet liegen die Valenzschwingungen ν_{OH} und ν_{H_2O} . Für OH Gruppen, die durch Wasserstoffbrücken ungestört sind, treten Frequenzen oberhalb 3600 cm⁻¹ auf (Glemser [8]). Durch Wasserstoffbrückenbildung werden Valenzbanden zu niedrigeren Frequenzen verschoben.

$4 Cu(OH)_2 \cdot CaCl_2 \cdot 3,5 H_2O$

Es treten mehrere deutliche Banden zwischen 3620 und 3150 cm⁻¹ auf. Daneben eine ganz schwache Schulter bei 2950 cm⁻¹.

$4 Cu(OH)_2 \cdot CaCl_2 \cdot 0,5 H_2O$

Bei 2950 cm⁻¹ besteht nun eine sehr starke Bande, die auf eine starke Wasserstoffbrückenbildung schliessen lässt.

$CuO + 2 Cu(OH)_2 \cdot CuO \cdot CaCl_2 \cdot H_2O$

Die freien v_{OH} (bzw. $v_{H_{2}O}$) Banden sind nicht mehr vorhanden ent-

· · · · •		-	
Intensität	Wellenzahl ν (cm ⁻¹)		
st	3525	<u> </u>	- <u> </u>
st	3480		
m (S)	3450		
mst	2950		
S	2260		
ms	1625		
m	1170		
mst	1145		
ms	1090		
s (S)	1020		
ms	990		
st	920		
mst (S)	890		
st	710		
s (S)	580 (CuO)		
m (S)	510 (CuO)		
st	450		
st	420		

Infrarotspektrum von CuO + 2 Cu(OH)₂ · CuO · CaCl₂ · H₂O

sprechend dem Grad der Dehydratisierung und Dehydroxylierung ist auch die Bande bei 2650 cm⁻¹ schwächer.

$CuO + 3 Cu(OH)_2 \cdot CaCl_2 \cdot H_2O$

390

320 (CuO)

Zwei bzw. mehrere nicht aufgelöste Banden um 3450 cm⁻¹ lassen auf einen mittleren Grad der Wasserstoffbrückenbildung schliessen.

TABELLE 9

m

m

```
Infrarotspektrum von CuO + 3 Cu(OH)<sub>2</sub> · CaCl<sub>2</sub> · H<sub>2</sub>O
```

Intensität	Wellenzahl $\nu (\mathrm{cm}^{-1})$	
st	3510	
st	3450	
st	1620	
ms	1420 v ₃ CO ₃	
mst	960	
st	920	
S	870 $\nu_2 CO_3$	
st	700	
m	590 (CuO)	
st	460 (+CuO)	
m	405	
S	320 (CuO)	

TABELLE 8

2500-1900 cm⁻¹

In diesem Gebiet sind Kombinationsschwingungen zwischen der inneren Knickschwindung des Wassers und der gehinderten Rotation des H_2O Moleküls zu finden [9].

$4 Cu(OH)_2 \cdot CaCl_2 \cdot 3.5 H_2O$

Die Bande bei 2090 cm⁻¹ und die Knickschwingungen bei 1610 cm⁻¹ ergibt für die Frequenz der gehinderten Rotation 480 cm⁻¹. Es ist anzunehmen, dass die Grundschwingung etwas höher frequent ist und bei 520 cm⁻¹ liegt. Im deuterierten Spektrum ist sie nach 385 cm⁻¹ verschoben.

$4 Cu(OH)_2 \cdot CaCl_2 \cdot 0,5 H_2O$

Hier treten eine mittelstarke Bande bei 2260 cm⁻¹ und drei schwächere Banden bei 2140 cm⁻¹, 2020 cm⁻¹ und ca. 1930 cm⁻¹ auf. Für die Bande bei 2260 cm⁻¹ berechnet sich in Verbindung mit $\delta_{H_{2}O}$ die Grundschwingung zu 640 cm⁻¹. Die stärkere Bindung des Wassers an dem Molekülrest erhöht die Frequenz der gehinderten Rotation [9].

 $CuO + 2 Cu(OH)_2 \cdot CuO \cdot CaCl_2 \cdot H_2O$

Dieses Gemisch hat eine sehr schwache Kombinationsschwingung bei 2260 cm⁻¹ entsprechend einer schwachen Schulter bei 630 cm⁻¹.

$CuO + 3 Cu(OH)_2 \cdot CaCl_2 \cdot H_2O$

In diesem Spektrum sind keine Kombinationsschwingungen sichtbar.

1900-1200 cm⁻¹

Dieser Frequenzbereich ist wichtig durch die Knickschwingung von Wasser bei 1610–1630 cm⁻¹. Die Anwesenheit einer deutlichen Bande an dieser Stelle verbietet das zweite Zwischenprodukt als CuO + 3 Cu(OH)₂ · CaCl₂ zu charakterisieren. Aus diesem Grunde geben wir die Formel mit CuO + 2 Cu(OH)₂ · CuO · CaCl₂ · H₂O an.

Beim rehydratisierten Produkt haben wir gelegentlich bei $1410-1430 \text{ cm}^{-1}$ eine schwache Bande beobachtet. Diese entspricht einer geringfügigen Verunreinigung mit Calcit ($\nu_3 \text{CO}_3^{-2}$), die auch röntgenographisch nachgewiesen werden konnte.

$1200-600 \ cm^{-1}$

Dies ist der Bereich der OH Knickschwingungen, welche durch verstärkte Wasserstoffbrückenbildung nach höheren Frequenzen verschoben werden. Entsprechend liegen die Frequenzen der δ_{OH} Banden bei 4 Cu(OH)₂ · CaCl₂ · 0,5 H₂O ca. 100 cm⁻¹ höher als bei 4 Cu(OH)₂ · CaCl₂ · 3,5 H₂O. Dasselbe gilt für das zweite Zwischenprodukt 2 Cu(OH)₂ · CuO · CaCl₂ · H₂O. Bei der Verbindung 3 Cu(OH)₂ · CaCl₂ · H₂O sind die δ_{OH} Banden wieder deutlich zu niederen Frequenzen verschoben.

 $600-300 \ cm^{-1}$

In diesem Gebiet treten neben schon erwähnten Banden der gehinderten Rotation des Wassers Gitterschwingungen auf. Die starke Bande bei 480 cm⁻¹ ist ν_{Cu-O} zuzuordnen [10]. Bei den CuO haltigen Mischprodukten sind dessen Banden [11] deutlich sichtbar.

ERGÄNZENDE ARBEITEN

Zusätzlich zu der Herstellung von 4 $Cu(OH)_2 \cdot CaCl_2 \cdot 3,5 H_2O$ durch Korrosion von Kupfer in $CaCl_2$ —NH₃ lösungen wurden auch einige Versuche mit Fällungreaktionen gemacht. 0,1 N Lösungen von CuCl₂ und CaCl₂ wurden im Verhältnis Cu/Ca = 4/1 ("Versuch 1") oder 1/1 ("Versuch 2") gemischt und mit festem CaO im Überschuss versetzt. Nach 3 Tagen wurde der Rückstand abfiltriert mit Wasser und Aethanol gewaschen, bei 60°C getrocknet und mit Röntgenbeugung analysiert

"Versuch 1": $3 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot H_2O + \operatorname{Ca}(OH)_2$

"Versuch 2": $4 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot 3,5 \operatorname{H}_2O + \operatorname{Cu}(OH)_2 + \operatorname{Ca}(OH)_2 + \operatorname{CaCO}_3$

DISKUSSION

Die Ergebnisse der Arbeit entsprechen der neueren Patentliteratur insoweit, als diese hauptsächlich von zwei Calciumkupferhydroxychloriden spricht [1,2]. Geringere Anweichungen vom exakten Verhältnis Cu : Ca : Cl 4:1:2 bei dem von uns als $4 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot 3,5 \operatorname{H}_2O$ bezeichneten Produkt werden auch von [1] beobachtet. Ebenso eine gewisse Variabilität des Wassergehalts. Die Verbindung $3 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot \operatorname{H}_2O$ wurde von uns und Fratini und Fumasoni [5] mit einem Kristallwasser gefunden, während Guzy und Roever [2] zwei Kristallwasser postulierten. Die thermoanalytischen Angaben von Ah-Dong Leu et al. [6], welche von einer Verbindung $4 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2$ sprechen, sind mit unseren Ergebnissen nicht ohne weiteres vereinbar. Die Zetsetzungstemperatur von $3 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot \operatorname{H}_2O$ welche Fratini und Fumasoni [5] bestimmt haben, weicht von unserem Resultat deutlich ab. Dies kann damit erklärt werden, dass wir nur das Gemisch $3 \operatorname{Cu}(OH)_2 \cdot \operatorname{CaCl}_2 \cdot \operatorname{H}_2O + \operatorname{CuO}$ thermoanalytisch untersuchten.

Ob unser Infrarotspektrum von 3 $Cu(OH)_2 \cdot CaCl_2 \cdot H_2O$ dem von Fontana und Fabbri [4] entspricht, bleibt ungewiss, da die Originalarbeit nicht zu beschaffen war.

Beim Pulverdiagramm von 4 Cu(OH)₂ · CaCl₂ · 3,5 H₂O besteht eine auffällige Aehnlichkeit mit dem von Calumetit Cu(OH,Cl)₂ · 2 H₂O, einem orthorhombischen Mineral [12]. Wir haben in Tabelle 1 die Gitterebenenabstände von Calumetit neben unsere eigenen Werte gesetzt.

VERDANKUNGEN

Die Verfasser danken dem Institut für Kristallographie und Petrographie der ETH Zürich (Herrn Dr. Ch. Bärlocher) für die Röntgenaufnahme mit der Guinier-Huber Kamera und dem Cytologischen Labor der Universität Zürich (Prof. Dr. H.R. Hohl) für die Erlaubnis der Benützung des Rastermikroskops mit Heiztisch. Frau D. Metzger, die Herren J. Frolik, H. Senn und U. Weissen (Gebrüder Sulzer AG) haben bei experimentellen Arbeiten geholfen. Auch Ihnen sei bestens gedankt.

LITERATUR

- 1 Wacker Chemie, H. Baumgartner, DBP 1083794 (1958/60).
- 2 Duisburger Kupferhütte, E. Guzy und W. Roever, Deutsche Offenlegungsschrift 1592249 (1965/70).
- 3 F. Willaume und O. Binder, C.R. Acad. Sci., 204 (1937) 1363.
- 4 P. Fontana und G. Fabbri, Boll. Sci. Fac. Chim. Ind. Bologna, 15 (1957) 109; Chem. Abstr., 52 (1958) 19513 h.
- 5 N. Fratini und S. Fumasoni, Ann. Chim. (Rome), 50 (1960) 1558.
- 6 Ah-Dong Leu, P. Ramamurthy und Etalo A. Secco, Can. J. Chem., 51 (1973) 3882.
- 7 W. Feitknecht und K. Maget, Helv. Chim. Acta, 32 (1949) 1653.
- 8 O. Glemser, Angew. Chem., 73 (1961) 785.
- 9 E. Hartert und O. Glemser, Z. Elektrochem., 60 (1956) 746.
- 10 J.R. Ferraro und W.R. Walker, Inorg. Chem., 4 (1965) 1382.
- 11 R.A. Nyquist und R.O. Kagel, Infrared Spectra of Inorganic Compounds (3000-45 cm⁻¹), Academic Press, New York, 1971.
- 12 S.A. Williams, Am. Mineral., 48 (1963) 614; vgl. Powder Diffraction File 15-669.