THE EXCESS ENTHALPIES OF LIQUID FREON-22 + NJV-DIMETIIYLACETAMIDE M:XTURES FROM 263 TO 363 K AT 5500 kPa *

J.J. CHRISTENSEN **, M.E. POST, T.A. MCFALL and R.M. IZATT +*

Departments of Chemical Engineerin&? and Chemistry, Brieham Young University, FTOUO, UT 84602 (U.S.A.)

(Received 9 February 1981)

ABSTRACT

The excess enthalpies, H^{E} , for liquid Freon-22 + N,N-dimethylacetamide mixtures **were measured from 263 to 363 K at 5500 kPa using isothermal flow calorimeters with a reproducibility of better than 1 %. At all temperatures the mixtures showed negative (exo**thermic) nonideal behavior of $H^\mathbf{E}.$ The $H^\mathbf{E}$ values are essentially invariant with tempera **ture from 263 to 363 K,** but HE **values** become successively more negative for 343, 353, **and 363 K. The Redlich-Kister equation** was **found to give** 3 **good fit of the** *HE* **data over the entire composition and temperature ranges investigated.**

INTRODUCTION

Recent activities in the development of solar-powered absorption and Rankine air conditioning technologies have established a need to obtain more detailed thermal characteristics of fluids used in these applications. Proper design of any refrigeration cycle is dependent upon the ability to model and predict accurately the thermodynamic properties of the working fluid. If the working fluid is a mixture, heat of mixing, H^E , data are one of the importan_j thermodynamic properties to be determined. We have developed high temperature, high pressure flow calorimeters suitable for making H^E measurements over wide temperature and pressure ranges $[1-3]$. The calorimeters are suitable for measuring either endothermic or exothermic *HE* values from 253 to 423 K and from 100 to 41000 kPa (6000 psi). Energy effects from 0.15 to 30 J min⁻¹ can be measured to an accuracy of $\pm 1\%$. The units have been used to measure H^E values for several hydrocarbon-alcohol [4-9] and alcohol-alcohol [10] binary mixtures.

We have initiated a program to measure H^E for several refrigerant-absorbent fluid mixtures that are possible working fluids for advanced absorption cycles. The present work reports H^E for Freon-22 (monochlorodifluoromethane) and N.N-dimethylacetamide mixtures over the entire composition range at 263,283,303,323,343,353 and 363 K and 5500 kPa.

^{*} Contribution No. 246 from the Thermochemical Institute, Brigham Young University.

^{*+} To whom correspondence should be addressed.

EXPERIMENTAL

Calorimetric m oasrirements

The two high pressure flow calorimeters that were used for the measure**ments** and the esperimental procedure are described in the literature [L,3]. One unit was used to measure H^E from 263 to 323 K (low temperature unit) while the other unit was used from 323 to 363 K (high temperature unit). Measurements made at 323 K using either calorimeter agreed within experimental error. All runs were made at 5500 kPa. This operating pressure was chosen to insure that the pure component? and the mixtures were liquid in the calorimeter. All runs were made in the steady state (fixed composition) mode. The total flow rate was $0.0042 \text{ cm}^3 \text{ s}^{-1}$ at 263, 283, 303 and 323 K. The flow rate was reduced to 0.0039 cm³ s⁻¹ for the runs of 343, 353 and 363 K to decrease the rate of energy generation in the calorimeter.

Materials

The materials employed were Freon-22 (E.I. DuPont De Nemours and Co., $99+%$ pure) and N,N-dimethylacetamide (Aldrich Chemical Company, $99 + \%$ pure). The N, Λ -dimethylacetamide was stored in sealed bottles over approximately 50 cm" of Davison molecular sieves (3 nm effective pore size) and, just prior to use, was filtered through a Gelman Alpha Metrical filter $(0.45 \mu m)$ pore diameter) and degassed for 10 min in an ultrasonic bath. Further purification of either material is not necessary $[11]$ since the other substances present in small amounts are espected to be sufficiently close in nature to the primary substance that H^E is not significantly affected. Flow rates measured in $cm³ s⁻¹$ were corrected to moles $s⁻¹$ and to mole fractions using the densities of the two pure materials estimated as follows. A density of 1.2154 g cm⁻³ at 298.15 K and 5500 kPa for Freon-22 was obtained by interpolation of the data of Zander in ref. 12. A density of 0.9422 g cm⁻³ at 298.15 K and 5500 kPa for N,N-dimethylacetamide was obtained by making an isothermal compressibility correction to the density at 298.15 K and 101 kPa [13].

RESULTS AND DISCUSSION

Values of the mole fraction, x, and experimental excess enthalpies, H^E (expt.), are given in Table 1 for the seven temperatures studied. The values of the coefficients, C_i in the equation

$$
H^{E} (\text{J mole}^{-1}) = x(1-x) \sum_{i=0}^{N} C_{i} (1-2x)^{i}
$$
 (1)

were found by a least squares curve-fitting program and are given in Table 2 together with standard deviations, σ . Values of H^E (calc.) reported in Table 1 were calculated from eqn. (1). The numerical values of $H^E(expt.)$ and

TABLE1

Experimental and calculated excess enthalpies, *HE, at* 5500 kPa and various **temperatures** for (x) Freon-22 + $(1 - x)N$, N -dimethylacetamide

x	$-H^{\rm E}$ (J mole ⁻¹)		\propto	$-H^{\text{E}}$ (J mole ⁻¹)	
	Expt.	Calc.		Expt.	Calc.
$T = 343.15 K$					
0.0891	767	770	0.5944	3785	3800
0.1262	1080	1082	0.6040	3828	3800
0.1626	1368	1383	0.6327	3782	3779
0.1865	1589	1579	0.6516	3746	3746
0.2452	2053	2049	0.6609	3706	3724
0.3022	2493	2484	0.6795	3680	3669
0.3577	2865	2873	0,6887	3636	3636
0,4117	3235	3207	0.7070	3564	3558
0.4434	3374	3377	0.7252	3475	3464
0.4642	3487	3475	0.7959	2969	2944
0.4950	3576	3600	0.8387	2475	2504
0.5153	3666	3667	0.8638	2229	2201
0.5354	3700	3721	0.8804	1961	1983
0.5454	3731	3743	0.9212	1373	1385
0.5651	3778	3777	0.9452	995	995
$T = 353.15 K$					
0.0258	240	235	0.5651	3913	3879
0.1015	915	907	0.5944	3907	3906
0.1746	1521	1536	0.6232	3888	3899
0.2452	2118	2120	0.6516	3870	3860
0.3135	2665	2647	0.6795	3789	3786
0.3795	3095	3102	0.7070	3679	3679
0.4117	3295	3297	0.7341	3503	3536
0.4434	3501	3469	0.7872	3170	3148
0.4745	3590	3614	0.8387	2627	2626
0.5052	3708	3732	0.8887	1989	1975
0.5354	3813	3821	0.9373	1179	1202
$T = 363.15$ K					
0.0258	271	246	0.5651	4143	4158
0.1015	989	975	0.5944	4219	4200
0.1746	1642	1664	0.6232	4226	4211
0.2452	2287	2294	0.6795	4121	4136
0.3135	2873	2852	0.7341	3900	3923
0.3795	3309	3325	0.7872	3539	3561
0.4434	3690	3707	0.8387	3047	3039
0.4745	3857	3860	0.8887	2379	2346
0.5052	4002	3987	0.9373	1463	1470
0.5354	4112	4087			

TABLE1 **(continued)**

 H^{E} (calc.) are estimated to be accurate to within $\pm 2\%$.

Figure 1 is a plot of H^E vs. mole fraction of Freon-22 at the temperatures of 303, 323, 353, and 363 K. Values of H^E at 263, 283 and 303 are essentially identical (Table 1) and only the curve for 303 K is given in Fig. 1. As shown in Table 1 and Fig. 1, all the H^F values are exothermic and large in magnitude. In Table 3 representative $H^\mathtt{c}$ values for different binary mixtures at $x = 0.5$ are compared, Positive H^e values are usually indicative of only

TABLE 2

physical interactions between the molecuies in the mixture while negative H^E values usually indicate some degree of chemical interaction in the mixture. The large negative value of H^{Σ} for the Freon-22 + N,N-dimethylacetamide system indicates much stronger chemical interaction in this system than is found in any of the other systems in Table 3. This large negative *HE* value most likely results *from* extensive hydrogen bonding between the Freon-22 hydrogen and the nitrogen on the acetamide. The hydrogen bonding is undoubtedy promoted by the presence of the electronegative fluorine and chlorine atoms in the Freon-22. Investigation of similar systems involving other Freons should allow correlations to be developed between *HE* and the electronegativity of the Freon carbon atom.

Fig. 1. Plot of H^E vs. x for mixtures of (x) Freon-22 + (1 - x) N, N-dimethylacetamide at 303,323, 353, and 363 I(.

TABLE 3

Representative H^E values at $x = 0.5$ for several binary systems at 298 K

Binary mixtures	H^{E} (J mole ⁻¹)	
$Cyclohexane + hexane [1]$	210	
n -Pentanol + decanol [10]	150	
Ethane $+$ hexanol $[8]$	350	
Water $+$ ethyl alcohol $[15]$	-140	
Freon-22 + N , N -dimethylacetamide	-3350	

The H^E values in Table 1 and Fig. 1 at a given mole fraction of Freon-22 are essentially invariant with temperature from **263** to **303** K. However, successively greater increases in $-H^{\text{E}}$ are seen for the temperatures 343, 353, and 363 K. This change in $-H^{\varepsilon}$ with temperature indicates a correspondin change in the value of $\Delta C_{\rm p}$ [$C_{\rm p}$ (mixture) - $C_{\rm p}$ (Freon-22) - $C_{\rm p}(N,N$ -d methylacetamide)] for the mixing process from approximately zero in the 263-303 K range to an increasingly larger negative number in the $343-$ 363 K range. This is in agreement with the statement in Hirschfelder et al. [14] that the heat capacity of a one-component system at constant pressure, C_p , becomes infinite at the critical point. The critical temperature and pressure of Freon-22 are 369.33 K and 4989 kPa, respectively. It will now be of interest to extend our measurement of H^E values for this system into the critical temperature range of Freon-22.

REFERENCES

- 1 J.J. Christensen, L.D. Hansen, D.J_ Entough and R.M. Izatt, Rev. Sci. Instrum., 47 (1976) 730.
- 2 J.J. Christensen, R.M. Izatt, D.J. Eatough and L.D. Hansen, J. Chem. Thermodyn., 10 (1.978) 25.
- 3 J.J. Christensen, L.D. Hansen, R.M. Izatt, D.J. Eatough and R.M. Hart, Rev. Sci. Instrum., in press.
- 4 J.J. Christensen, B.E. Rossiter, T.K. O'Neill and R.W. Hanks, J. Chem. Thermodyn., 10 (1978) 829.
- 5 J.J. Christensen, R.W. Izatt, B.D. Stitt and R.W. Hanks, J. Chem. Thermodyn., 11 (i973) 261.
- 6 J.J. Christensen, R.M. Izatt, B.D. Stitt, R.W. Hanks and K.D. Williamson, J. Chem Thermodyn., 11 (1979) 1029.
- 7 S.G. Collins, J.J. Christensen, R.M. Izatt and R.W. Hanks, J. Chem. Thermodyn., 12 (1980) 609.
- 8 T.A. McFall. ME. Post. S.G. Collins. J.J. Christensen and R.M. Izatt, J. Chem. Thermodyn., 13 (1981) 41.
- 9 M.E. Post, T.A. McFall, J.J. Christensen and R.M. Izatt, J. Chem. Thermodyn., 13 (1981) 77.
- 10 H.H. Sun, J.J. Christenser., R.M. Izatt and R.W. Hanks, J. Ctem. Thermodyn., 12 (1980) 95.
- 11 C-G. Savini, D.R. Winterhalter and H.C. Van Ness, J. Chem. Eng. Data, 10 (1965) 168.
- **12 E-.1. DuPont De Nemours and Company,** *Freon* **Products Division, Wilmington, Dela**ware, Pamphlet X-36E.
- 13 R.C. Weast (Ed.), Handbook of Chemistry and Physics, CRC Press, Cleveland, Ohio, 56th edn., 1975-1976.
- 14 3.0. Hirschfelder, C.F. Curtiss and R.B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York, 1954, p. 367.

 $\mathcal{A}^{\mathcal{A}}$

15 J.A. Larkin, J. Chem. Thermodyn., 7 (1975) 137.