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ABSTRACT 

The theory of solid state reaction kinetics considers the dependence of reaction rates 
on temperature (I’) and progress of the reaction (0). The term describing the dependence 
of reaction rates on temperature is usually assumed to be an Arrhenius-type equation: 
k(T) = 2 exp(--E/ST), or the equation predicted by transition state theory: k(T) = ZTb 
exp(--E/RT). With these assumptions, the equation g(a) = fk(T) has been derived, and 
this form has been satisfactorily applied for the description of solid state reaction kinetics 
under isothermal conditions. In this work equations similar to those applied in the case of 
isothermal conditions are proposed for describing the reaction kinetics under linear tem- 
perature increase conditions 

g(a) = :Z exp(--E/hT) if k(T) = 2 exp(-E/RT) 

%@I = ‘2X? exp(-E/RT) 
@ 

if k(T) - ZTb exp(--E/ST) 

An attempt has been made to apply the above equations, as well as the differential 
form from the first equation 

darldf = f(a)Z(l + EIRT) exp(-E/RT) 

to a non-isothermal thermogravimetric experiment. The evaluated kinetic constants are in 
good agreement with those estimated previously by applying widely used methods of cal- 
culation. Therefore, these equations may be considered as simpler and more adequate 
forms for the description of reaction kinetics under linear temperature increase condi- 
tions. 

Two new statistical functions have been applied in this work which permit the evalua- 
tion of S and 2 from any kinetic equation_ These functions may be used instead of the 
linear interpoiation method, because they allow one to distinguish more easily between 
possible forms of g(a) or f(a) functions. This approach is recommended especially if one 
intends to use differential kinetic equations. 

INTRODUCTION 

Knowledge of reaction kinetics is important for pure scientific, as well as 
practical reasons. The primary objectives of kinetic considerations are: (i) to 
attempt to determine simple mathematical descriptions of the process, and 
(ii) to calculate kinetic parameters (or constants). Several physicql models 
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have been proposed for the description of the kinetics of gaseous systems 
[l-5]. Some of these have been extended to the liquid state [ 5,6]. Solid 
state reaction kinetics is still tenuous and a general theory which could 
explain satisfactorily most of the interesting problems is yet to come [ 7-93. 
In most work authors have attempted to adjust the accepted models for 
gaseous and liquid phase reaction kinetics to the solid state reaction kinetics. 
The general approach based on an Arrhenius-type equation has been adopted 
successfully in isothermal methods [ 81. Additional problems appeared, how- 
ever, when it was necessary to extend the same approach to non-isothermal 
conditions. These problems have arisen from both the imperfections of the 
accepted models for solid state reactions, and from difficulties in the dis- 
covery of appropriate equations describing the reaction kinetics. The dy- 
namic methods of investigation are becoming increasingly popular, so it is 
understandable that the validity of applied mathematical apparatus is very 
important. 

In this communication I would like to present some observations which 
occurred to me during the search for a more accurate method of calculating 
non-isothermal kinetics. Of course these are concerned with the basic deriva- 
tive form proposed in the literature for the description of reaction kinetics 
under linear temperature increase conditions. 

Within the past 10 years, the greatest attention has been given to proving 
(or disproving) the validity of the equation 

da = (E,, dt+ (s), dT (1) 

which is a consequence of the assumption that the degree of conversion (a) 
is a function of temperature (7’) and reaction time (t) in the case of experi- 
ments performed under non-isothermal conditions [9-421. It is not my 
intention to extend the discussion concerned with the above problem; 
rather, I would like to mention some consequences which could arise if 
eqn. (1) is assumed to be valid. I decided to publish this note, because, in 
spite of general disapproval of eqn. (l), some aspects of this problem are still 
under consideration [ 38-42]_ 

THE GENERAL KINETIC EQUATIONS 

The rate of isothermal processes involving solids may be considered as a 
function of two parameters: temperature (Z’), and degree of conversion (ar). 
Bradley [ 431, starting from the assumption of Polanyi and Wigner [44], 
derived an equation which was satisfactorily applied for the description of 
various heterogeneous processes [ 17,45-471. 

2= f@) k(T)[l - exp(AG/RT)] (2) 

where t is time, and AG = RT(X/K) (K is the equilibrium constant and X is 
the product of activities of all components). For most processes AG, which 
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represents Gibbs free energy difference, reaches high negative values [ 17,47]_ 
This means that the given process takes place “very far” from equilibrium 
and this permits us to neglect the last term in eqn. (2). 

$ = f(a) k(T) 

The form of function k(T) depends on the character of the heterogeneous 
reactions. For most chemical processes the assumption is made that solid 
state reactions are activated-type processes. In this case, the function k(T) 
may be expressed in the form of the Arrhenius equation 17-9 J 

k(T) = 2 exp(-E/RT) (4) 

where E is the apparent activation energy, and 2 is the pre-exponential fac- 
tor. The transition state theory, as well as other modern theories of reaction 
rate, predict the following general relationship [ 24,48-501 

k( 7’) = Zp exp(-E/M’) (5) 

where b is constant. 
The degree of conversion (or) is a function of all parameters which deter- 

mine the kinetics of a given process [ 173. Among the parameters influencing 
CX, only time and temperature have been distinguished in the description of 
the reaction kinetics. One may assume that other parameters remain con- 
stant during the course of the reaction. They describe the overall mechanism 
of a given process, i.e., the form of function f(ar) in eqn. (3). 

There is much controversy as to whether the fraction reacted (a) can be 
considered as a function of both time and temperature, or only of time 
[ 9-421. As was mentioned earlier in this work, we assume n! = f( t, 7’). There- 
fore, the following expression may be written 

(6) 

In isothermal experiments (&u/a T’), remains constant and dT/dt = 0, so 
the last term of eqn. (6) is equal to 0. Therefore, considering eqns. (3), (5) 
and (6) one may obtain 

O1 da! s - = g(cr) = tZTb exp(-E/RT) 
c f(a) - 

(7) 

where t results from the integral 1; dt. 
The functions describing the mechanism of the thermal processes, g(cu) 

and their differential forms f(a), have been discussed elsewhere by many 
authors [ 51-561. In non-isothermal experiments, however, conditions under 
which the thermal process takes place differ from those for isothermal mea- 
surements. It is difficult to discuss generally problems concerned with non- 
isothermal reaction kinetics. Therefore, further considerations will be limited 
to the linear temperature increase conditions, wherein dT/dt = @ (heating 
rate). For the first term of the right-hand side of eqn. (6) one can substitute 
the appropriate forms f,or isothermal conditions [eqns. (3), (4) or (5)]. This 
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leads to the following equation 

exp(-WRY’) dT + - 

The functional dependence of the degree of conversion on temperature 
generally is not known. Therefore, it is impossible to predict the values of 
(i3a/i3T),. The above discussed problem can be resolved, however, if one 
assumes that the dependence of 01 on T results from the kinetic relationships 
for isothermal conditions. After differentiation of eqn. (7) one may obtain 

But g’(cv) = l/f(a), and this fact results directly from eqn. (7) [33] _ On the 
other hand, f may be expressed as 

jdt=l,@[ dT t=T;To 
0 To 

(10) 

where To is the initial temperature. 
Substitution of eqns. (9) and (10) into eqn. (8) leads to the form 

Application of the integration procedure presented in Appendix A results in 
the final equations 

g(a) =fT”(T-To) exp(-WRT) (12) 

and in the case b = 0 

g(a) = f (T - To ) exp(-WRT) (13) 

By differentiating eqn. (12) and taking into account that g’(ar) = l/f(a) 
and dT/dr = a, one may obtain 

daldt = f(a) ZTb [l + (b/T + E/‘KP j(T - To )] exp(-E/RT) 

or in the case b = 0 
(14) 

daldr = f(a) 211 + E/RT2 (T - To )] exp(--E/RT) (15) 

Equation (15) is well known and has been considered by many authors in 
the description of reaction kinetics under non-isothermal conditions 
[17,18,24,27,28,38-421. This equation has been found to be adequate if 
one considers the degree of conversion as being a function of time and tem- 
perature of the reacting system. 
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METHODS OF EVALUATING KINETIC CONSTANTS 

Equation (12) may be presented in the more convenient logarithmic form 

g(a) 
InTb(T-TTo) =lnZ I3 ’ e-w - # RT (16) 

The above expression is suitable for applying linearization procedures. The 
linear interpolation method, based on the least squares assumption, permits 
calculation of E and 2 [ 591. Also, the correlation coefficient (r) may be con- 
sidered as an indicator permitting the choice of the most adequate function 
g(a!). Unfortunately, in most cases r values do not differ enough to distin- 
guish between possible reaction mechanisms [60-62]. It is necessary to look 
for other methods of calculation allowing one to choose more easily the 
most probable reaction mechanism. Most equations applied in reaction 
kinetics may be rearranged to forms in which all variables are placed on the 
left-hand side and at least some constants on the right-hand side. For exam- 
ple, rearranging eqns. (12) and (15) gives 

g(a) Z 
A G Tb (T- To) exp(--E/RT) =T (17) 

A* = daldt 
f(a)[l + E/RT* (T- To)] exp(-EIRT) = z (18) 

The right-hand side of both the above equations should be constant. This 
fact results from kinetic considerations, as well as experimental conditions. 
Therefore, also the left-hand sides of eqns. (17) and (18) should be constant 
for any experimental points (cyf, Ti and dai/dti) if the reaction mechanism 
[form of functions g(a) or f(c)] and kinetic parameters 23, To, and b are 

chosen correctly. In reality, values Ai (A:) differ, so the functions 

j$$ lAI-XI 
i 1 

v= - 

s= 
zi: 

4 
N 

(19) 

(20) 

wheren =1x A 
N i=l 

i, and N = number of experimental points 

may be used as statistical parameters in the search for an adequate reaction 
mechanism, as well as the values of kinetic constants [59]. It is convenient 
to establish criteria for applying the trial and error procedure. 

(i) Functions v or 6 reach minimum for the best choice of E, To and b for 
a given reaction mechanism. Therefore, for a given function g(c) or f(a) and 
at the assumed values of To and b, it is possible to vary E to reach the mini- 
mum of Y or 6. E corresponding to these minimum values can be considered 
as the best fit to the experimental data. 
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(ii) In ideal circumstances Y or 6 should be equal to 0 if g(a) or f(a) func- 
tions describe exactly the mechanism of the reaction. In reality, the random 
errors influencing experimental data, as well as imperfections of the assumed 
reaction model cause v or 6 to reach values other than 0. One may consider, 
however, that these functions g(a) or f(ar) fit the experimental data better 
when v or 6 reach lower values. 

The function 6 represents the ratio of the square root of the variance to 
the mean value. Similar parameters have been proposed for the same pur- 
poses by Zsako [ 631 and recently by Swaminathan et al. [ 551. However, in 
our opinion, it is better to use the 6 function, which represents the standard 
deviation in relation to the mean value. This parameter is recommended for 
statistical considerations [ 591. 

It is worth noting that the linear interpolation method and the 6 function 
are the same in nature, i.e. are based on the least squares assumption. On the 
other hand, the v function is based on the least absolute deviation assump- 
tion. Both v and 6 functions, together with the linear interpolation method, 
were applied to the thermogravimetric data presented previously [ 541, for 
the purpose of evaluating the kinetic parameters baaed on the approach pro- 
posed in this work. The results are listed in Tables 1 and 2. 

TABLE 2 

Kinetic constants for the thermal dissociation of RbzPbCie (see ref. 54: Fig. 1, Table 4) 

calculated using differential equations * 

Symbol Method of calculation 

of the 
mechanism Apparent activation 2 constant s 

1541 energy (J mole-’ ) (a-’ ) [eqn. (2011 

A B A B A B 

Rl 
R2 
R3 
Pl 
P2 
P3 
El 
Bl 
P4 
Fl 
A2 

D2 
D3 
D4 

5.26 04 4.83 04 6.96 00 3.39 01 4.1869-02 4.2678-02 
7.06 04 6.62 04 1.63 02 1.02 03 4.1727-02 4.0967-02 
7.68 04 7.24 04 4.14 02 2.81 03 6.6872-02 6.8044-02 
3.82 04 3.40 04 4.28-01 1.60 00 4.1402-02 4.2166-02 
3.34 04 2.93 04 1.69-01 5.71-01 4.1285-02 4.2022-02 
2.37 04 1.98 04 2.57-02 6.81-02 4.1122-02 4.1788-02 

-9.33 03 -8.66 03 -4.89-04 5.52-04 -1.0717-01 4.1468-02 
3.24 04 2.83 04 7.82-01 2.58 00 1.2993-01 1.2919-01 
8.62 03 5.57 03 l-46-03 2.17-03 4.1158-02 4.1556-02 
8.94 04 8.50 04 1.91 04 1.50 05 l-2554-01 1.2465-01 
5.25 04 4.82 04 9.21 00 4.49 01 g-3351-02 g-2558-02 
4.02 04 3.60 04 6.55-01 2.56 00 8.2950-02 8.2213-02 
1.10 05 1.05 05 4.70 05 3.95 06 4.5269-02 4.6105-02 
1.26 05 1.21 05 8.11 06 7.77 07 2.3288-02 2.1903-02 
1,67 05 1.52 05 1.75 09 2.08 10 1.6509-01 1.6422-01 
1.32 05 1.27 05 6.82 06 6.84 07 5.0715-02 4.9901-02 

* Calculations were performed on a TI 59 calculator. The values are presented in com- 
puter notation. 
** A, Based on eqn. (18); To = 0 K. 

B, Based on the eqn. A**= da/d t 

f(a) exp(-E/RT) 
=Z 
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DISCUSSION 

Application of integral eqn. (15) to the experimental thermogravimetric 
data [54] leads to the kinetic constants and statistical parameters (Irl and Y) 
listed in Table 1, from which some general conclusions may be derived. 

For all considered g(a) functions, correlation coefficients reach the 
highest values in the case To =OK,b=O.ValuesofEinthecaseT,=OK, 
b = 1 present simply Coats and Redfem’s approach [ 541. Therefore, one 
may notice that linearization procedures based on eqn. (15) give better fits 
to the experimental data than that based on the method of Coats and 
Redfem. 

Values of the v function [eqns. (17) and (19)] do not show similar regu- 
larities. For most g(cr) functions, v reaches the highest values in the case To = 

qx=o.o*- Values of v change slightly if To is kept at 0 K, and b varies between 
0 and 1. Applying both the linearization procedure based on eqn. (16) and a 
trial and error procedure based on eqn. (17), similar values of E and 2 were 
obtained, despite the fact that both methods are based on different assump- 
tions. 

Changes of both statistical parameters show that an increase in Irl value 
corresponds to a decrease in Y value. However, differences between P values 
are more distinct than those between appropriate correlation coefficients. 
Therefore, examination of v values makes it easier to distinguish between 
possible g(cr) functions. 

The differences between the values of apparent activation energy resulting 
from application of eqn. (16) and other integral methods (ref. 54: Table 4) 
are higher for lower values of E. If E > lo5 (J mole-‘) these differences 
become much lower in comparison with those resulting from experimental 
uncertainties (ref. 54 : Table 5). 

The values of 2 obtained based on eqn. (16) differ significantly in compar- 
ison with those resulting from the application of other integral methods 

(ref. 54: Table 4). Generally, the application of eqn. (16) leads to lower val- 
ues of 2. This is not an unexpected conclusion, however, if one compares the 
intercepts of eqn. (16) and, for example, Coats and Redfem’s equation [ 541. 
It is worth noting that significant differences between 2 values have also 
been found when several integral methods have been applied to the same 
experimental data [ 31,54,64+6]. 

Comparison of the values of statistical param eters listed in Table 1 indi- 
cates that the best fit of integral eqns. (16) and (17) to the experimental 
data were obtained when the initial temperature (To) was assumed to be 0 K. 
These regularities do not seem to be accidental. To has been introduced dur- 
ing the integration procedure resulting in eqn. (10). It represents the lower 
integration limit and corresponds to t = 0. In non-isothermal experiments the 
initial temperature has no significant meaning. Some authors consider To as 
the equilibrium temperature [18,20]. To may be assumed to be room tem- 
perature, i.e. the temperature at the beginning of the experiment, but not 
necessarily at the onset of the reaction. Further, To may be considered as the 
temperature at the beginning of the thermal process, for example, To = 

T orpo_ol. Lastly, it is best to assume that To is 0 K. The above assumption 
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seems to be the logical extension of the analogous assumption which has 
been accepted for the temperature integral [e.g. in eqn. (S)] . In non-isother- 
mal measurements it is not important at which moment one starts to count 
time for the experiment. However, the actual temperature of the sample is 
important; this describes the thermal behaviour of the material at a certain 
moment, and so also the kinetics. It is obvious that T,, should be reprod- 
ucible for any experiment, and the reaction rate at T,-, should be negligible. 
These requirements correspond best when To = 0 K. Therefore, taking into 
account the above considerations, the following integral forms may be pro- 
posed for the description of reaction kinetics under linear temperature 
increase conditions 

#z(a) =$ZTb exp(-E/RT) 

if k( 2’) is expressed by eqn. (5), or 

g(ct ) = f 2 exp(-WRT) 

(21) 

W? 

if k(T) is expressed by the Arrhenius-type eqn. (4). It is worth noting that 
both the above forms can be obtained if one substitutes t = T/e in the inte- 
gral equation derived for isothermal conditions [for example in eqn. (7)]. 

The differential forms which correspond to integral eqns. (21) and (22) 
are presented beIow [compare with eqns. (14) and (15)] 

da/dt = f(cw) ZTb (b + 1 + E/IW) exp(-E/RT) (23) 

da/dt = f(a) Z(1 + EiRT) exp(-E/ET) (24) 

The values of the kinetic constants and 6 calculated based on the differen- 
tial equations are presented in Table 2. It is interesting to compare the values 
listed in Table 2 with those resulting from the application of integral meth- 
ods (TabIe 1) [ 54 J, as weIl as with those resulting from the application of 
Freeman and Carroll’s approach [54] _ A comparison of the apparent activa- 
tion energy and 2 calculated by method B with those estimated based on 
Freeman and Carroll’s approach (ref. 54: Table 4), indicates significant dif- 
ferences between the values of the kinetic parameters. This is an unexpected 
result because both the above methods of calculation are based on the same 
differential equation. The values of the kinetic constants calculated by meth- 
od B (Table 2) show better agreement with the corresponding values of E 
and 2 evaluated by integral methods than with those obtained applying Free- 
man and Carroll’s approach (ref. 54: Table 4). This may result horn the fact 
that in Freeman and Carroll’s method the relative differences between f(a), 
l/T, and da/df are taken into account; so, any random errors influencing 
reference point may cause significant changes in the relative differences. On 
the other hand, in the approach proposed in this work, one assumes all 
experimental points to have equal statistical weights. 

No generr regularities are found if one compares the values of the kinetic 
constants resubing from the application of integral eqn. (22) (Table 1) or 
differential eqn. (24) (Table 2: method A). For most functions describing 
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the reaction mechanism, values of E and 2 are slightly higher if one uses dif- 
ferential eqn. (24). Despite the fact that values of E and 2 result from the 
application of different forms of the kinetic equations and slightly different 
experimental data, the agreement between them is quite good. 

Application of differential eqn. (24) (method A) leads to E values higher 
than those obtained by method B (Table 2). On the other hand, 2 values 
show reversed regularities, i.e. are higher in the case of method B. The latter 
dependence results from the fact that Z(1 + E/KQmethod Aj N Ztmethod x). 

Taking into account that E has to have values higher than 4 [54] and 
examining the results in Tables 1 and 2, one may conclude that mechanism 
D2 gives the best fit to the experimental data (ref. 54: Fig. 1). 

CONCLUSIONS 

The results presented in this work indicate that the general equations 
derived for the description of reaction kinetics under linear temperature 
increase conditions, using the assumption that cy = f(t, T), fit as well to the 
experimental data as do the widely used and recommended calculation meth- 
ods in the literature [7,9,54]. Furthermore, proposed integral eqns. (21) and 
(22) are accurate from the pure mathematical point of view, while those 
integral methods proposed in the literature are based on approximations of 
Euler-type integrals. Therefore, using the latter methods of calculation, one 
usually obtains different values for the kinetic constants (see, for example, 
refs. 31, 54,64-66). Therefore, the equations proposed in this work may be 
considered as adequate forms for the description of reaction kinetics under 
linear temperature increase conditions. It is obvious that, before acceptance 
of this approach, further experimental confirmation is necessary. 

The results presented here are not able to answer the questions as to 
whether the calculated kinetic constants resulting from the approach used in 
this work may be compared with those obtained for isothermal conditions, 
or whether the assumed k(T) functions are the best possible description of 
solid state reaction kinetics [7,35,67,68]. Reviewing published kinetic data, 
one raises the question as to whether or not comparison of kinetic parame- 
ters resulting from application of different experimental techniques is possi- 
ble at all. It seems that the present knowledge of solid state reaction kinetics 
employs mathematical descriptions that are really only formal approaches 
for empirical convenience. The kinetic parameters, apparent activation 
energy and especially 2, should be considered rather as empirical constants 
without theoretical significance [ 7,69,70]. 

Some remarks may be made regarding the methods of application of dif- 
ferential or integral equations for the purpose of evaluating the kinetic con- 
stants. In most of the methods proposed in the literature, kinetic equations 
were transformed to forms which permitted the use of a linear interpolation 
procedure. The above approach is very useful but may lead to inadequate 
results, especially if one uses differential kinetic equations. In the case of 
differential equations the approach proposed here, which is based on a 
search for the minimum values of v or 6 functions, may be recommended 
ov2r that of Freeman and Carroll [ 511. 



122 

APPENDIX A 

I 

a CTb =p(-WRT)] 

aT I 
= bT”-’ exp(-E/RT) + g TbB2 exp(-E/_RT) (~1) 

t 

For further consideration it is convenient to introduce the substitution 
3c = E/RT. Taking the right-hand side of eqn. (Al) together with eqn. (11) 
one may obtain 

x-<b+2) e-x k + z E 
x 

~ (,, b g -bTo) r x--(~+~) 
x 

Integrals in eqn. (A2) are examples of Euler’s integrals for which the fol- 
lowing relationship exists [ 57,581 

OD 

s 
xa e-x* = a J p-1 e-" dx+Pedx (A3) 

X x 

ifRe(x)> 0. 

Therefore eqn. (A2) may be transformed to the simpler form 

g(cY) = (b + 1) - f (f)b [g-(5- bT,-, )- bT,,] r x-(b+2)e-xdx 
X 

-_(b+l) _ ToX-b 
(Ad) 

It is easy to see that the term including the integral is equal to 0. Therefore, 
after transformation, the following equation is obtained 

g(a) =f~~ (T- To) exp(-E/RT) (As) 
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