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ABSTRACT 

The complementary incomplete Gamma function, defined by Euler’s integral 
/,“eBft4-’ dt, appears in many physicochemical problems_ In this paper, several expansion 
formulae of the above integral are presented. Some properties of these asymptotic series 
are discussed from the point of view of the possibilities of their application to kinetics 
problems. 

INTRODUCTION 

The complementary incomplete Gamma function, or Prym’s function 
[ 1,2], is defined by Euler’s integral [l-5] 

I’(a, x) = s e-tta-l df 
X 

(1) 

This integral is an entire function of a. It is defined for t > x and has a pole 
at f = 0 [ 51. In physicochemical problems, the branch for x being positive is 
usually considered. For the complementary incomplete Gamma function, 
the following recurrence relation exists 

l?(a + 1,~) = ar(a, x) + eBxxu (2) 

This type of function appears in many kinetics problems [S-19] and 
other types of problem [20-221. Since integrals expressed by eqn. (1) can 
not be resolved exactly, many expansion series have been proposed in the 
literature [3,4]. In this paper, several of them are reviewed. An attempt is 
also made to show the advantages and disadvantages of the application of 
these asymptotic series, as well as the possibilities of their application to 
physicochemical problems. 

EXPANSION SERIES OF jFe-fF’l dC-TYPE INTEGRAL 

The values of some of Euler’s integrals can be calculated based on asymp- 
totic series for r(O, x). If a admits integer values, any complementary incom- 
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plete Gamma function can be expressed by I’(0, x), based on the recurrence 
relation (2). In the literature, two series of the above type have been pro- 
posed. 

A. The convergent series based on Taylor’s asymptotic expansion formulae 
D-51 

On (_l)n-lxn 
l?(O,x)=--y-hlx+ c 

n-n! 
(3) 

n=l 

where~=Iim,,,(l+$+$+...+l/n - In n) is the Euler’s constant [4]. 
Ifa=-l 

-LX 

r(-l,x)=e+7 +lnx--x+&-...+ (-1)” xn 

X . 
n.nf I (4) 

In this work, 7 = 0.577216664901533 was used [23]. 
Although the above series has often been discussed in the literature 

[14,20,21,24-281, they have never been applied in solid state reaction 
kinetics. 

B. The convergent series of I’(O, x) expressed by Tshebysheff’s polynomial 
l29.l 

l?(O, x) = = 
0.9989710 + 1.9487646 

0.9999965 - x 
4.9482092 

X x2 - x3 

+ 11.7850792 20.4523840 + 21.1491469 9.5240410 - 
X4 X5 x6 - x7 

(5) 

The maximum error of the series in the bracket is 0.35 X 10e5. In the case 
CL= -1 

l-(-l, x) = 5 0.0000035 + 
0.9989710 - 1.9487646 + 

. . . 
X X2 

(6) 

The above series has been introduced into kinetics by Flynn and Wall 
[30], based on ref. 23, and its properties has been investigated by Nor- 
wisz and Hajduk [28] _ Until now, however, eqns. (5) and (6) have not been 
in practical use. 

Other asymptotic series of the complementary incomplete Gamma func- 
tion reviewed in this work can be presented in such a way to ahow the calcu- 
lation of numerical values of r(a, x) for any real values of a. 

C. Semi-divergent series through integration by parts [3] 

where b,, = 1 

bn = (1 -a) (2 -a) ._. (n-a) 

Fora=-l 
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Q-1, x) = 5 
1 
l-$+$- . ..+ 

(n + l)! 
x” 1 (8) 

Since the above series presents a fairly simple form, its application in 
many physicochemical problems has been considered [8,14,20-22,24-26, 
28,30-351. In most cases, the above series has been used in the form of 
eqn. (8). VaIiet [S] has proposed the application of eqn. (7) for a = -3/2 
and a = -2. The properties of this series has been investigated by Saint- 
Georges and Gamaud 1151, Chen [22] and Biegun and Czanderna [33]. It is 
also worth noting that eqn. (8) has became the basis of several integral meth- 
ods proposed in solid state reaction kinetics [ 12,32,35]. 

D. Schl~milch ‘s divergent series [4] 

l?(s x) = e-xx” 5 AAl -a) 
n=o x(x+l)...(x+It) (9) 

where Ao(l -a) = 1 

s=n-1 

A, (1 -a) = sFo (-l)s+’ G-1-8(1 -a) (2 -a) . . . (1 + s -a) 

The method for the determination of the value of the function G-l-’ can 
be found in ref. 4. The following relationship may be useful, however, during 
calculations. 

x(x + 1) . . . (x + n - 1) = c!$x” + c;x”-l + . . . + en-lx (10) 

Therefore, in the case n = 6 

&(l -a)=-C~(1-a)+C4,(1-a)(2-a)-C~(1-a)(2-a)(3-a) 

+Cf(l-a) . . . (4-a)-CCQ(l-a) . . . (5-a) 

+G(l-a) . . . (6-a) (11) 

and from relationship (lo), one obtains 

x(x + 1) .I. (x + 5) =x6 + 15x5 + 85x4 + 225x3 + 274x2 + 120x. (12) 

Substituting appropriate coefficients of polynomial (12) into eqn. (ll), 
it is possible to caIcuIate A6 for any reai a value. Listed below are the values 
for A,(1 - a) for the first 10 terms of SchEmiIch’s series in the cases a = 0 
anda=-1. 

Fora=O 

A,,(l) = l;Al(l) = -l;A2(1) = l;A,(l) = -2;Aq(l) = 4;A,(l) =-14; 

A,(l) = 38;A,(l) = -216;As(l) = 600;A9(1) = -240. 

Fora=-l 

A0(2) = l;A1(2) =-2;A2(2) = 4;A3(2) =-10;A4(2) = 30;A5(2) =-108; 

A6(2) = 444; A,(2) = -2112; A8(2) = 11040; A,(2) = -65712. 
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Therefore 
-x 

r(-l,x)=C 
x2 [ 

I-&+@+ &+A)- *-- 1 (13) 

The SchISmiIch’s series has been introduced into solid state reaction 
kinetics by Van Krevelen et al. [7]. Although the above series has often 
been applied in kinetics problems [7,11,14,17,24-26,28,30,31,36], its 
properties have not been investigated tilI now. 

E. Tricomi’s divergent series [3,37] 

Iy1+ Q, x) =-g 5 B?l 
n==O (x -,)n+l (14) 

where 

d" 
- B,= dp 

I 
e -=t(l + t)“] 

I r=o 

Differentiation of the above function leads to rather cumbersome equations 
ahowing the calculation of B,. However, this problem may be simplified if 
one uses the following numbers of Pascal’s triangle 

n 

0 1 

1 -1 1 

2 1 -2 1 

3 -1 3 -3 1 

4 1 -4 6 -4 1 

5 -1 5 -10 10 -5 1 

6 1 -6 15 -20 15 

Forexample,coefficientB, canbeexpressedbytheequation 

B6 = la6 - 6a6 + 15aS (a - 1) - 20a4 (a - 1) (a - 2) . 
+ 15a3 (a - 1) (a - 2) (a - 3) - 6a2 (a - 1) (a - 2) (a - 3) (a - 4) 

+ la(a - 1) (a - 2) (a - 5). .__ 

(15) 

1 

(16) 

In the case where a = -2, which corresponds to r(-1, x), the following vaI- 
ues of B,, were found: B0 = 1; B1 = 0; Bz = 2; B3 = -4; B4 = 24; B5 = -128; 
B6 = 880; B7 = -6816; B, = 60 032; Bg = -589 312; B10 = 6384 384. 

Therefore 

r(-1,x)=5 
[ A+ @:2)3-@:2)4 +... 1 (17) 



The last three asymptotic series of the complementary incomplete Gamma 
function presented in this communication can be expressed by a continued 
fraction expansion. 

F. The continued fraction developed by Legendre [3,4] 

(18) 

G. The Schliimilch ‘s continued fraction [4] 

r(cr.x) - 2 x’ / 
1x / / x-a + 

x-j-a+/ 2x ’ 
/ 

I’ 
x-2-a?’ _E,+ 

X 

/ -. 

(19) 

II 1 

H. The continued fraction expansion proposed by Nielsen [4] based on the 
work of Tannery [38] 

r(a,x) = 
6; x’ I 

x+1-aj ’ 1ClA.i) 
/ 

1 x+3-0- 2(2-d 
/ x*5-a- 3(3U) 

I’ / x+7-a- _ 

II/ 

(20) 

SELECTED PROPERTIE% OF ASYMPTOTIC SERIES REVIEWED IN THIS WORK 

In physicochemical problems, values of x which represent the lower inte- 
gration limit in eqn. (1) correspond to some function of physicochemical 
parameters. In solid state reaction kinetics, x describes the ratio E/RT (E = 
apparent activation energy; R = constant; T = temperature). Since values of x 
can not be generally predicted, it is important to know ranges for the lower 
integration limit in which certain asymptotic series can be applied. 

Another problem appears when requirements with respect to the level of 
accuracy of calculations have to be taken into account. In this work, we 
applied a very simple criterion of accuracy which could be helpful during 
comparison of the properties of several expansion series. This criterion 
requires that one obtains identical values of r(a, x) up to n significant digits. 
Therefore, in performing calculations of the values of the integral expressed 
by eqn. (l), a number of terms (or truncated parts) of any expansion for- 
mula should be taken such that identical numerical values are obtained at the 
assumed level of accuracy (i.e. up to n significant digits). In many cases, 
when only values of Euler’s integral for the given value of x are necessary, 
accuracy up to 5 significant digits is sufficient. If it is necessary to know the 
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difference between values of Euler’s integral [e.g. l?(a, x1) - l?(s x,)], higher 
accuracy may be required. 

For the purpose of the comparison of the properties of the expansion 
series reviewed in this work it was necessary to choose the value of a. We 
assume a= -1, because this case corresponds to the P(X) function applied 
widely in solid state reaction kinetics. 

Selected values of r(-1, x), as well as other parameters are listed in Ta- 
ble 1. For a given expansion series, either two or three kinds of information 
are presented in this table. In the first column, the values of Q-1, X) are 
listed. These values have been calculated with an arbitrarily assumed accu- 
racy of 5 significant digits. In most cases, it was impossible to apply certain 
expansion formula in the whole range of X. Usually, expansion series have 
lower (or upper) limits for x beyond which they can not be used. These 
limits change with changes in the level of accuracy. So, if the level of accu- 
racy is lower (for example down to 3 significant digits) the range for x in 
which the given expansion series can be applied is larger. When it was impos- 
sible to calculate values of r(-1, x) to 5 significant digits, the range of x: was 
extended such that values of I’(-1, X) could be obtained with an accuracy of 
3 significant digits. In the second column, numbers of terms (or truncated 
parts) are shown. These have to be taken into account if one wants to obtain 
values of r(-1, x) with the accuracy indicated in the first column of the 
given series. For some expansion series, the ratio of the value of the first 
term (or the first truncated part) to the value of I’(-1, X) listed in the first 
column are presented in the third column. 

DISCUSSION 

The information listed in Table 1 allows us to compare the properties of 
the series reviewed in this work from the point of view of the possibilities of 
their applications. 

Series A can be used in problems where fairly low values of the lower inte- 
gration limit [X in eqn. (l)] can be expected. It is shown in Table 1 that an 
accuracy of 5 significant digits can not be attained for x values exceeding 7. 
Also, it may be seen that a relatively large number of terms in this series has 
to be taken into account if one intends to obtain a certain level of accuracy 
[26]. Therefore, series A can not, in practice, be applied in solid state reac- 
tion kinetics. On the other hand, this series is probably the best possible for 
calculation of rta x) for fairly low x values (e.g. 0 < x < ‘IT [5,39]). It is 
worth mentioning that series A has been applied as the basis for the con- 
struction of tables of values for the exponential integral [i.e. r(0, x)] for low 
values of x [ 39,401. 

Although series B has been mentioned by some authors 128,301, it has 
never been in practical use. As may be seen in Table 1, a relatively large num- 
ber of terms in this series has to be taken into account if one wants to obtain 
an accuracy of 5 significant digits. Furthermore, in many cases, calculated 
values of lY(-1, =c) based on this series differ from those obtained from other 
series. Moreover, the method of calculating the coefficients of Tshebysheff’s 
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polynomial presents rather difficult problems [29]. Therefore, this series can 
not be recommended for use in solid state reaction kinetics. An additional 
inconvenience is that both series A and B can be applied only for integer a. 

There is no doubt that series C is the most widely applied in solid state 
reaction kinetics. It is the basis for several integral methods [12,32,35]. This 
series has also been recommended for calculation of the values of the 
l?(-1, X) function (see, for example, refs. 21, 23, 25 and 32). As may be 
seen in Table 1, however, series C has rather uninteresting properties. An 
accuracy of 5 significant digits can be obtained for x > 18. Also, the coeffi- 
cient v differs significantly from 1, so taking only the first term of this series 
results in the relatively large error in the l?(-1, x) function. The properties 
of series C have been investigated by Biegun and Czandema [ 331. They 
found that series C is semi-divergent, i.e. it becomes divergent in its higher 
terms. The maximum accuracy is obtained for N = x - 1 and the terms of 
this series with N higher than x - 1 cannot therefore be used for calcula- 
tions. Chen [22] has shown that, by adding one half of the next term in the 
series, the possible error reduces to half its previous value. However, intro- 
ducing the correction proposed by Chen creates additional technical prob- 
lems during calculations. Moreover, calculation of b, coeffients of this series 
becomes more difficult for non-integer Q values. 

Series D based on SchlBmilch’s approximation [4] has better properties 
compared with series C. However, calculation of A,(1 -a) presents a diffi- 
cult problem, especially for higher terms of this series. The calculations 
become even more difficult if one intends to apply series D for non-integer a. 

As is shown in Table 1, series E and G have similar properties. It was 
found that both series are semi-divergent, similar to series C. Also, both 
series allow the calculation of values of lY(-1, X) with approximately the 
same accuracy. In the case of series E, the same problem appears as for 
series D, namely the necessity of calculating B, coefficients. 

Lastly, the data in Table 1 shows that both series F and H have the best 
properties among those reviewed in this paper. They can be used in the 
whole range of x: (i.e. x > 0). The values of Euler’s integral calculated based 
on these series step asymptotically toward an accurate value of the lY(a, x) 
function. Both series can be applied with equal ease for any real (z value. 
Based on these continued fraction expansion series, up to 10 truncated parts 
are necessary to obtain an accuracy better than 5 significant digits for x > 2. 
Since the latter case describes all problems in solid state reaction kinetics, 
both F and H series can be recommended for application therewith. It is also 

worth mentioning that now that computation hardware has been improved, 
the application of series F and II does not create any difficulties, despite the 
fact that eqns. (18) and (20) seem to be complicated. As Varhegyi [17] has 
mentioned, proper computer programs for series F can be written in a very 
few lines. From our experience, it is easier to write programs for series F or 
H than, for example, series D. Calculations of l?(a, x) can also be performed 
on programable calculators (e.g. TI 59 with an accuracy up to 9 significant 
digits). 

As may be seen in Table 1, taking only the first truncated part of the 
Legendre series e-xx-1 [(x + 1)/(x + 3)], the values of r(-1, x) cm be ob- 
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tained with an error less than 1% for x > 7. This level of accuracy is suf& 
cient for the application of only the above form in most kinetics problems 
WI - 

In this paper we reviewed 8 selected expansion series of the complemen- 
tary incomplete Gamma function. In the literature, one can find other series 
[ 4,261 or approximation formulae [ 17,24-26,28,31,41-463 for the calcula- 
tion of I’(@ x). We did not consider any approximation formulae because 
values of r(-1, X) obtained based on them are less accurate than those calcu- 
lated based on an asymptotic series. Also, it was found that the properties of 
the series proposed by Nielsen (ref. 4, Vol. 2, p. 47) and very similar series 
proposed by Van Tets 1261 are no better than the properties of the series 
reviewed in this work. Moreover, Van Tets [ 261 did not show a method of 
calculating the coefficients for his series. 
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