EVALUATION OF TEMPERATURE INTEGRALS FOR TEMPERATURE-DEPENDENT FREQUENCY FACTORS

J.E. HOUSE, JR.

Department of Chemistry, Illinois State **University,** *Normal, IL 61761 (U.S.A.)* **(Received 2 April 1981)**

ARSTRACT

The temperature integrals of the form

$$
I = \int_{0}^{T} T^{m} e^{-E/RT} dT
$$

where $m = 1/2, 1, 3/2,$ **and 2 have been evaluated for** $T = 300-800$ **K and** $E = 30-100$ kcal mole⁻¹. The $-\log I$ values have been fitted to linear equations in E and $1/T$. Numeri**cal equations have been obtained by treating the slopes and intercepts as functions of** *E* **and** *T. These* **equations permit evaluation of the integrals at any values of** *E* **and** *T. The* functional dependence of $-\log I$ on the m value has also been investigated and linear rela**tionships exist for given values of** *E* **and** *T.*

INTRODUCTION

The approximation of the temperature integral

$$
I = \int_{0}^{T} e^{-E/RT} dT
$$
 (1)

has received much attention in both theoretical [l-6] and practical [7-121 approaches. Tables of values [4] and approximate empirical equations [31 are available. However, it is of fundamental importance to realize that this integral is a result of assuming that Arrhenius behavior of the rate constant

$$
k = A e^{-E/RT}
$$
 (2)

is observed. When *A* **is not independent of temperature, it is possible, for many cases, to write**

$$
A = A_m T^m \tag{3}
$$

so **that the rate constant must be written as**

$$
k = A_m T^m e^{-E/RT}
$$
 (4)

where *m* is either an integer or half integer [13,14]. Recently, Segal [15]

0040-6031/81/0000~000/\$02.50 0'1981 Elsevier Scientific Publishing Company

provided approximate analytical functions for these cases in which

$$
I = \int_{0}^{T} T^{m} e^{-E/RT} dT
$$
 (5)

where *m is an integer* **or half integer. However, suitable tables of values for these integrals are either not extant or are of a fragmentary nature. It is the purpose of this paper to present the values for the integrals [eqn. (5)] for** $m = 1/2$, 1, 3/2, and 2 and to determine empirical relationships for obtaining **appropriate values of the integrals for any values of** *T* **and E as well as m.**

METHOD

The numerical integrations of the integrals having the form of eqn. (5) were carried out as previously described to determine -log I [16]. For each value of *m* used, a series of computations were carried out for $T = 300$ K and **E = 30 kcal mole-' using 10, 20, 30, 40, 50, 100, 200, 400, and 1000 subintervals. The values obtained using 1000 subintervals appear to be correct to** at least six decimal places [16]. At $E = 30$ kcal mole⁻¹ and $T = 300$ K, the 200 subinterval integration gave values of $-\log I$ that agree with those of the **1000 subinterval integration to five decimal places. However, as was previously observed, the accuracy decreases at higher values of E. Therefore, it is** likely that the values of $-\log I$ for the higher E values are accurate to four **decimal places in some cases since a 200 subinterval integration was used in all cases.**

Acceleration of convergence was determined by means of the Romberg algorithm $[16,17]$. This was carried out using the values of $-\log I$ obtained **from 10,20,30,40, and 50 subintervals.**

Curve fitting to provide the empirical relationships between $-\log T$ and E and between $-\log I$ and $1/T$ was carried out using a program for a Texas **Instruments TI-59 programmable calculator. Linear regression is carried out as a subroutine of that program. This approach was also used to obtain the equations in which the slopes and intercepts were treated as variables in** *T* and E and to investigate the variation in $-\log I$ with the value of m.

RESULTS AND DISCUSSION

The results of the numerical integrations of

$$
I = \int_{0}^{T} T^{m} e^{-E/RT} dT
$$
 (5)

are shown in Tables $1-4$ for $m = 1/2, 1, 3/2,$ and 2, respectively. Most of the **data are accurate to either four or five decimal places, about the the limit im**posed by using $R = 1.9872$ cal mole⁻¹ deg⁻¹, with the values being more **accurate for lower values of E [161. These data provide a basis for develop-**

TABLE 1

167

900. 2.66939 5,207Ol 7,72242 10.22318 12.71351 15.19606 17.67256 20.14423 1000. 1.81031 4.10372 6.37540 8.63268 10.87971 13.11907 15.35245 17.58105

1000. -11.12167 12.12157 12.12900 10.89016 5.64528 9.3901 13.8899 12.12881 14.58899 12.1281 14.58899

168

TABLE 3

ing numerical procedures that include non-isothermal methods which do not follow the Arrhenius behavior of the frequency factor. In that sense, they provide numerical approximations to the functions described by Segal [15].

Application of the Romberg algorithm to values of $-\log I$ obtained using **10, 20, 30, 40, and 50 subintervals resulted in values which were no more accurate than those obtained using 100 subintervals. This was true for each value of** *m. As was* **found previously, the Romberg acceleration of convergence does not seem practical as a substitute for using a large number of subintervals [163.**

Functions of E and l/T

It has previously been shown that for the temperature-independent tiequency factor $(m = 0)$, $-\log I$ can be related to the activation energy by

$$
-\log I = ME + B \tag{6}
$$

where *M* **and B are constants and the temperature is constant. Further, for a** given value of E , the relationship between $-\log I$ and temperature can be **expressed as**

$$
-\log I = N(1/T) + D \tag{7}
$$

where N and D are constants. The $-\log I$ values shown in Tables 1-4 fitted **to these equations resulted in the regression parameters shown in Tables 5 and 6. It is readily apparent that these non-Arrhenius temperature integrals obey these relationships as well as do those where the frequency factor is independent of temperature [3,161.**

Equations relating slopes and intercepts for a constant m

In the case of the tabulated values of the temperature integral for Arrhenius behavior, ii; was found that the slopes and intercepts of eqns. (6) and (7) varied in a systematic way. Thus, for $m = 0$, Gyulai and Greenhow used **linear regression to establish relationships between the slopes or intercepts and** *E* **or** *T [31.* **For example, in the equation**

it was found that

$$
M = K(1/T)^L \tag{8}
$$

and

 $B = P \log(1/T) + Q$ **(3)**

where K, L, P, and Q are constants. Thus, a numerical equation of the form $-\log I = K(1/T)^L E + \log (1/T)^P + Q$ (10)

was obtained by making the equation for $-\log I$ **as a function of E to reflect the variation of slope and intercept with temperature.**

 $D = W \log E + U$ (12)

where *X*, *Y*, *U*, and *W* are constants. Equations (11) and (12) yield, by sub**stitution into eqn. (7)**

$$
-\log I = Y E^{X} (1/T) + \log E^{W} + U \qquad (13)
$$

when the variation in slope and intercept with activation energy is included.

Using linear regression, similar numerical equations have been obtained in this work for each value of *m* **used. Table 7 shows the values of the constants of eqns. (10) and (13) for the cases where** $m = 0, 1/2, 1, 3/2,$ **and 2. The values for** *m = 0 case are* **based on the previously published data for Arrhenius** behavior [3,16]. The fit of all the data to equations (8)-(11) yielded corre**lation coefficients of 0.9999 or higher.**

TABLE₅

TABLE 6

E	$m = 1/2$			$m = 1$			
(kcal $mole^{-1}$	Slope (N)	\qquad —Intercept (D)	Corr. coeff.	Slope (N)	—Intercept (D)	Corr. coeff.	
30	7095.95	3.69827	0.999916	7204.20	5.27479	0.999883	
40	9285.36	3.59031	0.999950	9394.27	5.16980	0.999929	
50	3.50402 11473.31 3.43209 13660.47		0.999967 0.999976	11582.66	5.08542 5.01483	0.999953 0.999966	
60				13770.13			
70	15847.15	3.37040	0.999982	15957.04	4.95412	0.999975	
80	18033.51	3.31637	0.999986	18143.57	4.90083	0.999980	
90	20219.63	3.26825	0.999989	20329.84	4.85332	0.999984	
100	22405.57	3.22488	0.999991	22515.89	4.18044	0.999987	
	$m = 3/2$			$m = 2$			
	Slope (N)	\qquad —Intercept (D)	Corr. coeff.	Slope (N)	$-$ Intercept (D)	Corr. coeff.	
30	7312.55	6.85163	0.999845	7420.99	8.42879	0.999803	
40	9503.24	6.74950	0.999906	9612.28	8.32939	0.999880	
50	11692.05	6.66696	0.999937	11801.48	8.24864	0.999919	
60	13879.81	6.59766	0.999955	13989.53	8.18060	0.999942	
70	16067.07	6.53825	0.999966	16176.88	8.12179	0.999956	
80	18253.65	6.48537	0.999973	18363.75	8.06996	0.999966	
90	20440.05	6.43845	0.999979	20550.28	8.02362	0.999972	
100	22626.22	6.39604	0.999982	22736.56	7.98168	0.999977	

Linear regression parameters for $-\log \int_0^T T^m e^{-E/RT} dT = N(1/T) + D$

The numerical equations of the form (10) or (13) permit interpolation of the data to give $-\log I$ values for any values of E and T. Therefore, using these equations, a table of $-\log I$ values at a large number of combinations **,_gf temperature and activation energy can be constructed without having to %erform that number of integrations. It is also possible to quickly obtain a** value of $-\log I$ at any desired conditions of T, E, and m .

TABLE₇

The constants of eqns. (10) and (13) obtained by linear regression

\boldsymbol{m}	Eqn. (10)				Eqn. (13)			
	K		P	O	X	Y	W	U
$\bf{0}$ 1/2 $\mathbf{1}$ 3/2 $\mathbf{2}^-$	199.477 200.248 200.615	0.98258 199.832 0.98288 0.98325 0.98357 201.654 0.98444	1.92299 3.84257 2.89091 3.37412		3.72853 0.93943			0.96443 261.884 0.92462 -3.49132 2.40749 3.80321 0.95595 273.489 0.90712 -5.04236 3.76614 0.94762 285.404 0.89004 -6.59430 297.632 0.87344 -8.14725 3.85819 3.69304 0.93139 310.184 0.85754 -9.70148

Dependence of **iog** *Ion m*

Since the $m = 0$ case was dealt with previously and this work covers the case where $m = 1/2, 1, 3/2,$ and 2, it is now possible to examine in detail the dependence of $-\log I$ on *m*. Using the values of $-\log I$ at given values of E and T, linear regression was performed to relate $-\log I$ to *m*. The curve fit **program tests several functions but the linear equation**

$$
-\log I = Am + C \tag{14}
$$

where *A* **and C are constants gave the best fit. In fact, for several of the series** of data tested, the correlation coefficients were 1.00 ... and it was always **above 0.99999. The value of the slope was almost equal to log T in each case. Furthermore, the values of the intercepts were simply the values of** $-$ log I at the same T and E that results when $m = 0$ [16]. The linear relation**ships of eqn. (14) also permit interpolation and extrapolation to include** other values of *m*. For example, at $T = 300$ K and $E = 30$ kcal mole⁻¹, the **relationship is**

 $-\log I = -2.46908 \; m + 21.09613$ (15)

with $r = 0.99999999$. Thus, if $m = -\frac{1}{2}$, the value predicted for $-\log I$ is **22.330684. The actual result of the numerical integration is 22.330314. Using the data shown in Tables l-4 and those previously given [16], it is possible to obtain relationships to calculate -log** *I* **for any value of** *m.* **Then,** using eqns. (10) and (13), one can obtain the values of $-\log I$ at other values **of T and E. Therefore, the results presented here, taken in combination, per**mit evaluation of the temperature integral for all realistic values of E, T, and *m.*

CONCLUSION

The temperature integrals which have the frequency factor given by $A =$ A_mT^m have been evaluated. Relationships between $-\log I$ and \bar{E} or $1/T$ have **been established and their slopes and intercepts related to** *m, E,* **and T. The** values of $-\log I$ are linear functions of *m* at given values of *E* and *T*. The necessary relationships are described to determine $-\log I$ for any values of E , *T,* **and** *m.*

REFERENCES

- **1 G-1. Senum and R.T. Yang, J. Therm. Anal., 11 (1977) 445.**
- 2 J. Norwisz and N. Hajduk, J. Therm. Anal., 13 (1978) 223.
- **3 G. Gyulai and E.J. Greenhow, Thermochim. Acta, 6 (1973) 239.**
- **.4 G. Gyulai and E-J. Greenhow, J_ Therm. Anal., 6 (1974) 279.**
- **5 J. &&v&k, Thermochim. Acta, 3 (1971) 150.**
- **6 J. Zsak6, J. Phys. Chem., 72 (1968) 2406.**
- **7 H.H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464.**
- **8 A.W. Coats and J.P. Redfem, Nature (London), 201(1964) 68.**
- **9 CD. Doyle, J. Appl. Polym. Sci., 16 (1961) 286.**
- **10 J.F. Flynn and L.A. Wall, J. Res. Natl. Bur_ Stand. Sect. A, 70 (1966) 487.**
- **11 J.R. MacCallum and J. Tanner, Nature (London), 225 (1970) 1127.**
- **12 B. Carroll and E.P. Manch, Thermochim. Acta, 3 (1972) 449.**
- **13 SW. Benson, Foundations of Chemical Kinetics, McGraw-Hill, New York, 1960, pp. 247-252.**
- **14 A.W. Frost and R.G. Pearson, Kinetics and Mechanism, Wiley, New York, 2nd edn., 1961, pp. 88-97.**
- **16 E. Segal, Thermochim. Acta, 42 (1980) 357.**
- 16 J.E. House, Jr., Thermochim. Acta, 48 (1981) 83.
- 17 P. Henrici, Computational Analysis on the HP-25 Pocket Calculator, Wiley, New **York, 1977, pp. 162-169.**