PHASE EQUILIBRIA BY EFFECTIVE UNIFAC GROUP-CONTRIBUTION METHOD

ISAMU NAGATA * and JITSUO KOYABU

Department of Chemical Engineering, Kanazawa University, 2-40-20 Kodatsuno, Kanazawa, Ishikawa 920 (Japan)

(Received 7 April 1981)

ABSTRACT

A group-contribution method similar to the UNIFAC model is presented for the estimation of liquid phase activity coefficients. The method is based on an extension of the effective UNIQUAC equation, which represents well vapor—liquid equilibria of alcoholsaturated hydrocarbon mixtures with two parameters. Group-interaction parameters for 35 groups are obtained from experimental vapor—liquid equilibrium and solubility data. Activity coefficients in many binary and multicomponent mixtures may be estimated with good accuracy. Calculations are carried out for vapor—liquid, liquid—liquid, and solid—liquid equilibria. Both UNIFAC and effective UNIFAC seem to provide comparable results in most cases. The method, like the SIGMA of Vera, may be used for the prediction of both vapor—liquid equilibrium and excess enthalpy data for binary and ternary systems containing CH_2 , CCOH, and CCl groups.

NOTATION

- a_{mn} group interaction parameter
- A_{mn} coefficient of group interaction parameter
- B_{ii} second virial coefficient for i-j interaction
- B_{mn} coefficient of group-interaction parameter
- G_{ii} effective UNIQUAC parameter defined by eqn. (5)
- $h^{\acute{\mathrm{E}}}$ excess enthalpy
- $\Delta h_{\rm f}$ enthalpy of fusion
- H_k excess enthalpy of group k
- $H_k^{(i)}$ excess enthalpy of group k in pure component i
- P total pressure
- P_i^s saturation pressure of pure component i
- q_i pure component area parameter of component i
- Q_k group area parameter for group k
- r_i pure component volume parameter of component i
- R_k group volume parameter for group k
- R gas constant

^{*} To whom correspondence should be addressed.

- T absolute temperature
- $T_{\mathbf{m}}$ melting temperature
- effective UNIQUAC binary interaction parameter u_{ii}
- U_{mn} energy parameter for m--n interaction
- molar liquid volume of pure component i v_i^L
- liquid phase mole fraction of component i x_i
- group fraction for group k X_{r}
- vapor phase mole fraction of component i Yi
- lattice coordination number, here equal to 10 \boldsymbol{Z}

Greek letters

- activity coefficient of component i γ_i
- residual activity coefficient of group k
- Γ_{k} $\Gamma_{k}^{(i)}$ residual activity coefficient of group k in pure component i
- fugacity coefficient of component i ϕ_{i}
- fugacity coefficient of pure component i at its saturation pressure ϕ_{i}^{s}
- segment fraction of component i Ф.
- number of group of kind k in molecular species i v_{ki}
- θ, area fraction of component i
- area fraction of group k $\theta_{\mathbf{k}}$
- ψ_{mn} effective UNIFAC parameter defined in eqn. (11)

 $\eta_{\rm mn}$ derivative with respect to temperature of $\psi_{\rm mn}$

Subscripts

- fusion f
- i, j component
- k molecular group
- melting in $T_{\rm m}$; otherwise refers to molecular group m
- molecular group n

Superscripts

- С combinatorial
- L liquid phase
- R. residual
- saturation pressure in P_i^s and ϕ_i^s ; otherwise refers to solid phase S
- I, II liquid phase

INTRODUCTION

The group-contribution concept has been used to estimate various physico-chemical properties of pure compounds such as densities, heat capacities, and critical constants and subsequently applied to calculate activity coeffients in liquid mixtures, because the desired experimental data are often not available in the literature. The most significant approaches on the latter subject are the ASOG (Analytical Solution of Groups) method [1-3] and the UNIFAC (UNIQUAC Functional Group Activity Coefficients) method [4-10]. The UNIFAC method, in principle, is similar to the ASOG method. The UNIFAC method is based on the UNIQUAC equation [11], which contains a combinatorial term due to differences in size and shape of the

molecules in the mixtures and a residual part due to energy interaction. It has been shown that the UNIFAC method has three advantages over the ASOG method [5,10]: (1) UNIFAC has a well-defined molecular basis for establishing group sizes and shapes; (2) UNIFAC parameters are not strongly temperature-dependent for the temperature range studied; (3) UNIFAC parameters are available for many various functional groups. Skjold-Jørgensen et al. [9] have reported extensions and revisions of the UNIFAC parameter tables.

Nagata and Katoh [12] presented the effective UNIQUAC equation, which shows some advantages over the original UNIQUAC equation in representing phase equilibria for non-ideal mixtures. In this work, we report another group-contribution method based on the effective UNIQUAC equation in the calculations of vapor—liquid, liquid—liquid, and solid—liquid equilibria. The method has been tested for the prediction of vapor—liquid equilibria and excess enthalpy data for alkane, alcohol, and chloroalkane systems.

EFFECTIVE UNIFAC METHOD

The two-parameter effective UNIQUAC equation [12] in a multicomponent system is expressed by

$$\ln \gamma_{i} = \ln \gamma_{i}^{C} \text{ (combinatorial)} + \ln \gamma_{i}^{R} \text{ (residual)}$$
(1)

where

$$\ln \gamma_{i}^{C} = (\ln \Phi_{i}/x_{i} + 1 - \Phi_{i}/x_{i}) - (Z/2) q_{i}(\ln \Phi_{i}/\theta_{i} + 1 - \Phi_{i}/\theta_{i})$$
(2)

$$\ln \gamma_{i}^{R} = 1 - \ln \left(\sum_{j} x_{j} G_{ji} \right) - \sum_{k} \left(\frac{x_{k} G_{ik}}{\sum_{i} x_{j} G_{jk}} \right) - \left(\ln \frac{\theta_{i}}{x_{i}} + 1 - \frac{\theta_{i}}{x_{i}} \right)$$
(3)

$$\Phi_{i} = r_{i}x_{i} / \sum_{j} r_{j}x_{j} , \qquad \theta_{i} = q_{i}x_{i} / \sum_{j} q_{j}x_{j}$$
(4)

$$G_{ji} = (q_j/q_i) \exp[-(u_{ji} - u_{ii})/RT]$$
(5)

In eqns. (1)–(5), x_i is the liquid phase mole fraction, Φ_i is the segment fraction, and θ_i is the area fraction. Pure component structural parameters r_i and q_i are the van der Waals molecular volumes and areas [11,13]. The coordination number Z is equal to 10. The combinatorial term $\ln \gamma_i^c$ contains only two composition variables: the average area fraction θ and the average segment fraction Φ . The two parameters per binary $(u_{ji} - u_{ii})$ and $(u_{ij} - u_{jj})$ are obtained from experimental phase equilibrium data. No ternary parameters are necessary for a multicomponent system.

The combinatorial term of the effective UNIFAC method is the same as in effective UNIQUAC. Parameters r_i and q_i are obtained by the sum of the group volume and area parameters given in Table 1 [4,5,9].

$$r_{i} = \sum_{k} v_{ki} R_{k} , \qquad q_{i} = \sum_{k} v_{ki} Q_{k}$$
(6)

2 CH₃, 4 CH₂, 1 CH0HCH₂ 1 CH₃CH₂OH 1 CH₃, 1 CH₂, 1 CHOHCH₃ 1 CH₃, 3 CH₂, 1 CH₂ = CH 2 CH₃, 2 CH₂, 1 CH = CH $1 \text{ CH}_2 = \text{CH}, 5 \text{ ACH}, 1 \text{ AC}$ 1 CH₃, 3 CH₂, 1 CH₃COO 2 CH₃, 3 CH₂, 1 CH₂COO $2 \text{ CH}_3, 1 \text{ CH}_2, 1 \text{ CH}_2 = C$ 5 ACH, 1 ACCH₃ 1 CH₃, 5 ACH, 1 ACCH₂ 1 CH₃, 1 CH₂, 1 CH₃CO 2 CH₃, 1 CH₂, 1 CH₂CO 2 CH₃, 5 ACH, 1 ACCH 1 CH₃, 1 CH₂CH₂OH 2 CH₃, 1 CHCH₂OH 3 CH₃, 1 CH = C 5 ACH, 1 ACOH 1 CH₃, 1 CHO 2 CH₃, 2 CH₂ 3 CH₃, 1 CH 4 CH₃, 1 C 1 CH₃OH 1 H₂O 6 ACH Ketone group is any other carbon; Ketone group is 2nd carbon; Sample group assignment 2.2-Dimethylpropane: 2-Methyl-1-propanol: 2-Methyl-2-butene: 2-Methyl-1-butene: **Butyl propanoate:** 2-Methylpropane: Ethylbenzene: Acetaldehyde: **Butyl acetate: 3-Pentanone:** 2-Butanone: -Propanol: 2-Butanol: **3-Octanol:** -Hexene: 2-Hexene: Methanol: **Poluene:** Cumene: **3enzene: Sthanol**: Styrene: Butane: Phenol: Water: 0.9401.728 0.848 0,540 0.2280.000 1.176 0.676 0.988 0.400 0.120 0.968 0.660 0.348 .660 ..352 L.972 .352 .432 0.680 l.488 1.180 0.867 l.664 l.40 Š 1.9031 0.6744 0.8886 0.3652l.6513 0.9980 1.34541.1167 1.1173 ..2663 1.0396 0.8121 L.8788 L.8780 2.1055 l.6513 l.4311 0.8952 1.6724 1.4457 0.4469 0.21950.5313 .9011 0.92 $R_{\rm k}$ ž 12 26 26 ŝ b 14 15 17 18 19 8 22 23 24 ဖ 8 G 10 22 Group volume and surface-area parameters 吕 CH2CH2OH CH₃CH₂OH снонсн_э CHCH2OH снонсн₂ Sub group CH₃COO $CH_2 = CH$ CH = CH $CH_2 = C$ ACCH₃ CH₃OH CH₃CO CH₂CO CH = CACCH₂ ACOH ACCH CHO ACH H₂O CH₃ CH₂ AC сH С Main group "ACCH2" "CH2CO" "COOC" "CCOH" "C = C" "ACH" "CH₂" 2 11 ന ß 63 a œ 6

12 "CH ₂ 0"	CH ₃ 0 CH ₂ 0 CH-0 FCH ₂ 0	27 28 30	1.1450 0.9183 0.6908 0.9183	1.088 0.780 0.468 1.1	Dimethyl ether: Diethyl ether: Diisopropyl ether; Tetrahydrofuran:	1 CH ₃ 1 CH ₃ O 2 CH ₃ , 1 CH ₂ O 4 CH ₃ , 1 CH, 1 CH ₂ O 3 CH ₂ , 1 FCH ₂ O
13 "CNH ₂ "	(CH ₃ NH ₂ (CH ₂ NH ₂ CHNH ₃	31 32 33	1.5959 1.3692 1.1417	1.544 1.236 0.924	Methylamine: Propylamine: Isopropylamine:	1 CH ₃ NH ₂ 1 CH ₃ , 1 CH ₂ , 1 CH ₂ NH ₂ 2 CH ₃ , 1 CHNH ₂
14 "CNH"	(CH ₃ NH (CH ₂ NH CHNH	34 35 36	1.4337 1.2070 0.9795	$1.244 \\ 0.936 \\ 0.624$	Dimethylamine: Diethylamine: Diisopropylamine:	1 CH ₃ , 1 CH ₃ NH 2 CH ₃ , 1 CH ₂ , 1 CH ₂ NH 4 CH ₃ , 1 CH, 1 CHNH
15	ACNH ₂	37	3.7165	2.816	Aniline:	1 ACNH ₂
16 "CCN"	CH ₃ CN CH ₂ CN	38 39	1.8701 1.6434	$1.724 \\ 1.416$	Acetonitrile: Propionitrile:	1 CH_3CN 1 CH_3 , 1 CH_2CN
17 "COOH"	COOH COOH	40 41	1.3013 1.5280	$1.224 \\ 1.532$	Acetic acid: Formic acid:	1 CH ₃ , 1 COOH 1 HCOOH
18 "CCI"	(CH ₂ C) CHCI CCI	42 44 4	1.4654 1.2380 1.0060	1.264 0.952 0.724	1-Chlorobutane: 2-Chloropropane: 2-Chloro-2-methylpropane:	1 CH ₃ , 2 CH ₂ , 1 CH ₂ Cl 2 CH ₃ , 1 CHCl 3 CH ₃ , 1 CCl
19 "CCl ₂ "	(CH ₂ Cl ₂ CHCl ₂ CCl ₂	45 46 47	2.2564 2.0606 1.8016	$\begin{array}{c} 1.988\\ 1.684\\ 1.448\end{array}$	Dichloromethane: 1,1-Dichloroethane: 2,2-Dichloropropane:	1 CH ₂ Cl ₂ 1 CH ₃ , 1 CHCl ₂ 2 CH ₃ , 1 CCl ₂
20 "CCl ₃ "	CHCl ₃ CCl ₃	48 49	2.8700 2.6401	2.410 2.184	Chloroform: 1,1,1,-Trichloroethane:	1 CHCl ₃ 1 CH ₃ , 1 CCl ₃
21 22	CCI 4 ACCI	50 51	3.3900 1.1562	2.910 0.844	Tetrachloromethane: Chlorobenzene:	1 CCl4 5 ACH, 1 ACCl
23 "CNO ₂ "	CH ₃ NO ₂ CH ₂ NO ₂ CHNO ₂	52 53 54	2.0086 1.7818 1.5544	$1.868 \\1.560 \\1.248$	Nitromethane: 1-Nitropropane: 2-Nitropropane:	1 CH ₃ NO ₂ 1 CH ₃ , 1 CH ₂ , 1 CH ₂ NO ₂ 2 CH ₃ , 1 CHNO ₂
24 25	ACNO ²	55 56	1.4199 2.057	1.104 1.65	Nitrobenzene: Carbon disulfide:	5 ACH, 1 ACNO2 1 CS2
26 "(C) ₃ N"	CH ₃ N CH ₃ N	57 58	1.1865 0.9597	0,940 0,932	Trimethylamine: Triethylamine:	2 CH ₃ , 1 CH ₃ N 3 CH ₃ , 2 CH ₂ , 1 CH ₂ N
27	HCOO	69	1.242	1,188	Ethyl formate:	$1 \text{ CH}_{3}, 1 \text{ CH}_{2}, 1 \text{ HC00}$
28 29	I Í Br	60 61	1.264 0.9492	0.832 0.832	lodoetnane: Bromomethane:	1 СП3, 1 СП2, 1 1 1 СН3, 1 Br
ì					Bromobenzene:	5 ACH, 1 AC, 1 Br

÷

:

;

			مستعلم فقاربه بالمترار وترزيرت مسترين والمرابع			
Main group	Sub group	No	$R_{\mathbf{k}}$	Qk	Sample group assignment	
30	CH ₃ SH	62	1.877	1.676	Methanethiol	1 CH ₃ SH
31	Furfural	63	3.168	2.484	Furfural:	1 Furfural
32	CsH5N	64	2.9993	2,113	Pyridine:	1 C _s H _s N
"Pyridine"	C CHAN	65	2.8332	1.833	3-Methylpyridine:	1 CH ₃ , 1 C ₅ H ₄ N
•	C ₅ H ₃ N	66	2.667	1,553	2,3-Dimethylpyridine	2 CH ₃ , 1 C ₅ H ₃ N
33 "DOH"	(CH ₂ OH) ₂	67	2.4088	2.248	1,2-Ethanediol:	1 (CH ₂ OH) ₂
34 "DMFA"	HCON(CH ₃) ₂	68	3.0856	2.736	Dimethylformamide:	1 HCON(CH ₃) ₂
36 "DMSO"	(CH ₃) ₂ SO	69	2.8266	2.472	Dimethylsulfoxide:	1 (CH ₃) ₂ SO

TABLE 1 (continued)

where v_{ki} is the number of groups of type k in molecule i and is always an integer. In γ_i^{R} is given by

$$\ln \gamma_{i}^{R} = \sum_{k} \nu_{ki} (\ln \Gamma_{k} - \ln \Gamma_{k}^{(i)}) - \left(\ln \frac{\theta_{i}}{x_{i}} + 1 - \frac{\theta_{i}}{x_{i}} \right)$$
(7)

where Γ_k is the group residual activity coefficient and $\Gamma_k^{(i)}$ is the residual activity coefficient of group k in a reference solution containing only molecules of type i. $\ln \Gamma_k$ and $\ln \Gamma_k^{(i)}$ are calculated from the equation

$$\ln \Gamma_{\mathbf{k}} = 1 - \ln \left(\sum_{\mathbf{m}} X_{\mathbf{m}} \Psi_{\mathbf{mk}} \right) - \sum_{\mathbf{m}} \left(\frac{X_{\mathbf{m}} \Psi_{\mathbf{km}}}{\sum_{\mathbf{n}} X_{\mathbf{n}} \Psi_{\mathbf{nm}}} \right)$$
(8)

using the group fractions X_m in the mixture for $\ln \Gamma_k$ and the group fractions $X_m^{(i)}$ in pure component i for $\ln \Gamma_k^{(i)}$. The mole fraction of group k in the mixture is given by

$$X_{\rm m} = \sum_{\rm j} v_{\rm mj} x_{\rm j} / \sum_{\rm j} \sum_{\rm n} v_{\rm nj} x_{\rm j}$$
(9)

For pure component i, eqn. (9) reduces to

$$X_{\rm m}^{\rm (i)} = \nu_{\rm mi} / \sum_{\rm n} \nu_{\rm ni}$$
 (10)

The group interaction parameter Ψ_{mn} is given by

$$\Psi_{\rm mn} = (Q_{\rm m}/Q_{\rm n}) \exp[-(U_{\rm mn} - U_{\rm nn})/RT] = (Q_{\rm m}/Q_{\rm n}) \exp(-a_{\rm mn}/T)$$
(11)

where U_{mn} is the energy of interaction between groups m and n. The group interaction parameters a_{mn} and a_{nm} ($a_{mn} \neq a_{nm}$) must be systematically evaluated from the existing literature concerning phase equilibrium data [14-16] as shown in Table 2.

BASIC PHASE EQUILIBRIUM EQUATIONS

We can summarize the following equations for three-phase equilibria [17]. Vapor—liquid equilibria under normal pressures are calculated by

$$\phi_i y_i P = x_i \gamma_i \phi_i^s P_i^s \exp[v_i^L (P - P_i^s)/RT]$$
(12)

where y_i is the vapor phase mole fraction, ϕ is the vapor phase fugacity coefficient, v_i^L is the molar liquid volume, P_i^s is the saturation pressure, and P is the total pressure.

The fugacity coefficients of pure components and components in a mixture are calculated from the second virial coefficients B_{ij} .

$$\ln \phi_{i} = (P/RT) \left(2 \sum_{j} y_{j} B_{ij} - \sum_{i} \sum_{j} y_{i} y_{j} B_{ij} \right)$$
(13)

The pure component and cross-virial coefficients are calculated from the correlation of Hayden and O'Connell [18].

	CH_2	C=C	ACH	ACCH ₂	ссон	CH ₃ OH	H_2O	ACOH	CH2 CO
2	0	-211.6	126.7	176.2	963.6	1026.	1733.	1303.	487.9
5	2000.	0	660.8	4964.	10100.	1528.	5008.	357.6	386.7
H	-107.1	-269.3	0	107.7	662.6	721.9	1193.	966,6	119.8
CH12	-87.66	-128.8	31.09	0	747.1	580,3	5319.	646.5	2887.
HOC	134.7	1810.	249.6	79,89	0	247.1	407.4	-152.0	246.8
H ₃ OH	94.54	201.8	170.4	81,55	-236.7	0	-150.6		112.2
0	456.8	1156.	327.8	358.7	214.3	255.1	0	-308.5	-305.5
COH	6091.	4462.	-56.41	-120.2	649.4		7468.	0	
H ₂ CO	243.0	389,6	239.8	4,681	48.56	89.10	674.5		0
OH	473.4					961,3	656.0		24.82
2000	298.4	-330.3	477.8	156.6	135.5	272.0	744.0	-9.114	292.9
0,H2,O	66.80	125,6	158.7	1190.	-232.3	230.4	933,0		179.1
NH2	74.20	2335.	140.4		-330.2	-479.8	-545.9		
HN	40,09	1145.	147.8	-17,29	-237.8	533.2	-624.1		
ACNH2	337,8	479.0	396.1	190.6	189.7	327.3	-101.1		-250.4
CN	164.5	441.3	239.4	136.7	107.1	498.5	353.0		-5.491
HOOC	240.9	3780,	187.6	220,8	598,5	921.8	-433.9		-164.1
Ŋ	141.9	32.64	334.8	159,5	-81.00	691.2	1084.		77.34
co,	154.1	216.4	705.1	424.0	713.9	789.8	5010.		53,88
cci3	222.8	320,9	511.1	167,9	647.3	783.5	5141.		91.44
	470.6	594.0	630.8	404.0	931.6	1119.	8865.	1720.	421.6
ACCI	-161.8	-84.39	-74.73	-64.02	145.3	1307.	1471.		6052.
CNO2	199.2	95,96	255.3	65,97		313.0	1431.		-118.2
ACNO ₂	457.5		99.36				5716.		
CS2	151.7	4,520	261.0	-153,2	1214.	977.7	2927.		442.9
C) JN	150.1	150,0	142.4		92.78	543.3	-792.9		
HCOO	329.1		252.4	2,197	133.5	209.4			130.2
	-4.810		191.7		355.4				-166.1
Br	-69.69		-3.001	145,2	447.3				-206.7
Hash	113.2		323.3			535.0			204.3
rurfural	271.6		529.3	403.5	4423.		344.1		423.4
yridine	180.7		280.4	281,8	-116.1	548.1	-332.4	231.7	
HOO	473.8		429.6	5574	266.6			1798.	
DMFA	233.9		678.0	608,3	-27.84	353.6	-119.7		387,5
OMSO	320.0	668,4	304.3		-105.8	59,19	-334.9		117.7

2

1

.

, 1

: {

;

Effective UNIFAC group interaction parameters a_{nm} K

TABLE 2

194

		10 CHO	11 COOC	12 CH ₂ O	13 CNH ₇	14 CNH	15 ACNH ₂	16 CCN	17 COOH	18 CCI
-1 07	CH ₂ C=C	476.6	364.9 391 8	193.6 300.7	407.3 907 8	302.6 977 7	517.1 717 0	927.8 091 6	727.6	67.58 450 7
ന	ACH		-245.7	-66.23	134.9	43.93	5.894	6 101	40 000. 566.4	-337.9
4	ACCH ₂		602.9	-156.3		135.8	3847,	4874.	761.5	-124.7
2	ссон		275.4	400.4	-107,5	-7.708	88,73	352,3	777.4	6073.
9	CH ₃ OH	-361.8	41.43	-61.09	44,35	87.55	-82.01	6.257	300.0	21.84
-	H_2O	-207.7	356.4	-280.5	154,6	334.6	963.5	180.8	412,6	450,0
æ	ACOH		116.6							
6 q	CH2CO	24.17	-190,1	-27.85			5421.	-20.10	290.5	-28.42
10	CHO	0								3009.
11	0000		0	61.73		101.5		26.28	8.026	
12	CH ₂ O		69.60	0		-199.1		135,9	684.1	41.58
13	CNH ₂				0	-33.62				
14	CNH		-23.17	939.7	118,2	0				
15	ACNH ₂						0	-149.0		
16	CCN		20.65	60.55			476.0	0	861.8	
17	COOH		36.50	-305.3				487.9	0	124.0
18	CCI	72.09		354.3					623.5	0
19	cci2		35,88	-141.5					273.5	61.79
20	cc1 ₃		65.74	-132.6				106.0		-2.826
21	CCI₄		248.6	-42.20		262.2	383.3	740.0	945.0	1299.
22	ACCI		-18,95		628,5	-15.66	1029.	7255.		
23	CNO2			219.7				-125.4		
24 0f	ACNO ₂	-		0						1
07	50,2 20,2 20,2 20,2 20,2 20,2 20,2 20,2		454.8	168.2				869.3		18.75
07					-51,29			414.5		
19	, ,		1.9°9T	1					-343.2	
28			41.60	797.6						
29	Br			-192.0						
30	CH₃SH			152.5	-45.09			186,0		-0.5514
31	Furfural		2.926							
32	Pyridine							306,2		
33	нод			26.42			196.2			
34	DMFA			286.9						
35	OSMC		82,90	87.21			294.6			

195

ł

ż

0	1	ŀ	0	•	6	2			00		.50						9	2		9										7				
27 HCO	543		177	1293	475	264			-75		40						691	1		155							0			355.				
26 (C) ₃ N	-27.01	413.6	-134.0		-410.6	-625.7	624.5						38.07			-153.9			-274.3	-401.1	-9.331	1554.	•			0								
25 CS ₂	-53,53	185.4	-100.3	148,8	300.1	465.7	623.9		1108.		387.7	102.1				576.8		3523.		220.6	147.2				0			-169.4						
24 ACNO ₂	59.40		424.2				-70.28								417.7						1515.			0										
23 CNO ₂	807.3	1047.	153.9	4121.		241.3	119.2		101.7			-208.3				148.5					834,7	8616.	0					157.5	201.8				100A,	
22 ACCI	316,4	4252.	350.8	46.78	285,1	38.77	626,6		63,16		295.9		-14.33	157.1	171.4	152,5					833.2	0	50.99			-186,4			136.5					
21 CCl4	-439.3	-430.3	-627.9	397.3	117.1	125.5	1739.	5136.	4522.		4685.	-91.82		-48.11	195.0	125.9	6646.	110.4	42.50	-52.19	0	-653.9	288.1	170.0	-65,09	382,0		-103.5	3497.		144,1	-277.3	2 LG L	108.1
20 CCI ₃	-31.00	89.02	-643.1	207.2	-115.0	-137.3	1030.		-204.2		-212.2	5264.				-1.076		89.43		0	107.1				-62.20	-302.3	-57.81	32.66			34.63	-294.4		-426.4
19 CCl ₂	41.16	297.4	-722.7	-31.37	-162.4	-36.92	1025.		-163.4		-51.66	2441.					2155.	-41.93	0		98.95					3016.		51.06				149.2		-219.5
	CH ₂	C=C	ACH	ACCH ₂	CCOH	CH ₃ OH	H ₂ O	ACOH	$CH_2 CO$	CHO	COOC	$CH_2 O$	CNH ₂	CNH	ACNH ₂	CCN	COOH	CCI	cci,	ccl ₃	CCI4	ACCI	CN03	ACNO ₂	CS ₂	(C) ₃ N	HCOO	I	'n	CH ₃ SH	Furfural	Pyridine	DMFA	DMSO
-		8	ო	4	ю	9	7	ø	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26 27	27	28	29	30	31	32	34	35

196

TABLE 2 (continued)

35 DMSO	1577. 1109	252.9	-210.4	-265.9	-268.7	36.54	 	194.1	188.8		-147.6				166.3	171.3	710.7											-406.1	161.9 0
34 DMFA	657.1	-644.9	130.4	-465.6	125.8	309.7			80,94								837.6												0 98,33
33 DOH	181.8	549.7 1100	-172.6	Í		866.8		1	4540.		384.0								782.7						-41.99			0	385.1 81.65
32 Pyridine	357.2	38,72	-140,0 -14.51	152,9	932,0	680,9						-139.7			50,75	-15.32	461.8										0		
31 Furfural	779.9	-364.3	477.0		230.7	267.6		14.79								81.10	369.7									0			
30 CH ₃ SH	164.1	-284.9		149,4		23.60				179.9		74.72		41.37								31 LV	01.11		0			142.3	
29 Br	360.8	115.9	-86.31 278 9	1		299.4			455.0								309.2	119.1	76.47					0					
28 I	422.6	28,18	481.3	01101		489.9		164.0							111.9	128.4	430.6		241.4	1010	1'000		0)					
	CH ₂	ACH	ACCH2	CH ₃ OH	H ₂ O	ACOH CH ² CO	CHO	0000	CH ₂ O	CNH ₂	ACNH2	CCN	COOH	CCI	cciz	င္လင္ဖ	CCI4	ACCI	CNO2	ACNO ₂	Co2	NE(0)	I	, Å	CH ₃ SH	Furfural	Pyridine	DOH	DMFA
	c	101	4 L	9 09	2	00 G	10	11	12	13	15	16	17	18	19	20	21	22	23	24	07	07	28	29	30	31	32	33	34 35

Liquid—liquid equilibrium compositions between two liquid phases (I and II) can be calculated by [19]

$$(x_i \gamma_i)^{\mathrm{I}} = (x_i \gamma_i)^{\mathrm{II}}$$
(14)

The solubility of a solid (component 2) in a liquid solvent (component 1) is calculated by eqn. (15) when there is no solubility of component 1.

$$f_{\text{pure 2}}^{\text{s}} = \gamma_2 x_2 f_{\text{pure 2}}^{\text{L}} \tag{15}$$

The ratio $(f^{s}/f^{L})_{pure 2}$ is given elsewhere [17] and its simplified form, which neglects terms containing specific heat difference between liquid and solid, is

$$\ln(f^{\rm s}/f^{\rm L})_{\rm pure\ 2} = (\Delta h_{\rm f.2}/RT) \ [T/T_{\rm m.2} - 1] \tag{16}$$

where $\Delta h_{f,2}$ is the enthalpy of fusion, $T_{m,2}$ is the melting temperature of pure component 2 and T is the system temperature. The solubility x_2 can be calculated if the activity coefficient γ_2 is estimated by a group-contribution method. We must use the approximation $\gamma_2 = 1$ to obtain the ideal solubility.

RESULTS

The effective UNIFAC method can predict a better fit of vapor-liquid equilibria for alcohol-saturated hydrocarbon systems than the UNIFAC method as shown in Table 3. Figures 1 and 2 show typical examples to indi-

Fig. 1. Vapor—liquid equilibria for *n*-hexane (1)—ethanol (2) at 60°C. \bullet , Data from ref. 21.

Fig. 2. Vapor-liquid equilibria for ethanol-n-heptane at 40°C. •, Data from ref. 22.

Prediction	of	vapor-	-liquid	equilibria	for	binary	alcohol-	-hydrocarbon	systems	from
group-cont	ribu	tion m	ethods							

System (component 1—	Temp. (°C)	No. of data	Root- (X 10	mean squa DO)	ure devi	ation	Ref.
component 2)		points	Relati	ve press.	Vapo	or mole	
			Ia	Пρ			
			_		I	II	
Methanol—n-hexane	60	23	75	37			20
Ethanol— <i>n</i> -hexane	60	8	153	45	56	18	21
Ethanol— <i>n</i> -heptane	40	10	225	19	8 9	24	22
Ethanol—n-octane	45	17	242	32	55	16	23
	55	19	259	35	60	21	23
	65	18	246	33	57	14	23
	75	19	256	36	70	18	23
Ethanol—isooctane	40	18	206	43	86	31	22
1-Propanol— <i>n</i> -hexane	45	5	26	57	11	9	24
1-Propanol-n-heptane	30	9	29	52			25
	60	13	28	53			25
1-Propanol—n-decane	90	11	104	42	10	7	22
1-Butanol-n-decane	100	19	33	35	18	18	26
2-Propanol- <i>n</i> -heptane	30	11	45	49			25
2-Propanol-isooctane	45	20	55	23	37	21	27

a I = UNIFAC.

^b Π = Effective UNIFAC.

Fig. 3. Vapor-liquid equilibria for binary alcohol-hydrocarbon systems [22-24,26,27].

Experimental and calculated activity coefficients for binary systems

Methanol-n-hexane600.04513.5011.8820 n -Hexane-methanol600.051314.9013.6013.6013.60 l -thraon-octane450.020616.3616.3023 n -Octane-ethanol450.09725.0104.88128Benzene-l-propanol450.08073.7383.470Methanol-benzene350.024211.0811.3429Benzene-methanol63.620.0735.7144.5430Toluene-methanol63.620.0735.7144.5430 n -Octane-phenol132.410.2502.7892.73131Phenol-n-octane125.690.0148.7308.730n n -Heytane-1,4-dioxane800.0232.4642.484 $1-Octene-1,4-dioxane800.1201.7421.828n-Pentane-acetone450.1053.5003.57733Acetone-n-pentane450.0943.8613.5681-Heytane-1,4-dioxane800.0231.6445.64Benzene-dipropyl ether700.07511.0521.05035Dipropyl ether-benzene700.03501.4091.32736Acetone-horzene450.09161.4091.32736Acetone-horzene450.09161.4091.32736Acetone-horzene450.09161.4091.32736Acetone-horzene450.0916$	System (component 1-component 2)	Т (°С)	<i>x</i> ₁	γ ₁ (exptl.)	γ ₁ (calcd.)	Ref.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Methanol— <i>n</i> -hexane	60	0.045	13.50	11.88	20
Ethanol- n -octane450.020616.3616.3023 n -Octane-ethanol450.09956.6796.223 1 -Propanol-benzene450.09073.7383.470Methanol-benzene350.024211.0811.3429Benzene-methanol350.08034.9775.204Methanol-chuene70.250.1304.5744.45430Toluene-methanol132.410.2502.7892.73131 n -Octane-phenol132.410.2502.7892.73131 n -Heptane-1.4-dioxane800.0632.9932.46732 $1,4$ -Dioxane- n -heptane800.0632.9932.45732 $1,4$ -Dioxane- n -heptane800.1201.7421.828 n -Pentane-acetone450.0943.8613.568 $1,4$ -Dioxane- n -pentane450.0943.8613.568 $1-Hexene-5-nonanone600.1.8331.564Benzene-dipropyl ether700.07511.0521.05035Diproyl ether-benzene700.07511.0521.56336Benzene-acetone450.19741.4031.40037Acetone-nebuzene450.09161.4091.32736Acetone-nebuzene450.09131.2903838Benzene-acetone450.09133.6243.599Verbiylacetate-benzene500.0731.3211.352$	<i>n</i> -Hexane—methanol	60	0.0513	14.90	13.60	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ethanol— <i>n</i> -octane	45	0.0206	16.36	16.30	23
1-Fropanol—benzene 45 0.0972 5.010 4.881 28 Benzene-1-propanol 45 0.0807 3.738 3.470 Methanol—benzene 35 0.0803 4.977 5.204 Methanol—toluene 70.255 0.130 4.574 4.454 30 Toluene—methanol 63.62 0.073 5.714 5.748 7.781 31 Phenol—roctane 125.59 0.014 8.730 8.730 7.742 1.828 n-Heptane-1,4-dioxane 80 0.023 2.464 2.484 1.050 3.577 33 1,4-Dioxanen-heptane 45 0.094 3.861 3.568 1.420 1.742 1.828 n-Pentane-acetone 45 0.094 3.861 3.568 1.145 5.060 3.577 33 Acetone-n-pentane 45 0.094 3.861 3.568 1.1472 1.828 3.1564 1-Neare-acetone 45 0.0916 1.409 1.327 36 S	<i>n</i> -Octane—ethanol	45	0.0985	6.679	6.223	
Benzene-l-propanol 45 0.0807 3.738 3.470 Methanol-benzene 35 0.0242 11.08 11.34 29 Benzene-methanol 35 0.0263 4.977 5.204 Methanol-toluene 70.25 0.130 4.574 4.454 30 Toluene-methanol 63.62 0.073 5.714 5.748 7.748 <i>n</i> -Octane 132.41 0.250 2.789 2.731 31 Phenol- <i>n</i> -octane 125.59 0.014 8.730 8.730 8.730 <i>n</i> -Heptane-1,4-dioxane 80 0.023 2.464 2.464 2.464 1-Octene-1,4-dioxane 80 0.120 1.742 1.823 1.4-Dioxane-neptana 45 0.094 3.861 3.568 1-Hexene-5-nonanone 60 0. 1.633 1.643 1.564 Benzene-actone 45 0.0916 1.409 1.327 36 Acctone-benzene 70 0.0751 1.052 1.050 35 <td>1-Propanol-benzene</td> <td>45</td> <td>0.0972</td> <td>5.010</td> <td>4.881</td> <td>28</td>	1-Propanol-benzene	45	0.0972	5.010	4.881	28
Methanol-benzere 35 0.0242 11.08 11.34 29 Benzene-methanol 35 0.0803 4.977 5.204 Methanol-toluene 70.25 0.130 4.574 4.454 30 Toluene-methanol 132.41 0.250 2.789 2.731 31 Phenol-n-octane 125.59 0.014 8.730 8.730 n -Heptane-1,4-dioxane 80 0.023 2.464 2.464 1.0 -Octane- n -Apetrane 80 0.063 2.393 2.457 1.4 -Dioxane- -1.4 -dioxane 80 0.063 2.393 2.457 1.4 -Dioxane- -1.4 -dioxane 80 0.120 1.742 1.828 n -Pentane-acetone 45 0.094 3.861 3.568 1 -Hexene- 5 -nonanone 60 $0.$ 1.287 1.283 5 -Nonanone- -1 -hexene 60 $0.$ 1.287 1.283 5 -Nonanone- 1 -hexene 60 $0.$ 1.633 1.564 Benzene-actone 45 0.0916 1.409 1.327 36 3620 0.0974 1.403 1.400 37 $Acetone-benzene$ 45 0.0688 1.656 1.583 $Toluene-acetone450.09161.2941.2903836243.6243.5994484411399795.6491.409700.7731.3211.3521.593700.07933.6413.$	Benzene-1-propanol	45	0.0807	3.738	3.470	
Benzene-methanol 35 0.0803 4.977 5.204 Methanol-toluene 70.25 0.130 4.574 4.454 30 Toluene-methanol 63.62 0.073 5.714 5.748 31 Phenol-n-octane 125.59 0.014 8.730 7.731 31 Phenol-n-octane 80 0.023 2.464 2.838 2.457 32 1,4-Dioxane-n-heptane 80 0.063 2.393 2.457 32 1,4-Dioxane-l-dectone 80 0.063 2.393 2.457 32 1,4-Dioxane-l-Adioxane 80 0.023 2.464 2.464 1-Octene-l-Adioxane 80 0.023 2.464 3.568 1-Hexene-schone 45 0.094 3.861 3.568 1-Hexene-5-nonanone 60 0. 1.287 1.283 34 5-Noanone-1-bexene 70 0.0751 1.052 1.050 35 Dipropyl ether 70 0.0751 1.451 1.474 </td <td>Methanol-benzene</td> <td>35</td> <td>0.0242</td> <td>11.08</td> <td>11.34</td> <td>29</td>	Methanol-benzene	35	0.0242	11.08	11.34	29
Methanol-toluene70.250.1804.5744.45430Toluene-methanol63.620.0735.7145.7487.748 n -Octane-phenol132.410.2502.7892.73131Phenol-n-octane125.590.0148.7308.730 n -Heptane- $1,4$ -dioxane800.0232.4642.4841-Octene- $1,4$ -dioxane800.0232.4642.4841-Octene- $1,4$ -dioxane800.01201.7421.828 n -Fentane-acetone450.1053.5003.57733Acetone- n -pentane450.0943.8613.6681-Hexene-5-nonanone600.1.2871.283345-Nonanone-1-hexene600.1.6331.564Benzene-dipropyl ether700.07511.0521.05035Dipropyl ether-benzene700.03501.0991.147Benzene-actone450.19741.4031.40037Acetone-benzene450.06881.6561.583Methyl acetate-cyclohexane350.0793.6413.409Methyl acetate-benzene500.0731.3211.352Cyclohexane-methyl acetate500.0733.6243.599Hexylamine- n -hexylamine600.1231.5461.60440 n -Hexane-hexylamine600.1231.5461.60440 n -Hexane-methyl acetate500.07634.3185.43042 </td <td>Benzene-methanol</td> <td>35</td> <td>0.0803</td> <td>4.977</td> <td>5.204</td> <td></td>	Benzene-methanol	35	0.0803	4.977	5.204	
Toluene-methanol 63.62 0.073 5.714 5.748 <i>n</i> -Octane-phenol132.41 0.250 2.789 2.731 31 <i>n</i> -Heptane-1,4-dioxane80 0.049 3.172 3.317 32 1,4-Dioxane-n-heptane80 0.023 2.464 2.484 $1-0$ 1-Octene-1,4-dioxane80 0.063 2.393 2.457 32 1,4-Dioxane-1-octene80 0.063 2.393 2.457 32 1,4-Dioxane-1-octene80 0.120 1.742 1.828 <i>n</i> -Pentane-acetone45 0.105 3.500 3.577 33 Acetone-n-pentane60 $0.$ 1.633 1.564 Benzene-dipropyl ether70 0.0751 1.052 1.050 35 Dipropyl ether-benzene70 0.0751 1.052 1.050 35 Dipropyl ether-benzene45 0.0470 1.531 1.474 Toluene-acetone45 0.0470 1.531 1.474 Toluene-acetone45 0.0688 1.656 1.583 Methyl acetate-bolzene50 0.073 1.321 1.352 Cyclohexane-methyl acetate50 0.073 1.321 1.352 Cyclohexane-methyl acetate50 0.093 3.624 3.599 Hetylamine-n-hexane60 0.123 1.546 1.443 Dimethylamine-n-hexane60 0.094 1.486 1.443 Dimethylamine-n-hexane70 0.073 1.321 <	Methanol-toluene	70.25	0.130	4.574	4.454	30
n-Octane—phenol132.410.2502.7892.73131Phenol— n -octane125.590.0148.7308.730Phenol— n -octane800.0493.1723.317321,4-Dioxane— n -heptane800.0232.4642.4841-Octene—1,4-dioxane800.0232.4642.4841-Octene—1,4-dioxane800.1201.7421.828 n -Pentane—acetone450.1053.5003.57733Acetone— n -pentane450.0943.8613.56811-Hexene—5-nonanone600.1.2871.283345-Nonanome—1-hexene600.1.6331.564Benzene—dipropyl ether700.03501.0991.147Benzene—acetone450.09161.4091.327Acetone—benzene450.04701.5311.474Toluene—acetone450.06881.6561.583Methyl acetate—cyclohexane350.1113.1673.026Senzen—methyl acetate350.0731.3211.352Cyclohexane—methyl acetate500.0933.6243.599Hexylamine—n-hexane600.1231.5461.403Propionaldehyde450.00933.6243.599Hexylamine—n-hexane600.1231.5461.404Propionaldehyde—cyclohexane1000.07634.9795.049 n -Hexane—hexylamine600.0941.485	Toluene-methanol	63.62	0.073	5.714	5.748	
Phenol—n-octane125.590.0148.7308.730 n -Heptane—1,4-dioxane800.0493.1723.31732 $1,4$ -Dioxane— n -heptane800.0632.9932.4642.484 1 -Octene— $1,4$ -dioxane800.120 1.742 1.828 $1,4$ -Dioxane— 1 -octene800.120 1.742 1.828 $1,4$ -Dioxane— 1 -octene800.120 1.742 1.828 $1,4$ -Dioxane— $-n$ -pentane450.1053.5003.577 33 Acetone— n -pentane600.1.6331.564Benzene—dipropyl ether700.03501.0991.147Benzene—acetone450.09161.4091.32736Acetone—benzene450.04701.5311.474Toluene—acetone450.06881.6561.583Methyl acetate—cyclohexane350.1113.1673.026Sezene—methyl acetate500.0801.2941.29038Benzene—methyl acetate500.0904.4364.41139Propionaldehyde—cyclohexane450.00933.6243.599Hexylamine—n-hexane600.1231.5461.443Dimethylamine—n-hexane600.1231.5461.443Dimethylamine—n-hexane600.0944.4364.441Dimethylamine—n-hexane600.1231.5461.443Dimethylamine—n-hexane600.1231.5461.443Dimet	<i>n</i> -Octane—phenol	132.41	0.250	2.789	2.731	31
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Phenol-n-octane	125.59	0.014	8.730	8.730	
1,4-Dioxaneneptane800.0232.4642.4841-Octene-1,4-dioxane800.0632.3932.457321,4-Dioxane-1-octene800.1201.7421.828n-Pentaneacetone450.0943.8613.5631-Hexene-5-nonanone600.1.2871.2835-Nonanone-1-hexene600.1.6331.564Benzene-dipropyl ether700.07511.0521.050350.09161.0991.147Benzene-acetone450.09161.4093.32736Acetone-benzene450.04701.5311.474Toluene-acetone450.06881.6561.583Methyl acetate-cyclohexane350.1113.1673.02638Benzene-methyl acetate500.0731.3211.352Cyclohexane-methyl acetate500.0731.3211.352Cyclohexane-propionaldehyde450.00904.4364.41139Propionaldehyde-ryclohexane450.00933.6243.599Hexylamine-n-hexylamine600.0241.4681.443Dimethylamine-n-hexane200.04982.0031.87141n-Hexanedimethylamine200.04982.0031.87141n-Hexanedimethylamine700.11351.1301.127Acetone-ryclohexane1000.07634.9795.049n-Hexanedimethylamine700.1135	<i>n</i> -Heptane—1,4-dioxane	80	0.049	3.172	3.317	32
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,4-Dioxane— <i>n</i> -heptane	80	0.023	2.464	2,484	
1,4-Dioxane-l-octene800.1201.7421.828 n -Pentane-acetone450.1053.5003.57733Acctone-n-pentane450.0943.8613.5681-Hexene-5-nonanone600.1.2871.283345-Nonanone-1-hexene600.1.6331.564Benzene-dipropyl ether700.07511.0521.05035Dipropyl ether-benzene700.03501.0991.147Benzene-acetone450.09161.4091.32736Acetone-benzene450.04701.5311.474Toluene-acetone450.06881.6561.583Methyl acetate-cyclohexane350.1113.1673.02638Cyclohexane-methyl acetate350.0793.6413.409Methyl acetate-benzene500.0801.2941.29038Benzene-methyl acetate500.0731.3211.352Cyclohexane-methyl acetate500.0933.6243.599Hexylamine-n-hexylamine600.1231.5461.50440n-Hexane-dimethylamine200.04402.4692.468Aniline-methylcyclohexane1000.09764.3185.43042Methylcychexane1000.09764.3185.43042Methylcyclohexane700.11351.1301.127Acetonitrile-benzene700.07201.1851.19043 <tr< td=""><td>1-Octene-1,4-dioxane</td><td>80</td><td>0.063</td><td>2,393</td><td>2.457</td><td>32</td></tr<>	1-Octene-1,4-dioxane	80	0.063	2,393	2.457	32
n-Pentane—acetone450.1053.5003.57733Acetone— n -pentane450.0943.8613.5681-Hexene—5-nonanone600.1.2871.283345-Nonanone—1-hexene600.1.6331.564Benzene—dipropyl ether700.07511.0521.05035Dipropyl ether—benzene700.03501.0991.147Benzene—acetone450.09161.4091.32736Acetone—benzene450.04701.5311.474Toluene—acetone450.06881.6561.583Methyl acetate—cyclohexane350.1113.1673.02638Benzene—methyl acetate500.0801.2941.29038Benzene—methyl acetate500.0933.6243.599Hexylamine—n-hexane600.1231.56440 n -Hexane—hexylamine600.0941.4861.443Dimethylamine—n-hexane200.04402.4692.468Aniline—methylcyclohexane1000.09764.3185.43042Methylacyclohexane—aniline1000.0731.1851.19043Benzene-acetonitrile450.09482.0031.87141 n -Hexane—dimethylamine700.11351.1301.127Acetonitrile—benzene700.07201.1851.19043Benzene-acetonitrile450.09993.0722.6914	1,4-Dioxane—1-octene	80	0.120	1.742	1.828	
Acetone- <i>n</i> -pentane450.0943.8613.5681-Hexene-5-nonanone600.1.2871.283345-Nonanone-1-hexene600.1.6331.564Benzene-dipropyl ether700.07511.0521.05035Dipropyl ether-benzene700.03501.0991.147Benzene-acetone450.09161.4091.32736Acetone-benzene450.19741.4031.40037Acetone-acetone450.19741.4031.40037Acetone-toluene450.06881.6561.583Methyl acetate-cyclohexane350.1113.1673.02638Cyclohexane-methyl acetate500.0793.6413.40934343434Propionaldehyde450.00904.4364.4113939Propionaldehyde-cyclohexane450.00933.6243.59940Hexylamine-n-hexane600.1231.5461.50440n-Hexane-dimethylamine200.04402.4682.46836Aniline-methylcyclohexane1000.09764.3185.43042Methylamine-benzene700.07201.1851.19043Benzene-n-butylamine700.07201.1851.19043Benzene-hexylamine700.01351.3001.127Acetonitrile-benzene450.09393.0722.897n-Hexane-dimethylamine	<i>n</i> -Pentane—acetone	45	0.105	3.500	3.577	33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Acetone— <i>n</i> -pentane	45	0.094	3.861	3.568	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1-Hexene-5-nonanone	60	0.	1.287	1.283	34
Benzene-dipropyl ether700.07511.0521.05035Dipropyl ether-benzene700.03501.0991.147Benzene-acetone450.09161.4091.32736Acetone-benzene450.04701.5311.474Toluene-acetone450.19741.4031.40037Acetone-toluene450.06881.6561.583Methyl acetate-cyclohexane350.1113.1673.02638Cyclohexane-methyl acetate500.0801.2941.29038Benzene-methyl acetate500.00904.4364.41139Propionaldehyde-cyclohexane450.00933.6243.599Hexylamine-n-hexane600.1231.5461.50440n-Hexane-hexylamine600.04882.0031.87141Dimethylamine-n-hexane200.04402.4692.468Aniline-methylcyclohexane1000.07634.3185.43042Methyloyclohexane-aniline1000.07634.3185.43042Methyloyclohexane-aniline700.01351.1301.127Acetonitrile-benzene450.09911.6221.69146Benzene-acetonitrile450.04272.6692.608Nitromethane-benzene450.09911.6221.69146Chloroform350.10051.4151.444Carbon disulfide-benzene250.0211 <t< td=""><td>5-Nonanone—1-hexene</td><td>60</td><td>0.</td><td>1.633</td><td>1.564</td><td></td></t<>	5-Nonanone—1-hexene	60	0.	1.633	1.564	
Dipropyl ether—benzene700.03501.0991.147Benzene—acetone450.09161.4091.32736Acetone—benzene450.04701.5311.474Toluene—acetone450.19741.4031.40037Acetone—toluene450.06881.6561.583Methyl acetate—cyclohexane350.1113.1673.02638Cyclohexane—methyl acetate500.0801.2941.29038Benzene—methyl acetate500.0731.3211.352Cyclohexane—propionaldehyde450.00904.4364.41139Propionaldehyde—cyclohexane450.00933.6243.599Hexylamine—n-hexane600.1231.5461.50440n-Hexane—hexylamine600.0941.4861.443Dimethylamine—n-hexane200.04402.4692.468Aniline—methylcyclohexane1000.07634.9795.049n-Butylamine—benzene700.11351.1301.127Acetonitrile—benzene450.09402.3002.13044Benzene—acetonitrile450.04772.6692.608Nitromethane—benzene450.03993.0722.897n-Butylamine—benzene450.03993.0722.897n-Hexane—chloroform350.09911.6221.69146Chloroform—n-hexane350.00911.6221.69146 </td <td>Benzene-dipropyl ether</td> <td>70</td> <td>0.0751</td> <td>1.052</td> <td>1.050</td> <td>35</td>	Benzene-dipropyl ether	70	0.0751	1.052	1.050	35
Benzene-acetone45 0.0916 1.409 1.327 36 Acetone-benzene45 0.0470 1.531 1.474 Toluene-acetone45 0.0670 1.531 1.474 Toluene-acetone45 0.0688 1.656 1.583 Methyl acetate-cyclohexane35 0.111 3.167 3.026 Methyl acetate-benzene50 0.080 1.294 1.290 Methyl acetate-benzene50 0.073 1.321 1.352 Cyclohexane-propionaldehyde45 0.0090 4.436 4.411 Propionaldehyde-cyclohexane45 0.0093 3.624 3.599 Hexylamine-n-hexane60 0.123 1.546 1.504 40 n-Hexane-hexylamine60 0.094 1.486 1.443 Dimethylamine-n-hexane20 0.0440 2.469 2.468 Aniline-methylcyclohexane100 0.0763 4.979 5.049 n-Hexane-dimethylamine70 0.1135 1.130 1.127 Acetonitrile-benzene45 0.0940 2.300 2.130 44 Benzene-n-butylamine70 0.1135 1.130 1.127 Acetonitrile-benzene45 0.0427 2.669 2.608 Nitromethane-benzene45 0.0445 2.968 2.763 45 Benzene-nitromethane45 0.0399 3.072 2.897 n-Hexane-chloroform35 0.0991 1.622 1.691 46 <t< td=""><td>Dipropyl ether-benzene</td><td>70</td><td>0.0350</td><td>1.099</td><td>1.147</td><td></td></t<>	Dipropyl ether-benzene	70	0.0350	1.099	1.147	
Acetone—benzene45 0.0470 1.531 1.474 Toluene—acetone45 0.1974 1.403 1.400 37Acetone—toluene45 0.0688 1.656 1.583 Methyl acetate—cyclohexane35 0.111 3.167 3.026 38Cyclohexane—methyl acetate35 0.079 3.641 3.409 Methyl acetate—benzene50 0.080 1.294 1.290 38Benzene—methyl acetate50 0.073 1.321 1.352 Cyclohexane—propionaldehyde45 0.0090 4.436 4.411 39Propionaldehyde—cyclohexane45 0.0093 3.624 3.599 Hexylamine—n-hexane60 0.123 1.546 1.504 40 <i>n</i> -Hexane—hexylamine60 0.0944 1.486 1.443 Dimethylamine—n-hexane20 0.0448 2.003 1.871 41 <i>n</i> -Hexane—dimethylamine20 0.0440 2.469 2.468 Aniline—methylcyclohexane100 0.0976 4.318 5.430 42 Methylcyclohexane—aniline100 0.0763 4.979 5.049 <i>n</i> -Butylamine—benzene45 0.0940 2.300 2.130 44 Benzene-n-butylamine70 0.1135 1.130 1.27 Acetonitrile—benzene45 0.0445 2.968 2.763 45 Benzene—chitrile45 0.0247 2.669 2.608 Nitromethane55 $0.$	Benzene—acetone	45	0.0916	1.409	1.327	36
Toluene—acetone 45 0.1974 1.403 1.400 37 Acetone—toluene 45 0.0688 1.656 1.583 Methyl acetate—cyclohexane 35 0.111 3.167 3.026 38 Cyclohexane—methyl acetate 35 0.079 3.641 3.409 Methyl acetate—benzene 50 0.073 1.321 1.352 Cyclohexane—propionaldehyde 45 0.0090 4.436 4.411 39 Propionaldehyde—cyclohexane 45 0.0093 3.624 3.599 Hexylamine—n-hexane 60 0.123 1.546 1.504 40 n-Hexane—hexylamine 60 0.094 1.486 1.443 Dimethylamine—n-hexane 20 0.0498 2.003 1.871 41 n-Hexane—dimethylamine 20 0.0440 2.469 2.468 Aniline—methylcyclohexane 100 0.0976 4.318 5.430 42 Methylcyclohexane 100 0.0763 4.979 5.049 n-Butylamine—benzene 70 0.1135 1.1300 1.127 Acetonitrile—benzene 45	Acetone-benzene	45	0.0470	1.531	1.474	
Acetone-toluene 45 0.0688 1.656 1.583 Methyl acetate-cyclohexane 35 0.111 3.167 3.026 38 Cyclohexane-methyl acetate 35 0.079 3.641 3.409 Methyl acetate-benzene 50 0.080 1.294 1.290 38 Benzene-methyl acetate 50 0.073 1.321 1.352 Cyclohexane-propionaldehyde 45 0.0090 4.436 4.411 39 Propionaldehyde-cyclohexane 45 0.0093 3.624 3.599 Hexylamine-n-hexane 60 0.123 1.546 1.504 40 n-Hexane-hexylamine 60 0.094 1.486 1.443 Dimethylamine-m-hexane 20 0.04498 2.003 1.871 41 n-Hexane-dimethylamine 20 0.0440 2.469 2.468 Aniline-methylcyclohexane 100 0.0976 4.318 5.430 42 Methylcyclohexane-aniline 100 0.0763 4.979 5.049 n-Butylamine-benzene 70 0.1135 1.130	Toluene-acetone	45	0.1974	1.403	1.400	37
Methyl acetate-cyclohexane35 0.111 3.167 3.026 38 Cyclohexane-methyl acetate35 0.079 3.641 3.409 Methyl acetate-benzene50 0.080 1.294 1.290 38 Benzene-methyl acetate 50 0.073 1.321 1.352 Cyclohexane-propionaldehyde 45 0.0090 4.436 4.411 39 Propionaldehyde-cyclohexane 45 0.0093 3.624 3.599 Hexylamine-n-hexane 60 0.123 1.546 1.504 40 n-Hexane-hexylamine 60 0.094 1.486 1.443 Dimethylamine-n-hexane 20 0.0448 2.003 1.871 41 n-Hexane-dimethylamine 20 0.0448 2.003 1.871 41 n-Hexane-dimethylamine 100 0.0976 4.318 5.430 42 Methylcyclohexane-aniline 100 0.0763 4.979 5.049 n-Butylamine-benzene 70 0.0720 1.185 1.190 43 Benzene-n-butylamine 70 0.1135 1.130 1.127 Acetonitrile-benzene 45 0.0427 2.669 2.608 Nitromethane-benzene 45 0.0445 2.968 2.763 45 Benzene-nitromethane 45 0.0399 3.072 2.897 n-Hexane-chloroform 35 0.0991 1.622 1.691 46 Chloroform-n-hexane 35 0.0027 366.6 <	Acetone-toluene	45	0.0688	1.656	1.583	
Cyclohexane-methyl acetate 35 0.079 3.641 3.409 Methyl acetate-benzene 50 0.079 3.641 3.409 Methyl acetate-benzene 50 0.073 1.294 1.290 38 Benzene-methyl acetate 50 0.073 1.321 1.352 Cyclohexane-propionaldehyde 45 0.0090 4.436 4.411 39 Propionaldehyde-cyclohexane 45 0.0093 3.624 3.599 Hexylamine-n-hexane 60 0.123 1.546 1.504 40 n-Hexane-hexylamine 60 0.094 1.486 1.443 Dimethylamine-n-hexane 20 0.04498 2.003 1.871 41 n-Hexane-dimethylamine 20 0.0440 2.469 2.468 Aniline-methylcyclohexane 100 0.0976 4.318 5.430 42 Methylcyclohexane-aniline 100 0.0763 4.979 5.049 n-Butylamine-benzene 70 0.1135 1.130 1.127 Acetonitrile-benzene 45 0.0940 2.300 2.130 44 Benzene-n-butylamine 70 0.1135 1.130 1.127 Acetonitrile-benzene 45 0.0445 2.968 2.763 45 Benzene-nitromethane 45 0.0991 1.622 1.691 46 Chloroform-n-hexane 35 0.1005 1.415 1.444 Carbon disulfide-benzene 25 0.0027 366.6 366.6	Methyl acetate-cyclohexane	35	0.111	3.167	3.026	38
Methyl acetate—benzene50 0.080 1.294 1.290 38Benzene—methyl acetate 50 0.073 1.321 1.352 Cyclohexane—propionaldehyde 45 0.0090 4.436 4.411 39 Propionaldehyde—cyclohexane 45 0.0093 3.624 3.599 Hexylamine—n-hexane 60 0.123 1.546 1.504 40 n-Hexane—hexylamine 60 0.094 1.486 1.443 Dimethylamine—n-hexane 20 0.0498 2.003 1.871 41 n-Hexane—dimethylamine 20 0.0440 2.469 2.468 Aniline—methylcyclohexane 100 0.0976 4.318 5.430 42 Methylcyclohexane—aniline 100 0.0763 4.979 5.049 n-Butylamine—benzene 70 0.1135 1.130 1.127 Acetonitrile—benzene 45 0.0427 2.669 2.608 Nitromethane—benzene 45 0.0940 2.300 2.130 44 Benzene—nitromethane 45 0.0991 1.622 1.691 46 Chloroform—n-hexane 35 0.1005 1.415 1.444 Carbon disulfide—benzene 25 0.0027 366.6 366.6 15 Benzene—aceton disulfide 25 0.0027 366.6 366.6 15 Benzene—water 25 0.0027 366.6 366.6 15	Cyclohexane-methyl acetate	35	0.079	3.641	3.409	
Benzene-methyl acetate50 0.073 1.321 1.352 Cyclohexane-propionaldehyde45 0.0090 4.436 4.411 39 Propionaldehyde-cyclohexane45 0.0093 3.624 3.599 Hexylamine-n-hexane60 0.123 1.546 1.504 40 n-Hexane-hexylamine60 0.094 1.486 1.443 Dimethylamine-n-hexane20 0.0449 2.469 2.468 Aniline-methylcyclohexane100 0.0976 4.318 5.430 42 Methylcyclohexane-aniline100 0.0763 4.979 5.049 n-Butylamine-benzene70 0.0720 1.185 1.190 43 Benzene-n-butylamine70 0.1135 1.130 1.127 Acetonitrile-benzene45 0.0940 2.300 2.130 44 Benzene-acetonitrile45 0.0445 2.968 2.763 45 Benzene-nitromethane45 0.0991 1.622 1.691 46 Chloroform-n-hexane35 0.1005 1.415 1.444 Carbon disulfide-benzene25 0.0027 366.6 366.6 15 Benzene-carbon disulfide25 0.0027 366.6 366.6 15 Benzene-water25 0.0004 $2427.$ $2430.$	Methyl acetate-benzene	50	0.080	1.294	1.290	38
Cyclohexane—propionaldehyde45 0.0090 4.436 4.411 39 Propionaldehyde—cyclohexane45 0.0093 3.624 3.599 Hexylamine—n-hexane60 0.123 1.546 1.504 40 n-Hexane—hexylamine60 0.094 1.486 1.443 Dimethylamine—n-hexane20 0.0498 2.003 1.871 41 n-Hexane—dimethylamine20 0.0440 2.469 2.468 Aniline—methylcyclohexane100 0.0976 4.318 5.430 42 Methylcyclohexane—aniline100 0.0763 4.979 5.049 n-Butylamine—benzene70 0.1135 1.130 1.127 Acetonitrile—benzene45 0.0940 2.300 2.130 44 Benzene—acetonitrile45 0.0427 2.669 2.608 Nitromethane—benzene45 0.0399 3.072 2.897 n-Hexane—chloroform35 0.1005 1.415 1.444 Carbon disulfide—benzene25 0.02511 1.700 1.637 Water—benzene25 0.0027 366.6 366.6 15 Benzene—carbon disulfide25 0.0004 $2427.$ $2430.$	Benzene-methyl acetate	50	0.073	1.321	1.352	~~
Propionaldehyde—cyclohexane 45 0.0093 3.624 3.599 Hexylamine—n-hexane 60 0.123 1.546 1.504 40 n-Hexane—hexylamine 60 0.094 1.486 1.443 Dimethylamine—n-hexane 20 0.0498 2.003 1.871 41 n-Hexane—dimethylamine 20 0.0440 2.469 2.468 Aniline—methylcyclohexane 100 0.0976 4.318 5.430 42 Methylcyclohexane—aniline 100 0.0763 4.979 5.049 n-Butylamine—benzene 70 0.1135 1.130 1.127 Acetonitrile—benzene 45 0.0940 2.300 2.130 44 Benzene—acetonitrile 45 0.0427 2.669 2.608 Nitromethane—benzene 45 0.0399 3.072 2.897 n-Hexane—chloroform 35 0.1005 1.415 1.444 Carbon disulfide—benzene 25 0.0581 1.343 1.325 47 Benzene—carbon disulfide 25 0.0211 1.700 1.637	Cyclonexane-propionaldehyde	45	0.0090	4.436	4.411	39
Hexylamine n -hexane 60 0.123 1.546 1.504 40 n -Hexanehexylamine 60 0.094 1.486 1.443 Dimethylamine n -hexane 20 0.0498 2.003 1.871 41 n -Hexanedimethylamine 20 0.0440 2.469 2.468 Anilinemethylcyclohexane 100 0.0976 4.318 5.430 42 Methylcyclohexane 100 0.0763 4.979 5.049 n -Butylamine 70 0.1135 1.130 1.127 Acetonitrile 45 0.0940 2.300 2.130 44 Benzene $acetonitrile$ 45 0.0427 2.669 2.608 Nitromethane 45 0.0399 3.072 2.897 n -Hexane aff 0.09911 1.622 1.691 46 Chloroform 35 0.1005 1.415 1.444 Carbon disulfide 25 0.0211 1.700 1.637 Water—benzene 25 0.0004 $2427.$ $2430.$	Propionaldehyde cyclohexane	45	0.0093	3.624	3.599	
<i>n</i> -Hexane—nerkylamine 60 0.094 1.486 1.443 Dimethylamine—n-hexane 20 0.0498 2.003 1.871 41 <i>n</i> -Hexane—dimethylamine 20 0.0440 2.469 2.468 Aniline—methylcyclohexane 100 0.0976 4.318 5.430 42 Methylcyclohexane—aniline 100 0.0763 4.979 5.049 <i>n</i> -Butylamine—benzene 70 0.01135 1.130 1.127 Acetonitrile—benzene 45 0.0940 2.300 2.130 44 Benzene—acetonitrile 45 0.0427 2.669 2.608 Nitromethane—benzene 45 0.0399 3.072 2.897 <i>n</i> -Hexane—chloroform 35 0.1005 1.415 1.444 Carbon disulfide—benzene 25 0.0581 1.343 1.325 47 Benzene—carbon disulfide 25 0.0211 1.700 1.637 Water—benzene 25 0.0027 366.6 366.6 15 Benzene—carbon disulfide 25 0.0004 2427. 2430. <td>nexylamine-<i>n</i>-nexane</td> <td>60</td> <td>0.123</td> <td>1.546</td> <td>1.504</td> <td>40</td>	nexylamine- <i>n</i> -nexane	60	0.123	1.546	1.504	40
Dimethylamine n -hexane 20 0.0498 2.003 1.871 41 n -Hexanedimethylamine 20 0.0440 2.469 2.468 Anilinemethylcyclohexane 100 0.0976 4.318 5.430 42 Methylcyclohexane 100 0.0763 4.979 5.049 n -Butylaminebenzene 70 0.0720 1.185 1.190 43 Benzene- n -butylamine 70 0.1135 1.130 1.127 Acetonitrile 45 0.0940 2.300 2.130 44 Benzene- $acetonitrile$ 45 0.0427 2.669 2.608 Nitromethane 45 0.0445 2.968 2.763 45 Benzene- $acetonitrile$ 45 0.0399 3.072 2.897 n -Hexane- $chloroform$ 35 0.1005 1.415 1.444 Carbon disulfide 25 0.0581 1.343 1.325 47 Benzene- $carbon$ disulfide 25 0.0027 366.6 366.6 15 Benzene- $water$ 25 0.0027 366.6 366.6 15	<i>n</i> -Hexane-ne r ylamine	60	0.094	1.486	1.443	
n-Hexane-dimetrylamine20 0.0440 2.469 2.468 Anilinemethylcyclohexane100 0.0976 4.318 5.430 42 Methylcyclohexane-aniline100 0.0763 4.979 5.049 n -Butylamine-benzene70 0.0720 1.185 1.190 43 Benzene- n -butylamine70 0.1135 1.130 1.127 Acetonitrile-benzene 45 0.0940 2.300 2.130 44 Benzene-acetonitrile 45 0.0427 2.669 2.608 Nitromethane-benzene 45 0.0445 2.968 2.763 45 Benzene-nitromethane 45 0.0399 3.072 2.897 n -Hexane-chloroform 35 0.1005 1.415 1.444 Carbon disulfide-benzene 25 0.0581 1.343 1.325 47 Benzene-carbon disulfide 25 0.0027 366.6 366.6 15 Benzene-water 25 0.0004 $2427.$ $2430.$	Dimethylamine-n-hexane	20	0.0498	2.003	1.871	41
Amininemethylcyclohexane 100 0.0976 4.318 5.430 42 Methylcyclohexane-aniline 100 0.0763 4.979 5.049 n-Butylamine-benzene 70 0.0720 1.185 1.190 43 Benzene-n-butylamine 70 0.1135 1.130 1.127 Acetonitrile-benzene 45 0.0940 2.300 2.130 44 Benzene-acetonitrile 45 0.0427 2.669 2.608 Nitromethane-benzene 45 0.0399 3.072 2.897 n-Hexane-chloroform 35 0.1005 1.415 1.444 Carbon disulfide-benzene 25 0.0581 1.343 1.325 47 Benzene-carbon disulfide 25 0.0211 1.700 1.637 366.6 15 Water-benzene 25 0.0027 366.6 366.6 15 Benzene-water 25 0.0004 2427. 2430. 2430.	<i>n</i> -Hexane—dimethylamine	20	0.0440	2.469	2.468	
Methylcyclonexane—anline100 0.0763 4.979 5.049 <i>n</i> -Butylamine—benzene70 0.0720 1.185 1.190 43 Benzene- <i>n</i> -butylamine70 0.1135 1.130 1.127 Acetonitrile—benzene 45 0.0940 2.300 2.130 44 Benzene—acetonitrile 45 0.0427 2.669 2.608 Nitromethane—benzene 45 0.0445 2.968 2.763 45 Benzene—nitromethane 45 0.0399 3.072 2.897 <i>n</i> -Hexane—chloroform 35 0.0991 1.622 1.691 46 Chloroform— <i>n</i> -hexane 35 0.1005 1.415 1.444 Carbon disulfide—benzene 25 0.0211 1.700 1.637 Benzene—carbon disulfide 25 0.0027 366.6 366.6 15 Benzene—water 25 0.0004 $2427.$ $2430.$	Aniline-methylcyclonexane	100	0.0976	4.318	5.430	42
<i>n</i> -Butylamine—benzene70 0.0720 1.185 1.190 43 Benzene- <i>n</i> -butylamine70 0.1135 1.130 1.127 Acetonitrile—benzene 45 0.0940 2.300 2.130 44 Benzene—acetonitrile 45 0.0427 2.669 2.608 Nitromethane—benzene 45 0.0445 2.968 2.763 45 Benzene—nitromethane 45 0.0399 3.072 2.897 <i>n</i> -Hexane—chloroform 35 0.1005 1.415 1.444 Carbon disulfide—benzene 25 0.0581 1.343 1.325 47 Benzene—carbon disulfide 25 0.0211 1.700 1.637 Water—benzene 25 0.0027 366.6 366.6 15 Benzene—water 25 0.0004 $2427.$ $2430.$	Buttalamine house	100	0.0763	4.979	5.049	40
Benzene-butylamine70 0.1135 1.130 1.127 Acetonitrile-benzene45 0.0940 2.300 2.130 44Benzene-acetonitrile45 0.0427 2.669 2.608 Nitromethane-benzene45 0.0445 2.968 2.763 45Benzene-nitromethane45 0.0399 3.072 2.897 <i>n</i> -Hexane-chloroform35 0.1005 1.415 1.444 Carbon disulfide-benzene25 0.0581 1.343 1.325 Benzene-carbon disulfide25 0.0027 366.6 366.6 15Benzene-water25 0.0024 $2427.$ $2430.$	Renzono n hutrilono inc	70	0.0720	1.100	1,190	43
AccountineDenzene45 0.0940 2.300 2.130 44 Benzene—acetonitrile45 0.0427 2.669 2.608 Nitromethane—benzene45 0.0445 2.968 2.763 45 Benzene—nitromethane45 0.0399 3.072 2.897 <i>n</i> -Hexane—chloroform35 0.0991 1.622 1.691 46 Chloroform— <i>n</i> -hexane35 0.1005 1.415 1.444 Carbon disulfide—benzene25 0.0581 1.343 1.325 47 Benzene—carbon disulfide25 0.0027 366.6 366.6 15 Benzene—water25 0.0004 $2427.$ $2430.$	Acetonitrile-honzono	10	0.1135	1.130	1.147	4.4
Denzene45 0.0427 2.009 2.008 Nitromethane45 0.0445 2.968 2.763 45Benzene-intromethane45 0.0399 3.072 2.897 <i>n</i> -Hexane-chloroform35 0.0991 1.622 1.691 46Chloroform- <i>n</i> -hexane35 0.1005 1.415 1.444 Carbon disulfide-benzene25 0.0581 1.343 1.325 47Benzene-carbon disulfide25 0.0027 366.6 366.6 15Benzene-water25 0.0004 $2427.$ $2430.$	Bongonomeneteritrile	40	0.0940	2.300	2.130	44
Antromethane45 0.0445 2.968 2.763 45 Benzene-intromethane45 0.0399 3.072 2.897 <i>n</i> -Hexane-chloroform35 0.0991 1.622 1.691 46 Chloroform- <i>n</i> -hexane35 0.1005 1.415 1.444 Carbon disulfide-benzene25 0.0581 1.343 1.325 47 Benzene-carbon disulfide25 0.0211 1.700 1.637 Water-benzene25 0.0027 366.6 366.6 15 Benzene-water25 0.0004 $2427.$ $2430.$	Nitzemethene-hencene	40 45	0.0427	2.009	4,000	4 5
Denzene 45 0.0399 3.072 2.897 <i>n</i> -Hexane 35 0.0991 1.622 1.691 46 Chloroform <i>n</i> -hexane 35 0.1005 1.415 1.444 Carbon disulfide 25 0.0581 1.343 1.325 47 Benzenecarbon disulfide 25 0.0211 1.700 1.637 Water 25 0.0027 366.6 366.6 15 Benzene 25 0.0004 $2427.$ $2430.$	Benzonompitzomothone	40	0.0445	2.900	2.700	40
n-frexale 35 0.0991 1.022 1.091 46 Chloroform Carbon disulfide 35 0.1005 1.415 1.444 Carbon disulfide 25 0.0581 1.343 1.325 47 Benzene Carbon disulfide 25 0.0211 1.700 1.637 Water Benzene 25 0.0027 366.6 366.6 15 Benzene Benzene 25 0.0004 $2427.$ $2430.$	n-Harana-ablaraform	40 95	0.0399	3.072	4.091 1 co1	10
Carbon disulfide—benzene 25 0.1005 1.415 1.444 Carbon disulfide—benzene 25 0.0581 1.343 1.325 47 Benzene—carbon disulfide 25 0.0211 1.700 1.637 Water—benzene 25 0.0027 366.6 366.6 15 Benzene—water 25 0.0004 2427. 2430.	Chloroform-r-herono	30 25	0.0991	1.022	1.091	40
Carbon disulfide 25 0.0501 1.545 1.525 47 Benzene—carbon disulfide 25 0.0211 1.700 1.637 Water—benzene 25 0.0027 366.6 366.6 15 Benzene—water 25 0.0004 2427. 2430.	Carbon digulfide-hongono	00 · 95	0.1000	1,410 1 949	1 995	17
Water-benzene 25 0.0211 1.700 1.657 Water-benzene 25 0.0027 366.6 366.6 15 Benzene-water 25 0.0004 2427. 2430.	Benzene-carbor digulfida	20 95	0.0001	1.040 1 700	1,040 1 697	'1 (
Benzene-water 25 0.0027 366.6 360.6 15 Weten-laward 25 0.0004 2427. 2430.	Water-hanzana	20 95	0.0211	366 6	366 C	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzene-water	25	0.0021	9497	2/20	10
water 1-propanol 90 0.162 2.674 2.801 22	Water-1-propanol	<u>20</u> 90	0.162	2.674	2.801	22

System (component 1—component 2)	Т (°С)	x ₁	γ ₁ (exptl.)	γ ₁ (calcd.)	Ref.
1-Propanol—water	90	0.111	4.663	4.753	
Water-2-propanol	45	0.1	2.985	3.135	48
2-Propanol-water	45	0.1	4.708	5.226	
Water-acetic acid	113.5	0.099	1.745	1.620	49
Acetic acid-water	100.1	0.015	2.860	2.911	
Water-acetonitrile	60	0.0529	5.231	5.698	50
Acetonitrile—water	60	0.0654	7.335	6.825	
Butyl acetate-phenol	176.6	0.1300	0.606	0.606	51
Phenol-butyl acetate	128.6	0.0500	0.558	0.543	
3-Pentanone—acetic acid	70	0.0314	1,434	1.517	52
Acetic acid—3-pentanone	70	0.0890	1.525	1.432	
Acetone-chloroform	62.06	0.0563	0.579	0.534	53
Chloroform-acetone	58.77	0.1609	0.662	0.650	
Chloroform-methanol	61.9	0.095	2.292	2.384	54
Methanol-chloroform	58 .9	0.030	5,345	5.376	
Diethyl ether-methanol	55.78	0.0390	3.118	3.022	55
Methanol—diethyl ether	32.48	0.1716	2.413	2.475	
Methanol-water	93.5	0.040	2.093	2.011	56
Water—methanol	65.0	0.050	1.670	1.632	

TABLE 4 (continued)

cate the predictive ability of both methods. Figure 3 illustrates experimental and calculated vapor mole fractions for some alcohol—hydrocarbon systems. Table 4 presents typical experimental and calculated activity coefficients in the dilute regions for various binary systems, demonstrating that the effective UNIFAC method is able to represent a wide range of mixtures with few group parameters. Table 5 shows some of the predicted results for the chloroform—methanol—ethyl acetate system which exhibits positive and negative deviations from the Raoult law. Table 6 compares predictions obtained by the two methods for selected ternary systems. For the ethyl acetate—ethanol—water system, the effective UNIFAC method shows considerable improvement.

Prediction of liquid—liquid equilibria has been carried out for four ternary systems having a plait point. The data are obtained from Landolt—Börnstein [60]. The agreement between predicted and experimental solubility curves are quantitatively good for the water—propionic acid—*n*-octane and cyclohexane—ethanol—water systems at 25°C as shown in Figs. 4 and 5. However, the predictions agree qualitatively with experimental values for the toluene acetic acid—water and water—2-propanol—chloroform systems at 25°C (Figs. 6 and 7). We may state that the prediction of liquid—liquid equilibria using group-contribution methods with parameters obtained from vapor liquid equilibrium data will give results which agree qualitatively with experiment [5]. To predict liquid—liquid equilibria well by the present method, we should prepare a separate effective UNIFAC group interaction parameter table for liquid—liquid equilibria, which are derived from published binary and ternary liquid—liquid equilibrium data, and work on such a table is currently under way.

Fig. 5. Liquid—liquid equilibria for cyclohexane—ethanol—water at 25°C [60]. — —, Effective UNIFAC, · — · — ·, UNIFAC; — — , experimental.

Ξ	
5	
-	
žə	
q	
18C	
ĕ	
ati	
ē	
5	
Ť	
ñ	
er	
781	
S	
3	
Бе(
tai	
e	
l B	
λ	
eth	
Ī	
ବି	
Ĭ	
ğ	
ha	
let	
Ę	i
Т	
Ľ,	ł
8	j
ē	
5	
ē	
ch	1
Ð	
th	
5	
4	
Jts	
iei	
ii Ci	
eff.	1
ğ	
Š	
vit	
ţ	
ac	ļ
g	ļ
ate	
IJ	
Ę	
33	
ЪС	
ต	
tal	
lu:	
Ĕ	
ï	
pe	
ä	
-	

									•	
x,	X2	γ,			γ_2			γ3		
		Exptl.	Ia	q II	Exptl.	I	п	Exptl.	I	Ħ
0.122	0.539	1.01	1,14	1.13	1.28	1.27	1.25	1.27	1.28	1.27
0.115	0.179	0.637	0.695	0.686	1.94	2,10	2.05	1.02	1.01	1.01
0.120	0.637	1.24	1.36	1.34	1.15	1.18	1.16	1.39	1.43	1.40
0.345	0,465	1.24	1.26	1.24	1.42	1.39	1.38	0.812	0.989	0.971
0.454	0.325	1.12	1.11	1.09	1.70	1.76	1.73	0.774	0.812	0.811
0.597	0.077	0:896	0.904	0.895	3.10	3.51	3.39	0.673	0.733	0.734
0.058	0.634	1.11	1.26	1.24	1,16	1.16	1.15	1.44	1.48	1.45
0.653	0,082	0,939	0.938	0.931	3,19	3.57	3.43	0.573	0.672	0.673
a I = UN. b II = Effe	IFAC. sctive UNIFAC									

.

203

Prediction of vapor-liquid equilibria for ternary systems from group-contribution methods

System	Temp. or press.	No. of data points	Root-: (× 100	mean squ 00)	Ref.		
			Relative press.		Vapor mole fraction		
			Ia	Пр	I	II	
Ethanol— 2-butanone— benzene	25°C	33	44	29	24 11 25	16 14 28	57
Acetonitrile— benzene— <i>n</i> -heptane	45°C	51	44	43	25 10 20	22 13 13	58
Ethyl acetate— ethanol— water	40°C	9	213	103	111 61 100	22 26 24	59
Ethyl acetate ethanol— water	70°C	9	215	43	98 60 82	10 18 15	59
Chloroform— methanol— ethyl acetate	1 atm	72	24	17	11 14 12	11 12 11	54

a I = UNIFAC. b II = Effective UNIFAC.

TABLE 7

Solubility of naphthalene, anthracene, and phenanthrene in solvents

Solvent	Temp.	Solubility (mole%)			Ref.	
	(0)	Ia	Пр	Exptl.		
Naphthalene—methanol	40	4.8	6.7	4.4	65	
Naphthalene—ethanol	40	5.4	10.1	7.3	62	
Naphthalene—1-butanol	40	11.1	15.0	11.6	65	
Naphthalene-acetone	40	35.8	37.0	37.8	65	
Naphthalene-chloroform	40	47.0	43.0	47.3	66	
Anthracene—acetone	20	0.25	0.91	0.31	67	
Anthracene—chloroform	20	1.82	1.86	0.94	67	
Anthracene—carbon tetrachloride	20	0.53	0.42	0.41	67	
Anthracene—cyclohexane	20	0.31	0.29	0.12	67	
Anthracene-methanol	20	0.03	0.12	0.02	67	
Anthracene—aniline	20	0.27	0.30	0.35	67	
Phenanthrene—acetone	20	9.7	14.0	14.5	68	
Phenanthrene—chloroform	20	26.4	19.4	23.8	68	
Phenanthrene-carbon tetrachloride	20	15.8	14.0	14.5	68	
Phenanthrene-carbon disulfide	20	18.5	17.2	23.5	68	

a I = UNIFAC.

b II = Effective UNIFAC.

Fig. 7. Liquid—liquid equilibria for water—2-propanol—chloroform at $25^{\circ}C$ [60]. — — , Effective UNIFAC; · — · — ·, UNIFAC; — — , experimental.

Fig. 8. Solid—liquid equilibria. Experimental: (A) ethanol—naphthalene, \circ , Sunier [62]; (B) ethanol—benzene, \bullet , Viala [63]. Calculated: ———, effective UNIFAC; -----, UNIFAC; -----, ideal.

In solid-solubility calculations, enthalpies of fusion and melting temperatures for the solids studied in this work are taken from the literature [15,61]. Figure 8 shows temperature—composition diagrams for the ethanol—naphthalene and ethanol—benzene systems. In the ethanol—naphthalene system, effective UNIFAC gives calculated results closer to experimental data than UNIFAC [64]. However, for the ethanol—benzene system,

Fig. 9. Solid—liquid equilibria for acetic acid—benzene. **@**, Experimental data of Tan et al. [69]. Calculated: _____, effective UNIFAC; -----, UNIFAC; · ----, ideal.

Fig. 10. Solid—liquid equilibria for benzene—phenol. Experimental: ●, Tsakalotos and Guye [70]; □, Hatcher and Skirrow [71]. Calculated: —, effective UNIFAC;, UNIFAC;, ideal.

System	Mole%	of comp	onent I	Temp. (°C)		
(component 1-component 2)	Ia	Пρ	Exptl. [60]	I	п	Exptl. [60]
Acetone-diethyl ether	32.0	34.0	24.0	-123	-123	-126
Acetone-ethanol	24.4	22.4	21.0	-124	-122	-119
Benzene-1,2-dichloroethane	31.6	30.6	32.0	55	-56	
Benzene-phenol	65.4	65.8	62.5	-7	-6	6
Benzene-1,4-dioxane	56.9	57.4	56.5	-26	-25	26
Benzene-acetonitrile	12.6	3.4	5.0	-49	45	-51
Benzene—cyclohexane	26.6	28.0	26.5	48	-50	-44
Benzene-nitrobenzene	51.7	49.4	50.0	-27	-23	26
Phenol-naphthalene	83.7	81.1	83.8	30	27	29
Acetic acid—benzene	44.6	40.9	40.9	8	-7	8
Acetic acid—cyclohexane	7.4	9.8	7.4	-6	8	-1

Calculated and experimental eutectics in binary systems

a I = UNIFAC.

b II = Effective UNIFAC.

A second s

UNIFAC works much better. Table 7 presents solubilities for naphthalene, anthracene, and phenanthrene in different solvents. Figures 9 and 10 show two eutectic systems where UNIFAC and effective UNIFAC predict the experimental eutectic composition and eutectic temperature well. Calculated and experimental eutectic compositions and eutectic temperatures are listed for 11 binary systems in Table 8. Both methods give generally good agreement with experiment.

SIMULTANEOUS CORRELATION OF VAPOR—LIQUID EQUILIBRIA AND EXCESS ENTHALPY DATA

In the estimation of excess enthalpies with group-contribution methods, it has been found that a set of group parameters required for reproducing experimental excess enthalpy data are different from that used for activity coefficients [72,73]. Two recent investigations [74,75] were attempted to find a unique set of parameters which are able to reproduce activity coefficients and excess enthalpies simultaneously. Skjold-Jørgensen et al. [74] presented the modified UNIFAC model suited for the representation of mixtures containing non-associating components. Ashraf and Vera [75] tested SIGMA (Simplified Group Method Analysis) for the prediction of both data for alkane, alcohol, and chloroalkane systems. In this section, we will compare the ability of the effective UNIFAC method with that of SIGMA in the simultaneous representation of these two thermodynamic properties.

The Gibbs—Helmholtz equation provides the thermodynamic relation between excess enthalpy and activity coefficients.

$$-h^{\rm E}/RT^2 = \sum_{\rm i} x_{\rm i} \,\partial \,\ln \gamma_{\rm i}/\partial T \tag{17}$$

The basic equation of the effective UNIFAC may be given by

$$h^{E} = \sum_{i} x_{i} \sum_{k} \nu_{ki} (H_{k} - H_{k}^{(i)})$$
with
(18)

$$\frac{H_{k}}{RT^{2}} = -\frac{\partial \ln \Gamma_{k}}{\partial T} = \sum_{m} X_{m} \eta_{mk} / \sum_{m} X_{m} \psi_{mk} + \sum_{m} \left(X_{m} \eta_{km} / \sum_{n} X_{n} \psi_{nm} \right) - \sum_{m} \left[X_{m} \psi_{km} \left(\sum_{n} X_{n} \eta_{nm} \right) / \left(\sum_{n} X_{n} \psi_{nm} \right)^{2} \right]$$
(19)

where

 $\eta_{\rm nm} = \partial \psi_{\rm nm} / \partial T \tag{20}$

The group parameters a_{mn} are considered to be temperature-dependent.

$$a_{\rm mn} = A_{\rm mn}T + B_{\rm mn} \tag{21}$$

Then

$$\eta_{\rm mn} = \psi_{\rm mn} B_{\rm mn} / T^2 \tag{22}$$

Table 9 lists the coefficients A_{mn} and B_{mn} , which were obtained according to the procedure described by Ashraf and Vera [75]. Root-mean square relative deviations (percent) between experimental and calculated pressures and excess enthalpies for the reference systems studied in this work are given in Table 10 together with the values obtained using SIGMA coefficients. Excess enthalpies and total pressures for ternary systems including all three groups, CH₂, CCOH, and CCl, are predicted and compared with literature values and the values by SIGMA in Table 11. It may be stated that the results obtained by effective UNIFAC are comparable with those by SIGMA for the systems tested here.

In conclusion, the practical utility of effective UNIFAC has been demonstrated. Omissions in the group-parameter table show where new reliable experimental data are necessary. The effective UNIFAC method will be revised as new phase equilibrium data become available. Further modifications of the present group-contribution method will contain the modified combinatorial expression suggested by Kikic et al. [81].

TABLE 9

Effective UNIFAC coefficients evaluated for prediction of both activity coefficients and excess enthalpies

m/n	a _{mn} at 25°C	A _{mn}	B _{mn} (K)	
CH ₂ /CCOH	1081.0	-1.292	1466.0	
CCOH/CH ₂	143.7	0.135	103.4	
CH ₂ /CCl	278.1	-0.746	500.6	·
CCI/CH ₂	27.77	0.061	9.400	
CCOH/CCI	167.6	-0.022	174.2	
CCI/CCOH	641:1	-2.315	133.1	

Predicted results of vapor-liquid equilibria and excess enthalpies for binary systems

System	т (°С)	Data type	No. of data points	Root-mea relative de	Ref.	
				SIGMA	Effective UNIFAC	
<i>n</i> -Heptane-1-propanol	25	Va	11	2.8	4.5	76
n-Heptane-1-propanol	30	v	9	2.9	2.6	77
<i>n</i> -Hexane—ethanol	55	v	17	4.5	3.8	78
<i>n</i> -Heptane—ethanol	40	v	10	8.2	6.6	22
n-Heptane-1-chlorobutane	25	v	11	0.6	0.5	76
1-Propanol-1-chlorobutane	25	v	15	1.5	1.1	76
<i>n</i> -Heptane-1-butanol	30	ΗЬ	11	8.5	6.6	77
<i>n</i> -Hexane—1-octanol	25	H	10		9.7	79
<i>n</i> -Hexane—2-chlorobutane	25	н	19	2.8	1.0	80
<i>n</i> -Octane-2-chlorobutane	25	H	1 9	1.4	1.9	80
1-Heptanol-1-chlorobutane	25	H	19	5.1	3.2	80
1-Octanol-1-chlorobutane	25	н	19	5.0	2.6	80

^a V = vapor—liquid equilibria and deviation means pressure.

^b H = excess enthalpy.

TABLE 11

Predicted results of vapor—liquid equilibria and excess enthalpies for ternary systems at at $25^{\circ}C$

System	Data type	No. of data points	Root-mea relative d	Ref.	
			SIGMA	Effective UNIFAC	
n-Hexane(1)-1-octanol(2)-1- chlorobutane(3)					79
$(x_2/x_3) = 0.993$	Ηa	10	3.5	7.4	
$(x_1/x_3) = 1.000$	н	10	8.0	5.3	
$(x_1/x_2) = 1.00?$	H	10	4.5	7.6	
<i>n</i> -Heptane-1-propanol-1-					
chlorobutane	νь	44	2.6	2.1	76

a H = excess enthalpy.

 \mathbf{b} V = vapor—liquid equilibria and deviation means pressure.

ACKNOWLEDGEMENT

The authors wish to thank Dr. J.G. Gmehling of the University of Dortmund for supplying computer programs for solid—liquid equilibria using the UNIFAC method.

REFERENCES

- 1 G.M. Wilson and C.H. Deal, Ind. Eng. Chem. Fundam., 1 (1962) 20.
- 2 E.L. Derr and C.H. Deal, I. Chem. E. Symp. Ser. No. 32 (Instn. Chem. Engrs. London) 1969, Session 3, p. 40.
- 3 K. Kojima and K. Tochigi, Prediction of Vapor-Liquid Equilibria by the ASOG Method, Elsevier, Amsterdam, 1979.
- 4 Aa. Fredenslund, R.L. Jones and J.M. Prausnitz, AIChE J., 21 (1975) 1086.
- 5 Aa. Fredenslund, J. Gmehling and P. Rasmussen, Vapor-Liquid Equilibria using UNIFAC, Elsevier, Amsterdam, 1977.
- 6 Aa. Fredenslund, J. Gmehling, M.L. Michelsen, P. Rasmussen and J.M. Prausnitz, Ind. Eng. Chem. Process Des. Develop., 16 (1977) 450.
- 7 U. Onken and J. Gmehling, Chem. Ing. Tech., 49 (1977) 404.
- 8 J. Gmehling and U. Onken, Ber. Bunsenges. Phys. Chem., 81 (1977) 1023.
- 9 S. Skjold-Jørgensen, B. Kolbe, J. Gmehling and P. Rasmussen, Ind. Eng. Chem. Process Des. Develop., 18 (1979) 714.
- 10 J. Gmehling, P. Rasmussen and Aa. Fredenslund, Chem. Ing. Tech., 52 (1980) 724.
- 11 D.S. Abrams and J.M. Prausnitz, AIChE J., 21 (1975) 116.
- 12 I. Nagata and K. Katoh, Fluid Phase Equilibria, 5 (1981) 225.
- 13 A. Bondi, Physical Properties of Molecular Crystals, Liquids, and Glases, Wiley, New York, 1968.
- 14 J. Gmehling and U. Onken, Vapor-Liquid Equilibrium Data Collection, DECHEMA Chemistry Series, Frankfurt/M, Vol. 1, Part 1, 1977, Part 2a, 1977, Part 2b, 1978 (together with W. Arlt), Part 3 + 4, 1979 (together with W. Arlt).
- 15 J.A. Riddick and W.B. Bunger, Organic Solvents, Wiley-Interscience, New York, 1970, 3rd edn.
- 16 I. Wichterle, J. Linek and E. Hála, Vapor-Liquid Equilibrium Data Bibliography, Elsevier, Amsterdam, 1973, Supplement I, 1976, Supplement II, 1979.
- 17 J.M. Prausnitz, Molecular Thermodynamics of Fluid Phase Equilibria, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- 18 J.G. Hayden and J.P. O'Connell, Ind. Eng. Chem. Process Des. Develop., 14 (1975) 209.
- 19 J.M. Sorensen, T. Magnussen, P. Rasmussen and Aa. Fredenslund, Fluid Phase Equilibria, 3 (1979) 47.
- 20 H. Wolff and H.E. Höppel, Ber. Bunsenges. Phys. Chem., 72 (1968) 710.
- 21 G.W. Lindberg and D. Tassios, J. Chem. Eng. Data, 16 (1971) 52.
- 22 G.A. Ratcliff and K.C. Chao, Can. J. Chem. Eng., 47 (1969) 148.
- 23 L. Boublikova and B.C.Y. Lu, J. Appl. Chem. (London), 19 (1969) 89.
- 24 I. Brown, W. Fock and F. Smith, J. Chem. Thermodyn., 1 (1969) 273.
- 25 H.C. Van Ness, C.A. Soczek, G.L. Peloguin and R.L. Machado, J. Chem. Eng. Data, 12 (1967) 217.
- 26 L.L. Lee and W.A. Scheller, J. Chem. Eng. Data, 12 (1967) 497.
- 27 E. Neau, C. Blanc and D. Bares, J. Chim. Phys. Physicochim. Biol., 70 (1973) 843.
- 28 I. Brown and F. Smith, Austral. J. Chem., 12 (1959) 407.
- 29 G. Scatchard, S.E. Wood and J.M. Mochel, J. Am. Chem. Soc., 68 (1946) 1957.
- 30 M. Benedict, C.A. Jonson, E. Solomon and L.C. Lubin, Trans. Am. Inst. Chem. Engrs., 41 (1945) 371.
- 31 A.Ja. Aarna and T.K. Kaps, Trudy Tallinskovo Politech. Inst. Ser. A, 285 (1970) 3.
- 32 D. Tassios and M. Van Winkle, J. Chem. Eng. Data, 12 (1967) 555.
- 33 T.Ch. Lo, H.H. Bieber and A.E. Karr, J. Chem. Eng. Data, 7 (1962) 327.
- 34 H. Renon, Int. Data Ser. A, (1973) 67.
- 35 T. Tresczanowicz, Bull. Acad. Polon. Ser. Sci. Chim., 11 (1973) 107.
- 36 I. Brown and F. Smith, Austral. J. Chem., 10 (1957) 423.
- 37 J. Kraus and J. Linek, Collect. Czech. Chem. Commun., 36 (1971) 2547.
- 38 I. Nagata, T. Ohta and T. Takahashi, J. Chem. Eng. Jpn, 6 (1973) 129.
- 39 I. Matsunaga and T. Katayama, J. Chem. Eng. Jpn, 6 (1973) 397.
- 40 J.L. Humphrey and M. Van Winkle, J. Chem. Eng. Data, 12 (1967) 526.

- 41 H. Wolff and H.E. Höppel, Ber. Bunsenges. Phys. Chem., 70 (1966) 874.
- 42 G. Schneider, Z. Phys. Chem., N.F., 24 (1960) 165.
- 43 T.M. Letcher and J.W. Bayles, J. Chem. Eng. Data, 16 (1971) 266.
- 44 I. Brown and F. Smith, Austral. J. Chem., 8 (1955) 62.
- 45 I. Brown and F. Smith, Austral. J. Chem., 8 (1955) 501.
- 46 L.S. Kudryvtseva and M.P. Susarev, Zh. Prikl. Khim., 36 (1963) 1231.
- 47 J. Sameshima, J. Am. Chem. Soc., 40 (1918) 1482.
- 48 E. Sada and T. Morisue, J. Chem. Eng. Jpn, 8 (1975) 191.
- 49 T. Ito and F. Yoshida, J. Chem. Eng. Data, 8 (1963) 315.
- 50 H. Sugi and T. Katayama, J. Chem. Eng. Jpn, 11 (1978) 167.
- 51 V. Klement, V. Fried and J. Pick, Collect. Czech. Chem. Commun., 29 (1964) 2008.
- 52 P.O. Haddad and W.C. Edmister, J. Chem. Eng. Data, 17 (1972) 275.
- 53 A.E. Karr, E.G. Scheibel, W.M. Bowes and D.F. Othmer, Ind. Eng. Chem., 43 (1951) 961.
- 54 I. Nagata, J. Chem. Eng. Data, 7 (1962) 367.
- 55 H.W. Schulte, Diplomarbeit, Universität Dortmund, 1974.
- 56 J.G. Dunlop, M.S. thesis, Brooklyn Polytech. Inst., 1948.
- 57 T. Ohta, J. Koyabu and I. Nagata, Fluid Phase Equilibria, in press.
- 58 A. Palmer and B.D. Smith, J. Chem. Eng. Data, 17 (1972) 71.
- 59 I. Mertl, Collect. Czech. Chem. Commun., 37 (1972) 366.
- 60 Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Vol. II, part 2c, Springer-Verlag, Berlin, 1964, 6th edn.
- 61 Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Vol. II, part 4, Springer-Verlag, Berlin, 1961, 6th edn.
- 62 A. Sunier, J. Phys. Chem., 34 (1930) 2532.
- 62 F. Viala, Bull. Soc. Chim. Fr., 15 (1914) 5.
- 64 J.G. Gmehling, T.F. Anderson and J.M. Prausnitz, Ind. Eng. Chem. Fundam., 17 (1978) 269.
- 65 H. Ward, J. Phys. Chem., 30 (1926) 1316.
- 66 J. Hildebrand and C.A. Jenks, J. Am. Chem. Soc., 42 (1920) 2180.
- 67 J. Fohl, M. Fris and M. Smutek, Collect. Czech. Chem. Commun., 31 (1966) 4015.
- 68 H. Henstock, J. Chem. Soc., 121 (1922) 2124.
- 69 W. Tan, K.A. Kriger and J.G. Miller, J. Am. Chem. Soc., 74 (1952) 6181.
- 70 D. Tsakalotos and P. Guye, J. Chim. Phys., 8 (1910) 340.
- 71 W. Hatcher and F. Skirrow, J. Am. Chem. Soc., 39 (1917) 1939.
- 72 T.H. Nguyen and G.A. Ratcliff, Can. J. Chem. Eng., 52 (1974) 641.
- 73 I. Nagata and T. Ohta, Chem. Eng. Sci., 33 (1978) 177.
- 74 S. Skjold-Jørgensen, P. Rasmussen and Aa. Fredenslund, Chem. Eng. Sci., 35 (1980) 289.
- 75 F.A. Ashraf and J.H. Vera, Fluid Phase Equilibria, 4 (1980) 211.
- 76 S.G. Sayegh, J.H. Vera and G.A. Ratcliff, Can. J. Chem. Eng., 57 (1979) 513.
- 77 S.G. Savini, D.R. Winterhalter and H.C. Van Ness, J. Chem. Eng. Data, 10 (1965) 168.
- 78 J.C.K. Ho and B.C.Y. Lu, J. Chem. Eng. Data, 8 (1963) 549.
- 79 T.T. Lai, T.H. Doan-Nguyen, J.H. Vera and G.A. Ratcliff, Can. J. Chem. Eng., 56 (1978) 358.
- 80 T.H. Nguyen and G.A. Ratcliff, J. Chem. Eng. Data, 20 (1975) 256.
- 81 I. Kikic, P. Alessi, P. Rasmussen and Aa. Fredenslund, Can. J. Chem. Eng., 58 (1980) 253.