Note

THERMODYNAMICS OF THE SILVER—SILVER TUNGSTATE, SILVER—SILVER PHOSPHATE AND SILVER—SILVER ARSENATE ELECTRODES IN AQUEOUS MEDIUM AT DIFFERENT TEMPERATURES

UPENDRA N. DASH and MAHENDRA C. PADHI

Department of Chemistry, G.M. College, Sambalpur-768004 (India)

(Received 8 April 1981)

As part of our programme for the determination of standard potentials of some second-order electrodes of inorganic acids in aqueous, non-aqueous and mixed solvent media [1], we now report the standard potentials of the silver—silver tungstate, silver—silver phosphate and silver—silver arsenate electrodes in aqueous medium.

As in previous communications [1], the cells with liquid junction

$$Ag-AgCl/NaCl(c)//Na_2WO_4(c/2)/Ag_2WO_4-Ag$$
(A)

and

Ag—AgCl/NaCl(s)//Na3X(c/3)/Ag3X—Ag

where X is PO_4 or AsO_4 , have been studied in water over a range of temperatures.

EXPERIMENTAL

Sodium chloride (B.D.H., AnalaR) was dried above 100°C for 2 h before use. Sodium tungstate (E. Merck), sodium phosphate (E. Merck) and sodium arsenate (B.D.H., AnalaR) were dried at 120°C, and kept in a vacuum desiccator before use.

Silver salts were prepared from silver nitrate (guaranteed reagent) and sodium salts, and the precipitates were repeatedly washed with conductivity water, and were kept in conductivity water in amber-coloured bottles before use.

Preparation of the silver—silver chloride electrode has been described elsewhere [2]. Silver—silver tungstate, silver—silver phosphate and silver—silver arsenate electrodes were prepared by a method similar to that of the silver silver oxalate, malonate, succinate, adipate or chromate electrodes [1,3] by applying a paste of silver tungstate, phosphate or arsenate to the spongy silver obtained by the thermal decomposition of silver oxide [4]. The electrodes thus prepared were stored in 0.05 M aqueous sodium tungstate, phosphate or arsenate solution for 24 h. Only those electrodes were used which showed a potential difference of 0.1 mV or less on being mutually compared with each other. Stock solutions of sodium chloride, sodium tungstate,

(B)

sodium phosphate, and sodium arsenate were prepared on a molar basis. Solutions for EMF measurements were prepared from stock solutions by the double dilution method. The cell vessels were of an all-glass type of the design described earlier [1].

Preparation of the cell solutions, setting up of the cells, EMF and conductance measurements were essentially similar to the methods described earlier [1]. All measurements were made in water baths maintained at the appropriate temperature within $\pm 0.1^{\circ}$ C. The reproducibility of the EMF measurements was of the order of ± 0.2 mV.

RESULTS AND DISCUSSION

A summary of the EMF data at different temperatures for cells (A) and (B) is presented in Tables 1 and 2. The EMF, E, of cell (A) and that of cell (B) are given by expressions (1) and (2), respectively

$$E = E_{cell}^{0} + (RT/2F) \ln(2c) + (RT/2F) \ln(y_{cl}^2 - /y_{WO_4^2}) + E_j$$
(1)

$$E = E_{cell}^{0} + (2RT/3F)\ln(3c) + (2RT/3F)\ln(y_{Cl}^{3} - /y_{X}^{3}) + E_{j}$$
(2)

where the symbols have their usual significance.

The standard molar potentials, E_c^0 , of silver—silver tungstate, silver—silver phosphate and silver—silver arsenate electrodes were obtained by the method of extrapolating [1] the auxiliary functions $E_c^{0'}$ given by eqns. (3) and (4), respectively

$$E_{c}^{0'} = E - \frac{1}{2}k \log(2c) - \frac{1}{2}k \left(\frac{4A\sqrt{3c/2}}{1 + \sqrt{3c/2}} - \frac{2A\sqrt{c}}{1 + \sqrt{c}} \right) + E_{Ag,AgC1}^{0} - E_{j}$$

= $E_{Ag,Ag_{2}WO_{4}}^{0} + bc$ (3)

 TABLE 1

 EMF data of cell (A) in water at different temperatures

10^2C	t (°C)						
dm^{-3}	5	10	15	20	25	30	35
0.5	0.1679	0.1620	0.1560	0.1481	0.1439	0.1350	0.1331
1	0.1770	0.1680	0.1610	0.1540	0.1460	0.1401	0.1360
2	0.1820	0.1761	0.1722	0.1630	0.1580	0.1520	0.1430
2.5	0.1840	0.1779	0.1750	0.1659	0.1612	0.1549	0.145 9
3.5	0.1882	0.1820	0.1790	0.1725	0.1666	0.1605	0.1515
4.5	0.1920	0.1820	0.1831	0.1760	0.1700	0.1640	0.1550
5	0.1931	0.1872	0.1845	0.1775	0.1710	0.1648	0.1558
5.5	0,1949	0.1885	0.1851	0.1790	0,1720	0.1651	0.1570
6	0.1960	0.1900	0.1850	0.1800	0.1721	0.1651	0.1581
6.5	0.1975	0.1915	0.1865	0.1806	0.1725	0.1655	0.1586
7	0.1990	0.1930	0.1876	0.1807	0.1735	0.1664	0.1592

TABLE 2

10^2C	t (°C)						
dm ⁻³)	5	10	15	20	25	30	35
$\overline{X = PO_4}$	<u>_</u>						
1.	0.1990	0.1922	0.1862	0.1802	0.1741	0.1680	0.1620
2	0.2020	0.1960	0.1900	0.1840	0.1780	0.1719	0.1661
3	0.2102	0.2040	0.1971	0.1910	0.1840	0.1781	0.1719
4	0.2131	0.2065	0.1985	0.1925	0.1855	0.1795	0.1735
5	0.2160	0.2102	0.2040	0.1970	0.1910	0.1860	0.1780
6	0.2171	0.2121	0.2061	0.2000	0.1940	0.1872	0.1801
7	0.2200	0.2140	0.2090	0.2041	0.1982	0.1899	0.1834
8	0.2250	0.2190	0.2130	0.2080	0.2020	0.1920	0.1920
9	0.2295	0.2221	0.2161	0.2102	0.2042	0.1980	0.1930
10	0.2310	0.2260	0.2200	0.2141	0.2079	0.2020	0.1959
X = AsO	4						
1	0.1490	0.1420	0.1360	0.1300	0.1241	0.1180	0.1121
2	0.1571	0.1511	0.1451	0.1391	0.1330	0.1269	0.1210
3	0.1589	0.1530	0.1459	0.1410	0.1350	0.1290	0.1230
4	0.1590	0.1549	0.1481	0.1430	0.1369	0.1315	0.1246
5	0.1630	0.1571	0.1500	0.1449	0.1390	0.1335	0.1265
7	0.1695	0.1615	0.1552	0.1490	0.1425	0.1360	0.1300
8	0.1697	0.1635	0.1370	0.1525	0.1445	0.1380	0.1320
9	0.1710	0.1650	0.1585	0.1532	0.1465	0.1405	0.1345
11	0.1715	0.1670	0.1600	0.1550	0.1486	0.1426	0.1370
14	0.1765	0.1705	0.1650	0.1600	0.1548	0.1480	0.1435
15	Ù.1771	0.1710	0.1661	0.1610	0.1555	0.1491	0.1440

EMF data of cell (B) in water at different temperatures

and

$$E_{c}^{0'} = E - \frac{2}{3}k \log(3c) - k \left(\frac{3A\sqrt{2c}}{1+\sqrt{2c}} - \frac{A\sqrt{c}}{1+\sqrt{c}} \right) + E_{Ag,AgC1}^{0} - E_{j}$$

= $E_{Ag,Ag_{3}X}^{0} + b'c$ (4)

to the molarity c = 0, where $E_{Ag,AgCl}^{0}$ is the standard molar potential of the silver—silver chloride electrode and A is the Debye—Huckel constant, and are known [5] over the temperature range under investigation. In eqns. (3) and (4), $k = 2.3026 \ (RT/F)$, $b = \frac{1}{2} k \{ (2\beta_{Cl}) - (3/2\beta_{WO_4}^2) \}$, and $b' = k \{ (\beta_{Cl}) - (2/3\beta_{X^3}) \}$, where β is the usual constant in the Debye—Huckel expression for the activity coefficient, i.e.

$$-\log y_{i} = \frac{AZ_{i}^{2} \mu^{1/2}}{1 + \mu^{1/2}} - \beta_{i}\mu$$

where "i" is Cl^- , WO_4^{2-} or X^{3-} .

As usual [1], the values of the liquid junction potentials, E_j , were calculated from the equivalent conductances of sodium tungstate, sodium phosphate, or arsenate and sodium chloride by means of Lewis and Sargent's equation. These values are given in Table 3.

10 ² C	10 ³ cond	luctance (m	(oq									
(mole dm ⁻³)	t (°C)											
	ß				10	-			15			
	æ	व	U	q	ជ	q	IJ	q	G	q	υ	q
0.5	0.8	0.7			0.85	0.75			0.9	0.85		
	1,15	1.1	0.595	0.7	1.25	1.15	0,65	0.75	1.45	1.5	0.75	0.85
63	1.8	1.9	1.075	1.0	2,15	2.0	1.1	1.1	2.7	2.15	1.2	1,2
2.5	2.2	2.3			2.6	2.425			3.3	2.6		
ŝ	2.5		1.55	1.3	3.1		1.55	1.4	3.9		1.7	1.6
3.5	2.9	3.05			3.5	3.25			4.5	3.5		
4	3.25		1.95	1.55	4.0		2.0	1.75	5.15		2.2	2.0
4.5	3.8	3,85.			4.5	4.05			5.8	4.4		
5 D	4,4	4.25	2.35	1,85	5.0	4.5	2.4	2.1	6.45	4.8	2.68	2.35
5.5	5,05	4.65			5.65	4.9			7.0	5.25		
9	5.65	5.05	2.65		6.35	5.3	2.75		7.67	5.65	3.05	
6.5	6.3	5.45			7.0	5.7			8.3	6.1		
7	6.95	5.85	2.95	2.45	7.75	6.1	3.1	2.85	9.0	6.5	3.45	3,15
8	8.15		3.25	2.75	9.2		3.5	3.2	10.3		3.85	3.55
6	9.45		3.55	3,05	10.5		3.85	3.55	11.5		4.3	3.9
10	10.7		3.9		11.8		4.25		12.8		4.65	
11	12.0			3,65	13.0			4.3	14.0			4.7
14	15.7			4.5	16.9			5.4	17.8			5,85
15	17.0			4.8	18			5.75	19.1			6,25

Conductance data for NaCl^a, Na₂WO^b *, Na₃PO^c * and Na₃AsO^d * in aqueous medium at different temperatures TABLE 3

	20				25			:	30				35			
	B	q	υ	σ	ব	q	U	q		q	v	q	B	• q	IJ	q
0.5	0,95	1.0			1.1	1.1			1.25	1.5			1.3	1.425		
H	1.55	1.5	0.85	1.05	1.8	1.625	1.05	1.1	2.0	1.85	1.25	1.2	2.1	2.05	1.35	1,35
73	2.95	2.5	1.4	1.45	3.3	2.7	1.6	1.55	3.55	3.0	1.8	1.75	3.95	3.35	2.05	1.95
2.5	3.6	3.0			4.0	3.2			4.35	3.6			4.75	4.0		
ന	4.3		1.95	1.85	4.7		2.15	2.0	5.1		2.4	2.3	5.6		2.7	2,5
3.5	5.0	3.9			5.5	4.25			6.0	4.75			6.5	6.25		
4	5.7		2.45	2,25	6,3		2.7	2.25	6.8		3,0	2.85	7.4		3.35	3.05
4.5	6.4	4.875			7.0	5.3			7.5	5.9			8.3	6.55		
Ð	7.1	5.375	2.9	2.7	7.8	5.8	3.25	2.95	8.4	6,5	3.6	3.4	9.15	7.2	3.95	3,65
5,5	7.8	5.85			8.5	6.3			9.2	7.05			10.0	7.85		
9	8 . 5	6.35	3,45		9.3	6.85	3.8		10,0	7.65	4.25		10.95	8.5	4.65	
6.5	9.2	6.85			10.0	7.35			10.8	8.2			11.8	9.15		
-	9.95	7.3	3.9	3.5	10.8	7.85	4.35	3.9	11.6	8.7	4.9	4.45	12.7	9,8	5.35	4.8
8	11.35		4.35	3,9	12,35		4.9	4.4	13.3		5.4	5.0	14.5		5.95	5.35
6	12.8		4.85	4.35	13.8		5.4	4.85	15.0		6.0	5.5	16.3		6.45	5,95
0	14.3		5,3		15.35		5.85		16.65		6,5		18.1		7.1	
н	15.75			5.15	16.9			5.85	18.3			6.55	19.9			7.05
Ŧ	20.25			6.4	21.4			7.25	23.25			8.05	25.3			8.75
10	21.75			6,85	22.9			7.7	24,8			8.6	27.1			9.3

* b, *c*/2; c and d, *c*/3.

245

TABLE 4

Standard molar potentials (E_c^0 in abs. volts) for the Ag(s)/Ag₂WO₄(s), WO₄²⁻; Ag(s)/Ag₃PO₄(s), PO₄³⁻ and Ag(s)/Ag₃AsO₄(s), AsO₄³⁻ electrodes in water from 5 to 35°C

Electrode	t (°C)						
	5	10	15	20	25	30	35
Silver-silver	0 4602	0 4599	0.4528	0 4 4 95	0 4 951	0 4989	0.4900
Silver-silver	0.4032	0.4050	0.4020	0.4400	0.4001	0.4202	0.4200
phosphate Silver-silver	0.4517	0.4797	0.4675	0.4605	0.4523	0.4456	0.4370
arsenate	0.4391	0.4288	0.4173	0.4114	0.4008	0.3938	0.3849

The values of E_c^0 of the silver—silver tungstate, silver—silver phosphate and silver—silver arsenate electrodes, thus obtained are listed in Table 4. The values of the standard deviations calculated by the least-squares method are within ± 0.3 —0.8 mV. The values for the standard potential on the molal (E_m^0) and mole fraction (E_N^0) scales have also been calculated at experimental temperatures by the usual equations [6].

 $E_{\rm m}^0 = E_{\rm c}^0 - 2(2.3026 RT/F) \log \rho$

and

TABLE 5

 $E_{\rm N}^0 = E_{\rm m}^0 - 2(2.3026 RT/F) \log(1000/M)$

where ρ and m are the density and molecular weight, respectively of water. The variation of the standard potential with temperature in molar (E_c^0) , molal (E_m^0) and mole fraction (E_N^0) scales has been expressed by equations of

(5)

	• • •	· //			-
electrode	x	A	10 ² B	$-10^{2}C$	10 ⁴ D
Silver-silver					
tungstate	с	1.1760	-0.062505	0.058581	0.099182
-	m	1.1378	0.14016	0.096556	0.11700
	N	1.2016	0.14236	0.060278	0.10705
Silver—silver					
phosphate	с	2,4068	-0.22377	0.19833	0.46821
~ +	m	2,4550	-0.35939	0.17661	0.46532
	N	2.3890	-0.17280	0.22164	0.48065
Silver-silver					
arsenate	с	1.6254	-0.24932	0.085987	0.22040
	m	1.5930	0.069794	0.11986	0.23677
	N	1.6217	-0.24959	0.10038	0.23003

Constants of eqn. (6) for molar (c), molal (m) and mole fraction (N) scales in water

Θ
囶
님
9
S
-

ļ

Values of the standard potentials of silver—silver tungstate, silver—silver phosphate and silver—silver arsenate electrodes on the molar, molal and mole fraction scales in water and thermodynamic quantities on the molal and mole fraction scales at 5, 15, 25 and 35°C

	.35	0.4200	0.2070	81 137.0	39 969.0	288.13	421.34	169 880.0	169740.0		0.4370	0.4373	0.2240	126 880.0	65 145.0	332.30	632.76	229 230.0	229 230.0		0.3849	0.3852	0.1719	111660.0	49 903.0	426.18	627.25	242 920.0	243 090.0
	25	0.4351	0.4352 0.2288	84 100.0	44 267.0	304.6	438,16	174860.0	174840.0		0.4523	0.4525	0.2461	130800.0	71 063.0	450.13	650.73	264 940.0	264 980.0		0.4008	0.4010	0.1946	116 200	56461	483.27	684.25	260 220.0	260 360.0
	15	0.4528	0.4529 0.2534	87 227.0	48 732,9	320.78	454,85	179610.0	179730.0		0.4675	0.4675	0,2681	135 890.0	78 157.0	567,38	767.97	299 290.0	299 330.0		0.4173	0.4173	0.2179	121 320.0	63 587.0	539.97	740.92	276830.0	276 970.0
t (°C)	Q	<i>trode</i> 0.4692	0.4692 0.2767	905 15.0	53 363.0	336.78	471.40	184 140.0	184410.0	trode	0.4917	0.4917	0.2992	142 140.0	86420.0	684.02	884,44	332 300.0	332 290.0	rode	0.4391	0.4391	0.2466	127 000.0	71278.0	596,25	797.25	292 760.0	292 910.0
		itver-silver tungstate elec. ©(V)	(V) (V)	$-\Delta G_0^0(J \text{ mole}^{-1})$	$-\Delta G_{N}^{(J)}$ mole ⁻¹)	$-\Delta S_{m}^{0}(J mole^{-1} K^{-1})$	$-\Delta S_{N}(J \text{ mole}^{-1} \text{ K}^{-1})$	$-\Delta H_{\rm m}^{0}(J {\rm mole}^{-1})$	$-\Delta H_{\rm N}^{\rm O}({\rm J~mole^{-1}})$	ilver-silver phosphate elec	(V)	(V)		$-\Delta G_0^0(J \text{ mole}^{-1})$	$-\Delta G_{\rm N}({\rm J}{\rm mole}^{-1})$	$-\Delta S_{0}^{0}(J \text{ mole}^{-1} \text{ K}^{-1})$	$-\Delta S_{1}^{N}(J \text{ mole}^{-1} \text{ K}^{-1})$	$-\Delta H_m^0(J \text{ mole}^{-1})$	-ΔHN(J mole ⁻¹)	liver-silver arsenate elect	(V)	(V)		$-\Delta G_{0}^{0}(J \text{ mole}^{-1})$	$-\Delta G_{\rm K}(J {\rm mole}^{-1})$	$-\Delta S_{0}^{0}(J mole^{-1} K^{-1})$	$-\Delta S_{\rm K}^{\rm N}(J {\rm mole}^{-1} {\rm K}^{-1})$	$-\Delta H_{\rm m}^{0}(J {\rm mole}^{-1})$	$-\Delta H_{N}^{0}(J \text{ mole}^{-1})$

7

247

the type [7]

$$E_{\tau}^{0} = A + BT + CT \ln T + DT^{2}/2$$
 (6)

where x is c, m or N, and T is the temperature in Kelvin. The parameters A, B, C, and D of eqn. (6) on different scales are presented in Table 5.

The thermodynamic quantities, ΔG^0 , ΔH^0 , and ΔS^0 for the electrode reactions

$$Ag_2WO_4(s) + 2 e \neq 2 Ag(s) + WO_4^{2-}$$
 (solvated)

and

$$Ag_{3}X(s) + 3 e \rightleftharpoons 3 Ag(s) + X^{3-} (solvated)$$
(7)

have been calculated by the usual relations [7], and are given in Table 6 on the molality and mole fraction scales at four different temperatures.

The thermodynamic solubility products, K_{so}^0 , of silver tungstate, silver phosphate and silver arsenate in aqueous medium have been calculated from the values of standard potentials by means of the equations

$$\ln K_{so}^{0} = [E^{0}(Ag/Ag_{2}WO_{4}) - E^{0}(Ag/Ag^{*})](2F/RT)$$
(8a)

and

$$\ln K_{\rm so}^{0} = [E^{0}({\rm Ag}/{\rm Ag}_{3}{\rm X}) - E^{0}({\rm Ag}/{\rm Ag}^{*})](3F/RT)$$
(8b)

where $E^{0}(Ag/Ag^{+})$ is the standard molal potential of the silver electrode and is obtained from the literature [5] over the temperature range under investigation. The values for K_{so}^{0} on the molarity (K_{so}^{c}) and molality (K_{so}^{m}) scales at the experimental temperatures are shown in Table 7. The data for K_{so}^{c} were calculated from $K_{so}^{m}X\rho^{2}$. The solubility product data were fitted by least squares to the following equations [8]

$$\log K_{so}^{c}(Ag_{2}WO_{4}) = -1742/(T/K) - 6.440$$
 $\sigma = 0.0084$ (9a)

TABLE 7

Solubility product constants, on the molar (K_s^c) and molal (K_s^m) scales of Ag₂WO₄, Ag₃PO₄ and Ag₃AsO₄ in water at different temperatures

Silver	t (°C)				-		
Salt	5	10	15	20	25	30	35
Tungstate $K_{\rm s}^{\rm c} \times 10^{13}$ $K_{\rm s}^{\rm m} \times 10^{13}$	2.089 2.09	2.399 2.40	3.375 3.38	3.882 3.90	4.838 4.839	6.604 6.71	8.213 8.31
Phosphate $K_s^c \times 10^{18}$ $K_s^m \times 10^{18}$	1.333 1.333	1.363 1.367	1.441 1.443	1.719 1.725	2.317 2.331	3.464 3.494	5.111 5.172
Arsenate $K_s^c \times 10^{21}$ $K_s^m \times 10^{21}$	2.207 2.207	2,599 2,601	2.693 2.695	5.353 5.371	6.149 6.186	10.370 10.580	14.200 14.360

248

Values of the standard m	olal potentials, standard	thermodynamic quant	ities and solubility pro	duct constants at 25°C
	Silver—silver chromate	Silver—silver tungstate	Silver—silver phosphate	Silver—silver arsenate
E ⁰ (V)	0.4491	0.4352	0,4525	0.4010
$-\Delta G^0(J \text{ mole}^{-1})$	86 690	84 100.0	130 800.0	116 200.0
$-\Delta H^0(J \text{ mole}^{-1})$	151960	174 860.0	264 940.0	260 220.0
$-\Delta S^0(J \text{ mole}^{-1} \text{ K}^{-1})$	219	304.6	450.13	483.27
K _s ^m (mole kg ⁻²)	Ag2CrO4	Ag ₂ WO ₄	Ag ₃ PO ₄	Ag ₃ AsO ₄
	2.71×10^{-12}	4.83×10^{-13}	2.33 × 10 ⁻¹⁸	6.19 × 10 ⁻²¹
والباب والمحادث والمحادث والمحادث والمحادية والمحادية والمحادث والمحادث والمحادث والمحادث والمحادث				

TABLE 8

$\log K_{so}^{m}(Ag_{2}WO_{4}) = -1748/(T/K) - 6.420$	$\sigma = 0.00015$	(9b)
$\log K_{so}^{c}(Ag_{3}PO_{4}) = -1766/(T/K) - 11.6391$	$\sigma = 0.0104$	(9c)

- $\log K_{\rm so}^{\rm m}({\rm Ag_3PO_4}) = -1748/(T/{\rm K}) 11.6886 \qquad \sigma = 0.00026 \qquad (9d)$
- $\log K_{so}^{c}(Ag_{3}AsO_{4}) = -2381/(T/K) 12.1631 \quad \sigma = 0.0107$ (9e)
- $\log K_{\rm so}^{\rm m}({\rm Ag_3AsO_4}) = -2365/(T/{\rm K}) 12.2206 \qquad \sigma = 0.019 \tag{9f}$

where σ is the standard deviation for the precision of the least squares fit: the correlation coefficient for these relations is within 0.640–1.384.

Table 8 includes the standard molal potentials and standard thermodynamic quantities of the electrode reactions at 25°C along with those of the silver—silver chromate electrode [1] for the sake of comparison. The solubility product constants of silver chromate [9], silver tungstate, silver phosphate and silver arsenate at 25°C are also included in Table 8. The sequence $E_{Ag,Ag_2CrO_4}^0 > E_{Ag,Ag_2WO_4}^0$ and $E_{Ag,Ag_3PO_4}^0 > E_{Ag,Ag_3AsO_4}^0$ shows that $CrO_4^{2^-}$ and $PO_4^{2^-}$ ions are more strongly solvated than their counterparts. The relative solubilities of silver salts containing different anions can also be interpreted on the basis of difference in anionic solvation [10]. The order in the K_{so}^0 values, $Ag_2CrO_4 > Ag_2WO_4 > Ag_3PO_4 > Ag_3AsO_4$, would be in accordance with the supposition that the solubility decreases with increase in the size of the anion: larger anions are less solvated.

REFERENCES

- 1 (a) R.C. Das, U.N. Dash and K.N. Panda, Electrochim. Acta, 24 (1979) 99.
 - (b) U.N. Dash, Thermochim. Acta, 13 (1975) 105.
 - (c) U.N. Dash, Thermochim. Acta, 16 (1976) 177.
 - (d) U.N. Dash, Electrochim. Acta, 25 (1980) 1439.
 - (e) U.N. Dash and M.C. Padhi, Thermochim. Acta, 39 (1980) 335.
 - (f) U.N. Dash and M.C. Padhi, Thermochim. Acta, 45 (1981) 245.
 - (g) U.N. Dash and M.C. Padhi, J. Electroanal. Chem., 122 (1981) 147.
- 2 R.K. Agarwal and B. Nayak, J. Phys. Chem., 70 (1966) 2568.
- 3 (a) U.N. Dash and B. Nayak, Aust. J. Chem., 28 (1975) 1373.
 (b) U.N. Dash and P.C. Rath, Thermochim. Acta, 13 (1975) 250.
 (c) U.N. Dash and U.K. Nayak, Can. J. Chem., 58 (1980) 323.
- 4 B. Nayak and U.N. Dash, J. Electroanal. Chem., 41 (1973) 323.
- 5 H.S. Harned and B.B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold, New York, 1967.
- 6 R.A. Robinson and R.H. Stokes, Electrolyte Solutions, Butterworths, London, 1959.
- 7 U.N. Dash and S.K. Nayak, Can. J. Chem., 58 (1980) 992.
- 8 M. Salomon (Ed.), Solubility Data Series, Vol. 3, IUPAC Publications, Pergamon Press, New York, 1979.
- 9 U.N. Dash, Thermochim. Acta, 33 (1979) 1.
- 10 U.N. Dash, Fluid Phase Equilibria, 5 (1981) 323.