Thermochimica Acta, 56 (1982) *73-82*

Elsevier Scientific Publishing Company, Amsterdam-Printed in The Netherlands

SOLID-STATE REACTIONS IN THE SYSTEM Cu-Sb-0; FORMATION OF A NEW COPPER(H) ANTIMONY OXIDE

SHIRO SHIMADA * and K.J.D. MACKENZIE

Chemistry Division, D.S.I.R., Private Bag, Petone (New Zealand) (Received 11 December 1981)

ABSTRACT

The solid-state reactions in the system Cu-Sb-O were investigated by thermogravimetry and X-ray diffraction. Equimolar mixtures of CuO and $Sb₂O₃$ form Cu(II)Sb₂O₆ when slowly heated in air up to 1000°C. The first step in this reaction is the oxidation of Sb_2O_3 to Sb_2O_4 at 380-500°C, followed by further oxidation of $Sb₂O₄$ and the formation of $CuSb₂O₆$ at 500-1000°C. Thermal decomposition of CuSb₂O₆ in a flowing nitrogen atmosphere occurs in three stages; the first, with an activation energy of 356 kJ mole^{-1}, results in the formation of a new copper(I) antimony oxide, with a composition of $Cu₄SbO_{4,5}$, as determined by atomic absorption *analysis* and X-ray fluoresecence. Confirmation of predominantly monovalent copper and pentavalent antimony in the new compound was by ESR and ESCA. respectively. Two forms of $Cu₄SbO₄$, have been distinguished; one of these (form II) has a structure of lower symmetry, and decomposes when heated in air at 600°C to a mixture of CuO and another new copper antimony oxide, as yet uncharacterized. On further heating to 1100°C in air, $Cu₄SbO₄$, (form I) gradually reforms. Details of these reactions are summarized and X-ray powder data presented for $Cu₄SbO_{4.5}$.

INTRODUCTION

Considerable interest exists in interoxide compounds because of their potential uses in energy conversion and storage applications. A recent study of the formation and electrical properties of Ag,Sb,O, [I] has shown this defect pyrochlore to have interesting electrical conductance properties at higher temperatures. Since Cu^+ is in some ways similar to Ag^+ , it was suspected that the Cu(I) analogue, if formed, might have useful photoelectro**chemical properties, particularly in view of the semiconducting behaviour of** Cu₂O itself.

Syntheses of various compounds of pentavalent antimony with monovalent oxides have been reported [2-4], but the only copper antimony oxide to **have been prepared is the Cu(I1) compound, CuSb,Q,, which has a deformed**

0040-6031/82/0000-0000/\$02.75 © 1982 Elsevier Scientific Publishing Company

^{*} Present address: Faculty of Engineering, Hokkaido University, Sapporo 060, Japan.

74

trirutile structure and was synthesized by Bystrom et al. [5] by solid-state reaction between CuO and Sb,O,.

The initial aim of the present work was to synthesize the monovalent copper compound Cu , Sb , $O₆$ by reaction between copper(I) and antimony oxides. Although the compound could not be prepared in this way, another Cu(I) compound, Cu₄SbO₄₅, was prepared by thermal decomposition of CuSb,O, in a flowing atmosphere of oxygen-free nitrogen_ The new compound could also be prepared by reaction between $CuSb, O₆$ and CuO. This paper reports on some aspects of the sold-state chemistry of the system $Cu-Sb-O$, including the formation of $CuSb₂O₆$ and its decomposition to $Cu₄SbO₄₅$.

EXPERIMENTAL

The starting materials were cupric oxide (99.4% purity, BDH Ltd.) sieved $to < 300$ mesh, and antimony trioxide (chemical reagent grade, Hopkin and Williams Ltd.). The antimony trioxide was found to be senarmonite (α -Sb₂O₃) by X-ray analysis. CuSb,O, was prepared from an equimolecular mixture of the oxides, well blended in an agate mortar and heated in \sim 50 mg cm⁻² aliquots in 20 mm \times 16 mm alumina crucibles. The heating was carried out in air in a Mettler model 21 thermobalance at a rate of $6-10^{\circ}$ C min⁻¹ up to 1000°C. complete reaction being confirmed by X-ray diffraction. The CuSb, O₆ was finely ground, $\sim 10 \text{ mg cm}^{-2}$ charges were thinly spread on an alumina plate and isothermally decomposed in the thermobalance at 980- 1020°C for O-240 min under a flowing atmosphere of oxygen-free nitrogen (90 ml min⁻¹). When a degree of decomposition of about 72% was reached, the reaction was quickly stopped by purging the thermobalance with air. The X-ray diffraction pattern of the resulting brown material showed it to be a compound not listed in the JCPDS files. The composition of the new compound was determined by X-ray fluorescence and atomic absorption spectroscopy, for which a solution was prepared by $KHSO₄$ fusion. The presence of $Cu(I)$ and the valence state of the antimony in the new compound was investigated by ESR and ESCA, respectively. An alternative synthesis of the new compound was attempted by heating a mixture of $CuSb₂O₆$ and CuO at 950-1150°C for 24 h in air, the presence of the new compound being confirmed by X-ray diffraction.

RESULTS AND DISCUSSION

Formation of CuSb,O,

Byström et al. [5] obtained $CuSb₂O₆$ by heating a mixture of CuO and Sb₂O₃ in air at 1000°C for 20h [5]. Our attempts to repeat this synthesis failed to produce single-phase $CuSb₂O₆$, since X-ray analysis of the product showed small unidentified peaks in addition to those of the desired phase. Further, the weight gain during the reaction was less than theoretically predicted for complete reaction, and the product consisted of vellowish $CuSb₂O₆$ mixed with a brown coloured phase. Failure to prepare single-phase $CuSb₂O₆$ by rapid heating to 1000°C may be due to the volatilization of $Sb₂O₃$ before it has had the chance to oxidize to $Sb₂O₄$. For this reason, dynamic heating of the mixture to 1000°C at a rate of $6-10$ °C min⁻¹ in the thermobalance was used to synthesize $CuSb₂O₆$. It was found that a thick layer of reactant in the TG crucible produced a similar effect to that of rapid heating, due to insufficient oxygen being available at the bottom of the sample; thin sample layers of \sim 50 mg cm⁻² were therefore used.

Figure 1 shows the weight-gain curves obtained by heating the $CuO/Sb₂$. mixture at a rate of $6-10^{\circ}$ C min⁻¹ to 1000°C in air. Under the two reaction conditions illustrated by curves A and B, the formation of $CuSb₂O₆$ apparently consists of three steps. The first step (380-500°C) represents the oxidation of Sb_2O_3 to Sb_2O_4 , confirmed both by X-ray analysis of the sample after heating to 500°C and by the observed weight gain, which is equal to the theoretical value for this oxidation (4.3%). The second and third steps $(500-1000\degree C)$ on curve A correspond to further oxidation of Sb(IV) to Sb(V), followed by the formation of $CuSb, O₆$, since X-ray analysis of the sample heated to 640°C showed the formation of a small amount of CuSb₂O₆, which is fully formed by 1000 $^{\circ}$ C. The weight gain at 1000 $^{\circ}$ C was in agreement with the theoretical gain for the formation of $CuSb, O_s$. The

Fig. 1. TG and DTG curves for the formation of CuSb₂O₆ from equimolar CuO/Sb₂O₃ mixtures heated in air. (A) TG curve: 6°C min⁻¹ and loosely packed sample. (B) TG curve: **IOOC min-' and tightly packed sample. (C) DTG curve of (A)_. (D) DTG curve of (B).**

DTG curve (Fig. ID) corresponding to the TG curve (Fig. IB) indicates that under these conditions (tightly packed sample heated at 10° C min⁻¹), the second and third steps of the reaction overlap; in this case, oxidation to Sb(V) would be expected to be retarded by the diminished access of oxygen to the inner parts of the sample. However, these experiments show that under appropriate conditions such as illustrated by curve A of Fig. I, stoichiometric $CuSb₂O₆$ can be prepared. These conditions were used to synthesize the starting material for the decomposition experiments described below.

Formation of a new copper antimony oxide by thermal decomposition of $CuSb, O₆$

In the previous section it was noted that under some experimental conditions, loss of Sb_2O_3 by volatilization, or incomplete oxidation due to an insufficient oxygen supply resulted in the formation of a mixture of $CuSb, O₆$ with a previously unreported brown-coloured phase which appeared worthy of further study. Attempts to prepare this compound by heating excess CuO with Sb₂O₃ at 950-1200°C in air or by heating an equimolar mixture of CuO with $Sb₂O₃$ in oxygen-free nitrogen were unsuccessful, CuSb, $O₆$ being formed in every case. However, it was noted that in nitrogen, $CuSb₂O₆$ thermally decomposes to the brown compound; this decomposition reaction was therefore studied by thermogravimetry to determine the conditions under which the new brown compound can be produced in a pure state.

Figure 2 shows TG curves of the decomposition of $CuSb, O₆$ at a heating rate of 1° C min⁻¹ in flowing nitrogen (curve A) and in air (curve B). The weight-loss curve in nitrogen consists of three steps, designated I, II and III on curve A. The weight loss which begins at 950°C rapidly continues with increasing temperature up to about 70% loss at 1070°C (step I). Between 70-80% loss (1070-1120 $^{\circ}$ C), the rate of decomposition slows down (step II), increasing again above 80% loss (step III). The reactions involved in these steps are discussed in detail below, in terms of the decomposition kinetics. By contrast, the weight loss in air begins 150°C higher than in nitrogen, apparently proceeding in two steps, with an inflexion at about 80% loss. The marked suppression of the decomposition in air suggests that oxygen is evolved in the course of the reaction_

Isothermal decomposition curves determined at 980- 1020°C in nitrogen are shown in Figure 3. It is seen that the decomposition proceeds in two linear steps, the first step covering the range $0-70\%$ loss and the second occurring at 70-80%; the inflexion between the two steps is less clear at higher temperatures. This isothermal decomposition behaviour appears similar to that observed under dynamic conditions (Fig. 2). A brown-coloured product was always produced when the yellowish $CuSb₂O₆$ was heated in oxygen-free nitrogen at 980°C to about 72% weight loss, determined by the

Fig. 2. TG curves for the decomposition of $CuSb₂O₆$. (A) In oxygen-free nitrogen (90 ml min⁻¹): (B) in air. Heating rate: 1° C min⁻¹.

inflexion point on the TG curve. This infIexion point varied slightly from 70 to 73% weight loss, depending on sample thickness and nitrogen flow rate (or oxygen content), but provided the heating was carried out at 980°C up to this inflexion point, the product always possessed a virtually identical X-ray pattern, which corresponded with the pattern of the unknown phase obtained by rapidly heating a CuO/Sb₂O₃ mixture in air at 1000 \degree C. The X-ray powder data for this phase do not occur in the JCPDS files, and are shown in Table 1. X-Ray diffraction further shows that step II of the reaction in nitrogen corresponds to further decomposition of the new brown phase to a mixture of CuO and Cu,O. Thus, step I represents the formation of the new brown compound by the decomposition of $CuSb₂O₆$, and step II represents its further decomposition to copper oxides, which should eventually decompose to copper metal (step III, Fig. 2).

Fig. 3. Isothermal kinetic curves for the decomposition of $CuSb₂O₆$ in oxygen-free nitrogen. O, 980°C; **⊖, 990°C; ⊙, 1000°C; ①, 1010°C; ●, 1020°C**. Flow rate of nitrogen: 90 ml $min⁻¹$.

X-Ray powder pattern data for the new copper antimonate $Cu₄SbO_{4,5}$

X-Ray fluorescence analysis shows the new brown compound to have a Cu/Sb ratio of 4.0, in reasonable agreement with the results obtained by atomic absorption analysis (3.95 and 3.93 for samples prepared at 71.6 and 70.6% decomposition, respectively). Semiquantitative ESR of the new compound suggested that the copper is almost entirely in the monovalent state, the CuO content being certainly less than a few percent by weight. ESCA indicated that the antimony in the new compound has a binding energy E_B $(3d_{3/2})$ of 531.0 eV which, by comparison with published data [6], suggests a predominantly pentavalent state (although the interpretation of the ESCA data is complicated by variations in the position and shape of the peaks due to variations in the binding mode of the oxides and the relatively small differences in the binding energies of the $3 +$ and $5 +$ states of antimony). If the compound is assumed to contain only $Cu(I)$ and $Sb(V)$, its formula would be $Cu₄SbO_{4,5}$; taking account of the possibility of the Cu and Sb being in more than one valence state, a more strictly correct formulation would be $Cu(I)_{4-x}Cu(II)_xSb(V)_{1-x/2}Sb(III)_{x/2}O_{4,5}$, where $x < 1$ in the material synthesized under the most favourable conditions.

Taking account of all the known facts, the three stages in the decomposition of $CuSb₂O₆$ are summarized in Table 2. The suggested evolution of

TABLE 2

Decomposition of $CuSb₂O₆$ in nitrogen

TABLE 1

 $Sb₂O₃$ during stages I and II of the reaction is supported by the observation that α -Sb₂O₃ crystals were deposited in the cooler regions of the TG furnace, while the evolution of oxygen is suggested by the fact that both stages are slightly suppressed in air. The decomposition of $CuSb₂O₆$ in air differs slightly from the reaction in nitrogen in that the weight-loss curve does not show any inflexion at about 70% decomposition; under these conditions the reaction appears to proceed directly with evolution of Sb , O , and O , to produce Cu_2O without the intermediate formation of $Cu_2SbO₄₅$ (Fig. 2B).

Although the linear portions of the TG curves corresponding to step II become curved at higher temperatures (Fig. 3), the decomposition rates of both steps I and II can be described reasonably well by the linear law

$$
\alpha = kt \tag{1}
$$

where α is the degree of decomposition, k is the rate constant, and t is the time. These linear rates may be identified with the vaporization rates of Sb,O, and 0, during steps I and II. Under dynamic gas flow conditions. equilibrium vapour pressures are not maintained above the sample and the vaporization rate may therefore be controlled by the interface reaction. The activation energies for steps I and II were determined to be 356 and 230 kJ mole^{-1}, respectively, from the temperature dependence of the rate constants (Fig. 4). These values reflect the energy required for the breakdown of the $CuSb₂O₆$ and $Cu₄SbO_{4,5}$ structures, respectively.

The $Cu₄SbO_{4.5}$ which occurs in step I of the decomposition reaction (hereafter called form I) was found to transform sluggishly into another slightly different form (form II) on heating in air at 1100° C for > 24 h. The most obvious difference between the two forms is in their X-ray diffraction patterns, some of the peaks of form I being split into doublets in form II. This suggests that the structure of the latter is of lower symmetry. Other differences between the two forms are discussed in the next section. During the conversion of form I to form II by heating. the weight change is negligible, suggesting that form I is rather stable to oxidation at 1 100°C. Form I does, however, react with $Sb₁O₃$ in air, taking up the oxygen necessary for its conversion back to $CuSb₂O₆$.

Reaction between CuO and CuSb₂O₆

Since the new compound $Cu₄SbO_{4.5}$ is formed by decomposition of CuSb₂O₆ under conditions in which Sb_2O_3 and O_2 are removed in the vapour state, an attempt was made to obtain the new compound by reacting $CuSb₂O₆$ with CuO or Cu₂O, that is, by adding CuO to CuSb₂O₆ instead of subtracting Sb_2O_3 from CuSb₂O₆. Mixtures of CuO and CuSb₂O₆ with mole ratios ranging from 1.0 to 9.0 were heated at 950-l 150°C in air, and in all cases $Cu₄SbO_{4.5}$ was produced. Thermogravimetry indicates that the onset of weight loss in the various mixtures occurs at 900°C and finishes at 950°C,

Fig. 4. Temperature dependence of rate constants for thermal decomposition of CuSb_2O_6 . \bigcirc Step I: **A,** step II.

Fig. 5. X-Ray diffraction patterns of products obtained by reaction between **7 CuO** and CuSb₂O₆ in air. (A) 1150°C, 24 h: (B) 1120°C, 24 h; (C) 1100°C, 24 h; (D) 950°C, heating rate: 2° C min⁻¹; (E) product obtained by heating $Cu_4SbO_{4,5}(II)$ at 600° C for 2 h. \triangle . CuSb₂O₆: X. unknown phase: ∇ . CuO. unmarked peaks correspond to Cu₄SbO₄₅.

both temperatures being lower than that at which the thermal decomposition of pure CuO begins (1000°C). By 950°C, the presence of $Cu₄SbO₄₅$ was already evident in the mixtures (Fig. 5D). Pure $Cu_4SbO_{4,5}$ containing neither $CuSb₂O₆$ nor CuO was obtained only by heating mixtures of mole ratio 7.0 or 9.0 at $1120-1150$ °C (Fig. 5A and B), but it should be noted that there may be a tendency for unreacted $CuSb₂O₆$ to decompose to $Cu₄SbO_{4,5}$ in air at $>1100^{\circ}$ C, as shown in Fig. 2B. X-Ray diffraction of the material obtained by heating above 1100°C shows a splitting of some of the Cu₄SbO₄₅ peaks into doublets, characteristic of form II (Fig. 5A, B and C). During further investigation of the differences between the two forms of $Cu₄SbO₄₅$, it was found that while form I is stable in air at 600° C, form II decomposes under these conditions to CuO and another unknown phase (Fig. 5E). This reaction is reversible, the system slowly reverting to $Cu₄SbO_{4.5}$ (form I) on heating in air to 1100°C. It thus appears that the reaction between CuO and $CuSb₂O₆$ proceeds with evolution of oxygen, producing $Cu₄SbO_{4.5}$ in form I or II, depending on the temperature. These solid-state reactions are summarized in Scheme 1.

CONCLUSIONS

In the course of attempts to synthesize the Cu(I) analogue of $Ag_2Sb_2O_6$, a complex series of reactions has been identified in the system Cu-Sb-0. The starting material, $Cu(II)Sb₂O₆$, was synthesized from equimolar mixtures of CuO and Sb,O, by slowly heating thinly-spread samples in air up to 1000°C. This preparation involves the oxidation of Sb_2O_3 to Sb_2O_4 at 380-500°C. followed by further oxidation of Sb_2O_4 and formation of $CuSb_2O_6$ at 500-1000°C. When CuSb₂O₆ is thermally decomposed at 980°C in a flowing atmosphere of oxygen-free nitrogen, it evolves Sb_2O_3 vapour and oxygen, forming a new copper(I) antimony oxide identified as $Cu_4SbO_{4,5}$ by analytical, ESR and ESCA evidence.

$$
4 \text{CuSb}_2\text{O}_6 \stackrel{\text{950-1070}^{\circ}\text{C}}{\rightarrow} \text{Cu}_4\text{SbO}_{4.5} + 7/2 \text{Sb}_2\text{O}_3^{\dagger} + 9/2 \text{O}_2^{\dagger}
$$
 (2)

The kinetics of this reaction follow a linear rate law, with an activation energy of 356 kJ mole^{-1}. The new compound is further decomposed in nitrogen at higher temperatures, the kinetics again following a linear rate law with an activation energy of 230 kJ mole⁻¹

$$
2\,\mathrm{Cu}_{4}\mathrm{SbO}_{4.5} \overset{1070-1120^{\circ}\mathrm{C}}{\underset{\mathrm{N}_{2}}{\rightarrow}} 4\,\mathrm{Cu}_{2}\mathrm{O} + \mathrm{Sb}_{2}\mathrm{O}_{3}^{\dagger} + \mathrm{O}_{2}^{\dagger} \overset{>1120^{\circ}}{\underset{\mathrm{N}_{2}}{\rightarrow}} 8\,\mathrm{Cu} + 2\,\mathrm{O}_{2}^{\dagger} \tag{3}
$$

The new compound can also be prepared by reaction of CuO with $CuSb₂O₆$ in air at 1120-1150°C, but in a different form, called form II, to differentiate it from the form I compound resulting from thermal decomposition of $CuSb₂O₆$. Form II has a structure of lower symmetry than form I, as evidenced by a splitting of some of the X-ray diffraction peaks in the powder pattern of form II. The two forms are interconvertible; form I slowly converts to form II on heating in air at 1100° C for > 24 h. whereas form II decomposes in air at 600°C to CuO and another new copper antimony oxide. at present uncharacterized, which then recombines to give form I of $Cu₄SbO_{4.5}$ at 1100°C.

ACKNOWLEDGEMENTS

We are indebted to Mr. J.E. Patterson for the atomic absorption analyses. Mr. J. Hunt for the X-ray fluorescence analyses. Dr. D.G. McGavin for the ESR measurements and Dr. H. Konno for the ESCA measurements. This work was carried out during the tenure by one of us $(S.S.)$ of a New Zealand National Research Advisory Council Postdoctoral Fellowship.

REFERENCES

- K.J.D. MacKenzie and F. Golestani-Fard. J. Therm. Anal.. 15 (1979) 333.
- 2 D.J. Stewart and O. Knop, Can. J. Chem., 48 (1970) 1323.
- 3 G. Duquenoy, Rev. Chim. Miner., 11 (1974) 474.
- 4 J.B. Goodenough and J.A. Kafalas. J. Solid State Chem., 6 (1973) 493.
- 5 A. Byström, B. Hök and B. Mason, Ark. Kemi, Mineral. Geol., 15B (1941) I.
- 6 T.A. Carlson (Ed.), Photoelectron and Auger Spectroscopy. Plenum. New York and Lonclon. 1975. p. 366.