Thermochimica Acta, 53 (1982) 157-162

Elsevier Scientific Publishing Company, Amsterdam-Printed in The Netherlands

CALORIMETRIC EFFECTS OF SHORT-RANGE ORIENTATIONAL ORDER IN SOLUTIONS OF BENZENE OR *n*-ALKYLBENZENES IN *n*-ALKANES *

JEAN-PIERRE E. GROLIER **, ABOLHASSAN FARADJZADEH and HENRY V. KEHIAIAN

Centre de Thermodynamique et de Microcalorimétrie du CNRS 26, rue du 141ème RIA, 13003 Marseille (France)

(Received 5 August 1981)

ABSTRACT

A Picker flow microcalorimeter was used to determine molar excess heat capacities, C_p^E , at 298.15 K, as function of concentration, for the eleven liquid mixtures: benzene+*n*-tetradecane; toluene+*n*-heptane, and +*n*-tetradecane; ethylbenzene+*n*-heptane, +*n*-decane, +*n*-dodecane; and +*n*-tetradecane; *n*-propylbenzene+*n*-heptane, and +*n*-tetradecane; *n*-butylbenzene+*n*-heptane, and +*n*-tetradecane. In addition, molar excess volumes, V^E , at 298.15 K, were obtained for each of these systems (except benzene+*n*-tetradecane) and for toluene+*n*-hexane. The excess volumes which are generally negative with a short alkane, increase and become positive with increasing chain length of the alkane. The excess heat capacities are negative in all cases. The absolute $|C_p^E|$ increased with increasing chain length of the *n*-alkane. A formal interchange parameter, C_{p12} , is calculated and its dependence on *n*-alkane chain length is discussed in terms of molecular orientations.

INTRODUCTION

As pointed out recently [1] a systematic study of liquid systems in which one component is an *n*-alkane and the other a simple organic substance is important for a better understanding of the thermodynamic behavior of non-electrolyte mixtures. One aspect of this study is related to the interpretation of the thermodynamic functions in terms of group contributions [2,3]. Another aspect is the question as to the "structure" of pure liquid *n*-alkanes and the influence exerted upon it when various second components are added. Short-range orientational order (or correlation of segmental orientations [4]) in pure liquid *n*-alkanes and its destruction by mixing with more or less globular molecules has been recently observed using such molecular probes as CCl_4 [1] or cyclohexane [5].

^{*} This work is a contribution to the TOM Project [2,3]

^{**} Present address: Laboratoire de Thermodynamique et Cinétique Chimique, Université de Clermont 2, 63170 Aubière, France.

Decrease in order during mixing manifests itself in a positive contribution to the molar excess enthalpy, H^{E} , which contribution increases with (a) increasing chain length m of the n-alkane (b) decreasing temperature, T.

The scarce experimental results available to date prove that the temperature derivative of H^{E} , i.e. the molar excess heat capacity, C_{p}^{E} , is a much more sensitive function than H^E with respect to orientational effects. This is corroborated by a quantitative interpretation of H^{E} and C_{p}^{E} data of mixtures containing *n*-alkanes in terms of group contribution theory.

In the simplest zeroth approximation version, the interactional excess enthalpy term of a binary mixture is given by

$$H^{\rm E} = q_1 q_2 \frac{x_1 x_2}{q_1 x_1 + q_2 x_2} h_{12} \tag{1}$$

where q_1 and q_2 denote suitably reduced surfaces of the molecular species 1 and 2, x is the mole fraction, and h_{12} is the interchange enthalpy. Provided the equation of state (or free volume) contribution is properly eliminated and the *n*-alkane (component 2) is regarded as a homogeneous species, the parameter h_{12} should be a constant, irrespective whether component l is a homogeneous or a heterogeneous molecule. In fact, it has been observed with CCl₄ [1] and cyclohexane [6,7] which are homogeneous molecules that h_{12} increases with increasing m, thus revealing the orientational contribution. The same conclusion is reached even if the free volume contribution is neglected, i.e. if the assumption is made that $H_{int}^{E} \simeq H^{E}$, and h_{12} is calculated from eqn. (1) in a conventional way [3].

Differentiation of H_{int}^{E} with respect to T, assuming q_i constant, yields an equation for $C_{p \text{ int}}^{E}$ similar to eqn. (1)

$$C_{p int}^{E} = q_1 q_2 \frac{x_1 x_2}{q_1 x_1 + q_2 x_2} C_{p12}$$
(2)

where C_{p12} represents a formal excess heat capacity of interchange. The values of C_{p12} calculated from eqn. (2) for CCl_4 [1] were found to depend on *m* much more than h_{12} . The same conclusion is reached when examining the H^E and C_{p}^{E} of cyclohexane + *n*-alkane mixtures.

As a consequence, the study of C_p^E is of interest in assessing the relative importance of the different contributions to the excess functions. Furthermore precise C_p^E data are needed for extrapolation of other excess quantities, such as H^E or the molar excess Gibbs energy, G^E , over an extended temperature range, and calculation of liquid-vapor and solid-liquid phase equilibrium diagrams [8].

The purpose of the present work was to investigate another homogeneous molecule, benzene, and the first four members of the series of *n*-alkylbenzenes. The latter are heterogeneous molecules consisting of a phenyl group, C₆H₅-, and aliphatic groups, $-CH_2 - or -CH_3$. We measured the molar heat capacities, C_p , at constant pressure and 298.15 K of the following eleven systems: benzene (1) + ntetradecane (2); toluene (1) + n-heptane (2), and +n-tetradecane; ethylbenzene (1) + n-heptane (2), +n-decane (2) + n-dodecane (2), and +n-tetradecane (2); npropylbenzene (1) + n-heptane (2), and +n-tetradecane (2); n-butylbenzene (1) + nheptane (2) and *n*-tetradecane (2) and calculated

$$C_{\rm p}^{\rm E} = C_{\rm p} - \left(x_{\rm l}C_{\rm pl} + x_{\rm 2}C_{\rm p2}\right) \tag{3}$$

The subscripts 1 and 2 denote, respectively, pure component 1 and pure component 2.

EXPERIMENTAL

Materials

The hydrocarbons were commercial products (Fluka) and stated purities ≥ 99 mole per cent. They were carefully dried with a molecular sieve (Union Carbide Type 4A), and used without further purification. Phillips research grade *n*-heptane (lot 1405) of stated purity ≥ 99.92 mole per cent was used as an ultimate reference liquid. For its molar heat capacity we adopted the value [9] $C_p = 224.781 \text{ J K}^{-1}$ mole⁻¹ at 298.15 K and the corresponding density $d = 679.43 \text{ kg m}^{-3}$.

Apparatus and procedure

Volumetric heat capacities C_p/V (V being the molar volume) were determined with a Picker flow microcalorimeter [10,11] from Setaram, using the stepwise procedure. Details as to experimental technique and accuracy attainable with non-electrolyte mixtures may be found in the literature [12-15]. The molar volumes, V, and the molar excess volumes, V^E , of all the investigated mixtures (except benzene + *n*-tetradecane) were calculated from densities, *d*, measured with a vibrating tube densimeter from Sodev (model 01D). The molar volumes of benzene +*n*-tetradecane mixtures were calculated from pure component densities, as measured by us, and V^E taken from the literature [16].

The imprecision of the $V^{\rm E}$ and $C_{\rm p}^{\rm E}$ values is estimated to be less than, respectively, 0.005×10^{-6} m³ mole⁻¹ and 0.05 J K⁻¹ mole⁻¹.

Results

In general the experimental results for the pure substances, C_p and d, agree satisfactorily with the most reliable literature data [17–19]. Larger differences were noted only for the heat capacities, C_p (298.15 K)/J K⁻¹ mole⁻¹, of *n*-tetradecane (433.86, this work; 438.4, ref. 18), *n*-propylbenzene (214.30, this work; 219.7, ref. 20), and *n*-butylbenzene (242.76, this work; 243.3, ref. 20).

Since two reliable sets of direct calorimetric C_p^E data exist for mixtures of toluene + *n*-heptane [12,21], we just carried out a few check measurements. Our results [22] are in very good agreement with these two sets of data (see ref. 12). No other data were available for comparison.

The direct experimental $C_{p,exp}^{E}$ values, (usually, but not less than, 5 points in the

TABLE I	
---------	--

Coefficients a_i , eqn. (3), for excess molar heat capacities of $C_6H_5(CH_2)_nH(1)+CH_3(CH_2)_{m-2}CH_3(2)$ systems at 298.15 K.

n	m	<i>a</i> ₀	<i>a</i> 1	<i>a</i> ₂	a_3	4
0	7 ª	- 13.35	-3.54	- 3.60	- 1.93	
	14	- 22.02	- 10.95	- 11.50		
	7 ^b	- 5.4601	-1.1728	- 1.0771	-0.5539	0.3292
	14	- 14.95	-4.90	-4.8		
2	7	- 6.498	-1.13	-2.34	- 1.08	
	10	- 9.921	-3.414	-1.31		
	12	- 12.10	-2.90	-0.93		
	14	- 17.44	-4.14	-1.76		
3	7	- 5.703	-0.462	0.41		
	14	- 15.808	- 2.79			
4	7	-5.560	-0.746	-1.23		
	14	- 17.72	- 3.39	-4.77		

^a Ref. 24; ^h ref. 12.

Fig. 1. Molar excess heat capacities at constant pressure, C_p^E , at 298.15 K, of benzene+*n*-heptane (m=7) or +*n*-tetradecane (m=14) versus x_1 , the mole fraction of benzene. Full lines, calculated by means of eqn. (2) with $q_1 = 2.0724$, $q_2 = 3.7897$ (m=7) or $q_2 = 7.0483$ (m=14) and C_{p12} of Table 2. Circles denote individual experimental results.

Fig. 2. Molar excess heat capacities at constant pressure, C_p^E , at 298.15 K, of *n*-butylbcnzene+*n*-heptane (m=7) or *n*-tetradecane (m=14) versus x_1 , the mole fraction of the *n*-alkylbenzene. Full lines, calculated by means of eqn. (2) with $q_1 = 3.9655$, $q_2 = 3.7897$ (m=7) or $q_2 = 7.0483$ (m=14) and C_{p12} of Table 2. Circles denote individual experimental results.

range $0.2 < x_1 < 0.3$) were fitted by least squares to the equation

$$C_{\text{p,calc}}^{\text{E}} / \text{J K}^{-1} \text{ mole}^{-1} = x_1 x_2 \sum_{i=0}^{n-1} a_0 (x_1 - x_2)^i$$
 (3)

The coefficients a_i are given in Table 1. In view of the small number of points, eqn. (3) should be used only for calculating the integral value of C_p^E (not the partial molar) in the specified concentration range.

For toluene + *n*-heptane we have reported the a_i coefficients calculated by Fortier and Benson [12] from their own measurements: 9 points in the range $0.09 < x_1 < 0.9$. The coefficients a_i of benzene + *n*-heptane have been determined prevoluely [24].

All our direct experimental C_p^E and V^E data are published elsewhere [22,23]. The C_p^E data are represented in part in Figs. 1 and 2.

DISCUSSION

The H^E of all the mixtures investigated are positive and are due essentially to the interchange of the alkane-alkane and the relatively stronger Π - Π (benzene or phenyl) interactions with the relatively weaker alkane- Π interactions [25].

The anisotropic $\Pi - \Pi$ interactions decrease with increasing temperature, which explains the negative C_p^E . Both H^E and $|C_p^E|$ increase with increasing chain lentgh *m* of the *n*-alkane.

The interchange parameters h_{12} and C_{p12} , eqns. (1) and (2), calculated from the equimolar experimental H^E and C_p^E (neglecting free-volume effects), are given in Table 2. It follows quite clearly that h_{12} is almost constant for a given aromatic solute in the range m = 7 to m = 16, whereas C_{p12} decreases rapidly with m in the range m = 7 to m = 14. We attribute this effect to orientational order changes in *n*-alkanes, the same as is claimed to occur in the *n*-alkane + CCl₄ or + cyclohexane systems.

The variation of C_{p12} is less accentuated for benzene, probably due to a better mutual correlation of the molecular orientations of benzene with *n*-alkanes [26].

TABLE 2

Interchange parameters h_{12} and C_{p12} eqns. (1) and (2), for C_6H_5R+n -heptane (m=7), *n*-tetradecane (m=14), or *n*-hexadecane (m=16) at T=298.15 K, (R=H, Me, Et, *n*-Pr. *n*-Bu)

R	.;	h_{12}/J mole ⁻	l .	$C_{p12}/JK^{-1}m$	iole ⁻¹	
		m=7	m=16	m=7	m=14	
Н		1393 ^a	1478 ª	- 5.04	-6.88	
Me		721 ª	750 °	-1.78	3.97	
Et		657 ^b	667 ^ь	- 1.93	-4.11	
n-Pr		489 °	493 ^d	- 1.57	-3.38	
n-Bu		382 ^b	377 ^b	- 1.43	- 3.49	

 H^{E} data taken from following sources: ^a ref. 27; ^b ref. 28; ^c ref. 29; ^d interpolated from data reported in ref. 27.

Equation (1), which represents reasonably well H^E for *n*-alkylbenzenes + *n*-alkanes [3], using a parameter h_{12} independent of *m*, cannot be applied, as eqn. (2) to correlate C_p^E by means of a constant parameter C_{p12} . However, with an adjusted C_{p12} , the composition dependence of C_p^E is represented satisfactorily by eqn. (2), as shown for example in Figs. 1 and 2.

It is noteworthy that the composition dependence of C_p^E of $CCl_4 + n$ -alkanes is also well described by eqn. (2), using the corresponding q_i values. A more careful comparison reveals however that the symmetry of the curves, predicted by eqns. (1) and (2), is poorer the larger the orientational order effect. A detailed discussion, considering other solutes, will be given in a later paper.

REFERENCES

- 1 J.-P.E. Grolier, M.H. Hamedi, E. Wilhelm and H.V. Kehiaian, Thermochim. Acta, 31 (1979) 79.
- 2 H.V. Kehiaian, Ber. Bunsenges. Phys. Chem., 81 (1977) 908.
- 3 H.V. Kehiaian, J.-P.E. Grolier and G.C. Benson, J. Chim. Phys., 75 (1978) 1031.
- 4 J.T. Bendler, Macromolecules, 10 (1977) 162.
- 5 S.N. Bhattacharyva and D. Patterson, J. Phys. Chem., 83 (1979) 2979.
- 6 V.T. Lam, P. Picker, D. Patterson and P. Tancrède, J. Chem. Soc. Faraday Trans. 2, 70 (1974) 1465.
- 7 A Heintz and R.N. Liechtenthaler, Ber. Bunsenges. Phys. Chem., 81 (1977) 921.
- 8 H.V. Kchiaian, A. Faradjzadeh, R. Guieu and L. Carbonnel, Ber. Bunsenges. Phys. Chem., 85 (1981) 132.
- 9 J.-L. Fortier, G.C. Benson and P. Picker, J. Chem. Thermodyn., 8 (1976) 289.
- 10 P. Picker, P.-A. Leduc, P.R. Philip and J.E. Desnoyers, J. Chem. Thermodyn., 3 (1971) 631.
- 11 J.-P.E. Grolier, G.C. Benson and P. Picker, J. Chem. Eng. Data, 20 (1975) 243.
- 12 J.-L. Fortier and G.C. Benson, J. Chem. Thermodyn., 8 (1976) 411.
- 13 J.-P.E. Grolier, E. Wilhelm and M.H. Hamedi, Ber. Bunsenges. Phys. Chem., 82 (1978) 1282.
- 14 E. Wilhelm, J.-P.E. Grolier and M.H. Karbalai Ghassemi, Thermochim. Acta, 28 (1979) 59.
- 15 E. Wilhelm, A. Faradjzadeh and J.-P.E. Grolier, J. Chem. Thermodyn., 11 (1979) 979.
- 16 M. Diaz Peña and J. Nunez Delgado, An. Quim., 70 (1974) 678.
- 17 J.A. Riddick and W.C. Bunger, in A. Weissberger (Ed.), Techniques of Chemistry, Vol. II, Wiley-Interscience, New York, 1970.
- 18 J.F. Messerly, G.B. Guthrie, S.S. Todd and H.L. Finke, J. Chem. Eng. Data, 12 (1967) 338.
- 19 Selected Values of Properties of Hydrocarbons and Related Compounds, American Petroleum Institute Research Project 44, Thermodynamics Research Center, Texas A and M University, College Station, Texas, U.S.A.
- 20 J.F. Messerly, S.S. Todd and H.L. Finke, J. Phys. Chem., 69 (1965) 4304.
- 21 J.K. Holzhauer and W.T. Ziegler, J. Phys. Chem., 79 (1975) 590.
- 22 J.-P.E. Grolier and A. Faradjzadeh, Int. DATA Ser., Ser. A, Sel. Data Mixtures, (1979) 131-141.
- 23 J.-P.E. Grolier and A. Faradjzadeh, Int. DATA Ser., Ser. A, Sel. Data Mixtures, (1980) 140-150.
- 24 M.H. Karbalai Ghassemi and J.-P.E. Grolier, Int. DATA Ser., Ser. A. Sel. Data Mixtures, (1976) 96.
- 25 H.V. Kehiaian, in H.A. Skinner (Ed.), Thermochemistry and Thermodynamics, MTP International Review of Science, Vol. 10, Butterworths, London, 1972.
- 26 C. Clement, J. Chim. Phys., 75 (1978) 747.
- 27 G.W. Lundberg, J. Chem. Eng. Data, 9 (1964) 193; J.-P.E. Grolier, Int. DATA Ser., Ser. A, Sel. Data Mixtures, (1974) 223-228.
- 28 M. Barbe, Ph.D. Thesis, McGill University, 1978, unpublished data.
- 29 H.V. Kehiaian, K. Sosnkowska-Kehiaian and R. Hryniewicz, J. Chim. Phys., 68 (1971) 922.