Thermochimicu **A ctq** *53 (1982) 157- 162*

Ebevier Scientific Publishing Company. Amsterdam-Printed in The Netherlands

CALORIMETRIC EFFECTS OF SHORT-RANGE ORIENTATIONAL ORDER IN SOLUTIONS OF BENZENE OR n-ALKYLBENZENES IN n-ALKANES *

JEAN-PIERRE E. GROLIER **, ABOLHASSAN FARADJZADEH and HENRY V. KEHIAIAN

Centre de Thermodynamique et de Microcalorimétrie du CNRS 26, rue du 141ème RIA, 13003 Marseille *(France)*

(Received 5 August 1981)

ABSTRACT

A Picker flow microcalorimeter was used to determine molar excess heat capacities, C_p^E , at 298.15 K, as function of concentration, for the eleven liquid mixtures: benzene $+n$ -tetradecane; toluene $+n$ -heptane. and $+n$ -tetradecane; ethylbenzene $+n$ -heptane, $+n$ -decane, $+n$ -dodecane; and $+n$ -tetradecane; npropylbenzene + n -heptane, and + n -tetradecane; n -butylbenzene + n -heptane, and + n -tetradecane. In **addition, molar excess volumes, VE, at 298.15 K, were obtained for each of these systems (except** $benzene + n-tetradecane)$ and for toluene + n -hexane. The excess volumes which are generally negative **with a short alkane, increase and become positive with increasing chain length of the alkane. The excess** heat capacities are negative in all cases. The absolute $|C_p^E|$ increased with increasing chain length of the *n*-alkane. A formal interchange parameter, C_{p12} , is calculated and its dependence on *n*-alkane chain length **is discussed in terms of molecular orientations.**

INTRODUCTION

As pointed out recently [I] a systematic study of liquid systems in which one component is an n-alkane and the other a simple organic substance is important for a better understanding of the thermodynamic behavior of non-electrolyte mixtures. One aspect of this study is related to the interpretation of the thermodynamic functions in terms of group contributions [2,3]. Another aspect is the question as to the "structure" of pure liquid n-alkanes and the influence exerted upon it when various second components are added. Short-range orientational order (or correlation of segmental orientations $[4]$) in pure liquid *n*-alkanes and its destruction by **mixing with more or less globular molecules has been recently observed using such molecuIar probes as CCl, [l] or cyclohexane [SJ.**

^{*} This work is a contribution to the TOM Project [2,3]

^{**} Present address: Laboratoire de Thermodynamique et Cinetique Chimique, Université de Clermont 2. **63 170 Aubiere, France.**

Decrease in order during mixing manifests itself in a positive contribution to the molar excess enthalpy, H^E , which contribution increases with (a) increasing chain length m of the *n*-alkane (b) decreasing temperature, T .

The scarce experimental **results available to date** prove that the temperature derivative of H^E , i.e. the molar excess heat capacity, C_p^E , is a much more sensitive function than H^E with respect to orientational effects. This is corroborated by a quantitative interpretation of H^E and C_p^E data of mixtures containing *n*-alkanes in terms of group contribution theory.

In the simplest zeroth approximation version. the interactional excess enthalpy term of a binary mixture is given by

$$
H^{E} = q_{1}q_{2}\frac{x_{1}x_{2}}{q_{1}x_{1} + q_{2}x_{2}}h_{12}
$$
 (1)

where q_1 and q_2 denote suitably reduced surfaces of the molecular species 1 and 2, x is the mole fraction, and h_{12} is the interchange enthalpy. Provided the equation of state (or free volume) **contribution is properly eliminated and the n-aikane (compo**nent 2) is regarded as a homogeneous species, the parameter h_{12} should be a constant, irrespective whether component 1 is a homogeneous or a heterogeneous molecule. In fact, it has been observed with CCI_4 [1] and cyclohexane [6,7] which are homogeneous molecules that h_{12} increases with increasing m, thus revealing the orientational contribution. The same conclusion is reached even if the free volume contribution is neglected, i.e. if the assumption is made that $H_{\text{int}}^{\text{E}} \simeq H^{\text{E}}$, and h_{12} is calculated from eqn. (1) in a conventional way [3].

Differentiation of H_{int}^{E} with respect to *T*, assuming q_i constant, yields an equation for $C_{\text{p int}}^{\text{E}}$ similar to eqn. (1)

$$
C_{p\text{ int}}^{E} = q_1 q_2 \frac{x_1 x_2}{q_1 x_1 + q_2 x_2} C_{p12}
$$
 (2)

where C_{p12} represents a formal excess heat capacity of interchange.

Lie values of C_{p12} calculated from eqn. (2) for CCl₄ [1] were found to depend on *m* much more than h_{12} . The same conclusion is reached when examining the H^E and $C_{\rm p}^{\rm E}$ of cyclohexane + *n*-alkane mixtures.

As a consequence, the study of C_{p}^{E} is of interest in assessing the relative importance of the different contributions to the excess functions. Furthermore precise C'F data are needed for extrapolation of other excess quantities, such as *HE* or the molar excess Gibbs energy, G^E , over an extended temperature range, and calculation of liquid-vapor and solid-liquid phase equilibrium diagrams [8].

The purpose of the present work was to investigate another homogeneous molecule, benzene, and the first four members of the series of n-alkylbenzenes. The latter are heterogeneous molecules consisting of a phenyl group, C_6H_5 -, and aliphatic groups, $-CH_2 - or -CH_3$. We measured the molar heat capacities, C_p , at constant pressure and 298.15 K of the following eleven systems: benzene (1) + ntetradecane (2); toluene (1) + n-heptane (2), and $+n$ -tetradecane; ethylbenzene $(1) + n$ -heptane (2), $+n$ -decane (2) + n -dodecane (2), and $+n$ -tetradecane (2); npropylbenzene (1) + n-heptane (2), and + n-tetradecane (2); n-butylbenzene (1) + nheptane (2) and n-tetradecane (2) and **calculated**

$$
C_{\mathbf{p}}^{\mathbf{E}} = C_{\mathbf{p}} - (x_1 C_{\mathbf{p}1} + x_2 C_{\mathbf{p}2})
$$
\n(3)

The subscripts 1 and 2 denote, respectively, pure component 1 and pure component 2.

EXPERIMENTAL

Materials

The hydrocarbons were commercial products (Fluka) and stated purities ≥ 99 mole per cent. They were carefully dried with a molecular sieve (Union Carbide Type 4A), and used without further purification. Phillips research grade *n*-heptane (lot 1405) of stated purity > 99.92 mole per cent was used as an ultimate reference liquid. For its molar heat capacity we adopted the value [9] $C_p = 224.781 \text{ J K}^{-1}$ mole⁻¹ at 298.15 K and the corresponding density $d = 679.43$ kg m⁻³.

Apparatus and procedure

Volumetric heat capacities C_p / V (V being the molar volume) were determined with a Picker flow microcalorimeter [10,11] from Setaram, using the stepwise procedure. Details as to experimental technique and accuracy attainable with non-electrolyte mixtures may be found in the literature [12-15]. The molar volumes, V , and the molar excess volumes, V^E , of all the investigated mixtures (except benzene + n-tetradecane) were calculated from densities, *d,* measured with a vibrating tube densimeter from Sodev (model OlD). The molar volumes of benzene $+n$ -tetradecane mixtures were calculated from pure component densities, as measured by us, and V^E taken from the literature [16].

The imprecision of the V^{\perp} and C_{p}^{\perp} values is estimated to be less than, respectively, 0.005×10^{-6} m³ mole⁻¹ and 0.05 J K⁻¹ mole⁻¹.

Results

In general the experimental results for the pure substances, C_p and d , agree satisfactorily with the most reliable literature data [17-19]. Larger differences were noted only for the heat capacities, C_p (298.15 K)/J K⁻¹ mole⁻¹, of *n*-tetradecane (433.86, this work; 438.4, ref. 18), *n*-propylbenzene (214.30, this work; 219.7, ref. 20), and n-butylbenzene *(242.76,* this work; *243.3,* ref. 20).

Since two reliable sets of direct calorimetric C_p^E data exist for mixtures of toluene $+ n$ -heptane [12,21], we just carried out a few check measurements. Our results [22] are in very good agreement with these two sets of data (see ref. 12).. No other data were available for comparison.

The direct experimental $C_{\text{p,exp}}^E$ values, (usually, but not less than, 5 points in the

u. J.	
----------	--

Coefficients a_i , eqn. (3), for excess molar heat capacities of $C_6H_5(CH_2)_nH(1)+CH_3(CH_2)_{m-2}CH_3(2)$ systems at 298.15 K.

 A Ref. 24; h ref. 12.

Fig. 1. Molar excess heat capacities at constant pressure, C_p^E , at 298.15 K, of benzene + *n*-heptane ($m=7$) or +n-tetradecane ($m=14$) versus x_1 , the mole fraction of benzene. Full lines, calculated by means of eqn. (2) with $q_1 = 2.0724$, $q_2 = 3.7897$ ($m=7$) or $q_2 = 7.0483$ ($m=14$) and C_{p12} of Table 2. Circles denote individual experimental results.

Fig. 2. Molar excess heat capacities at constant pressure, C_p^E , at 298.15 K, of *n*-butylbcnzene + *n*-heptane $(m=7)$ or n-tetradecane ($m=14$) versus x_1 , the mole fraction of the n-alkylbenzene. Full lines, calculated by means of eqn. (2) with $q_1 = 3.9655$, $q_2 = 3.7897$ ($m = 7$) or $q_2 = 7.0483$ ($m = 14$) and C_{p12} of Table 2. Circles denote individual experimental results.

range $0.2 < x₁ < 0.8$) were fitted by least squares to the equation

$$
C_{\text{p,calc}}^{\text{E}} / J \text{ K}^{-1} \text{ mole}^{-1} = x_1 x_2 \sum_{i=0}^{n-1} a_0 (x_1 - x_2)^i
$$
 (3)

The coefficients a_i are given in Table 1. In view of the small number of points, eqn. (3) should be used only for calculating the integral value of C_0^E (not the partial molar) in the specified concentration range.

For toluene $+ n$ -heptane we have reported the a_i coefficients calculated by Fortier and Benson [12] from their own measurements: 9 points in the range $0.09 < x₁ < 0.9$. The coefficients a_i , of benzene $+n$ -heptane have been determined prevoiusly [24].

All our direct experimental C_p^E and V^E data are published elsewhere [22,23]. The C_p^E data are represented in part in Figs. 1 and 2.

DISCUSSION

The *HE* of all the mixtures investigated are positive and are due essentially to the interchange of the alkane-alkane and the relatively stronger Π - Π (benzene or phenyl) interactions with the relatively weaker alkane-II interactions [25].

The anisotropic Π - Π interactions decrease with increasing temperature, which explains the negative C_p^E . Both H^E and $|C_p^E|$ increase with increasing chain lentgh m of the *n*-alkane.

The interchange parameters h_{12} and C_{p12} , eqns. (1) and (2), calculated from the equimolar experimental H^E and C_p^E (neglecting free-volume effects), are given in Table 2. It follows quite clearly that h_{12} is almost constant for a given aromatic solute in the range $m = 7$ to $m = 16$, whereas C_{p12} decreases rapidly with m in the range $m = 7$ to $m = 14$. We attribute this effect to orientational order changes in *n*-alkanes, the same as is claimed to occur in the *n*-alkane + CCI_4 or + cyclohexane systems.

The variation of C_{p12} is less accentuated for benzene, probably due to a better mutual correlation of the molecular orientations of benzene with n -alkanes [26].

TABLE 2

Interchange parameters h_{12} and C_{p12} eqns. (1) and (2), for C_6H_5R+n -heptane ($m=7$), *n*-tetradecane $(m=14)$, or *n*-hexadecane ($m=16$) at $T=298.15$ K, $(R=H, Me, Et, n-Pr, n-Bu)$

R	~ 20	h_{12}/J mole ⁻¹		$C_{\rm p12}/J K^{-1}$ mole ⁻¹		
		$m=7$	$m=16$	$m=7$	$m=14$	
н		1393 ^a	1478 ^a	-5.04	-6.88	
Me		721 ^a	750 ^a	-1.78	-3.97	
Et		657 ^b	667 ^b	-1.93	-4.11	
$n-Pr$		489 ^c	493.d	-1.57	-3.38	
$n - Bu$		382 b	377.b	-1.43	-3.49	

fle data taken from following sources: a ref. 27; ^b ref. 28; c ref. 29; d interpolated from data reported in **ref. 27.**

Equation (1), which represents reasonably well H^E for *n*-alkylbenzenes + *n*-alkanes [3], using a parameter h_{12} independent of m , cannot be applied, as eqn. (2) to correlate C_p^E by means of a constant parameter C_{p12} . However, with an adjusted C_{p12} , the composition dependence of C_p^E is represented satisfactorily by eqn. (2), as **shown for example in Figs. 1 and 2.**

It is noteworthy that the composition dependence of C_p^E of $\text{CCl}_4 + n$ -alkanes is also well described by eqn. (2) , using the corresponding q_i , values. A more careful **comparison reveals however that the symmetry of the curves, predicted by eqns. (1)** and (2), is poorer the larger the orientational order effect. A detailed discussion, **considering other soiutes, wili be** *given* **in a later paper.**

REFERENCES

- 1 J.-P.E. Grolicr, 1M.H. Hamedi. E Wilhelm and H.V. Kehiaian. Thcrmochim. Acta. 31 (1979) 79.
- 2 H.V. Kehiaian, Ber. Bunsenges. Phys. Chem., 81 (1977) 908.
- 3 H.V. Kehiaian, J.-P.E. Grolier and G.C. Benson, J. Chim. Phys., 75 (1978) 1031.
- 4 J.T. Bendlcr. Macromolecules. 10 (1977) 162.
- S.N. Bhattachacw and D. Patterson. J. Phys. **Chem.. 83 (1979) 2979.**
- V.T. Lam. P. Picker. D. Patterson and P. Tancrede. J. Chem. Sot. Faraday Trans. 2. 70 (1974) 1465.
- A Hcintz and R.N. Liechtenthaler. Ber. Bunsenges. Phys. Chem.. 81 (1977) 921.
- H.V. Kchiaian. A. Faradjzadeh. R. Guieu and L. Carbonnel. Ber. Bunsenges. Phys. Chem.. 85 (1981) 132.
- 9 J.-L. Fortier. G.C. Benson and P. Picker. J. Chem. Thermodyn.. 8 (1976) 289.
- 10 P. Picker. P.-A. Leduc. P.R. Philip and J.E. Desnoyers. J. Chem. Thermodyn.. 3 (1971) 63 I.
- II J.-P.E. Grolier. G.C. Benson and P. Picker. J. Chem. Eng. Data. 20 (1975) 243.
- 12 J.-L. Fortier and G.C. Benson. J. Chem. Thermodyn.. 8 (1976) 41 I.
- 13 J.-P.E. Grolier. E. Wilhelm and M.H. Hamedi, Ber. Bunsenges. Phys. Chem., 82 (1978) 1282.
- I4 E. Wilhelm. J.-P.E. Grolicr and M.H. Karbalai Ghassemi. Thermochim. Acta. 28 (1979) 59.
- 15 E. Wilhelm. A. Faradjzadeh and J.-P.E. Grolier. J. Chem. Thermodyn.. I I (I 979) 979.
- 16 M. Diaz Peña and J. Nunez Delgado. An. Quim.. 70 (1974) 678.
- 17 J.A. Riddick and W.C. Bunger. in A. Weissberger (Ed.), Techniques of Chemistry. Vol. II. Wiley-Interscicnce. New York. **1970.**
- IX J-F. Messerly. G.B. Guthrie. S.S. Todd and H.L. Finkc. J. Chem. Eng. Data, I2 (1967) 338.
- 19 Selected Values of Properties of Hydrocarbons and Related Compounds, American Petroleu Institute Research Project 44, Thermodynamics Research Center. Texas A and M University. College Station, Texas, U.S.A.
- 20 J.F. hfesserly, S.S. Todd and H.L. Finke. J. Phys. Chem.. 69 (1965) 4304.
- 21 J.K. Holzhauer and W.T. Ziegler, J. Phys. Chem., 79 (1975) 590.
- 22 J.-P.E. Groher and A. Faradjzadeh. Int. DATA Ser., Ser. A. Scl. Data Mixtures. (1979) 131-141.
- 23 J.-P.E. Grolier and A. Faradjzadeh, Int. DXTA Ser.. Ser. A. Scl. Data Mixtures. (1980) 140-150.
- 24 MH. Karbald Ghassemi and J.-P.E. Grolier, Int. DATA Ser.. Ser. A. Scl. Data Mixtures. (1976) 96.
- 25 H.V. Kehiaian, in H.A. Skinner (Ed.), Thermochemistry and Thermodynamics, MTP Internation Review of Science. Vol. 10. Buttenvorths. London. 1972.
- 26 C. Clement, J. Chim. Phys.. 75 (1978) 747.
- 27 G.W. Lundberg. J. Chem. Eng. Data. 9 (1964) 193: J.-P.E. Grolier, Int. **DATA** Ser., Ser. A. Sel. Data Mixtures. (1974) 223-228.
- 28 M. Barbe, Ph.D. Thesis, McGill University, 1978. unpublished data.
- 29 H.V. Kehiaian. K. Sosnkowska-Kehiaian and R. Hryniewicz. J. Chim. Phys.. 68 (1971) 922.