93

NON-ISOTHERMAL STUDIES OF CERIUM(IV) OXIDE-ALKALI PERSULFATE BINARY SYSTEMS

JALIL R. IGAL and FADHIL JASIM *

Department of Chemistry, College of Science, University of Baghdad, Baghdad (Iraq) **(Received** 1 I **September 1981)**

ABSTRACT

TG and DTA investigations, under static air atmosphere, of mixtures of CcO₂ with Na₂S₂O_x and K₂S₂O₈ in different molar ratios (1:6, 1:3, 2:3, 1:1, and 2:1) are reported. The purpose of these investigations is to study the effect of CcO, on the thermal decomposition of the persulfates from ambient to 1050°C, using the derivatograph. It has been found that $CeO₂$ lowers the initial decomposition tcmpcratures of these two persulfates by an amount which is directly proportional lo the percentage of the oxide in the mixture through a catalytic effect. Reaction products are identified by X-ray diffraction analysis. The stoichiometric molar ratio of the solid state reaction is found *to* be 2 : 3 $CeO₂: Na₂/K₂/S₂O₈$, which leads to the formation of double salts for both persulfates, namely, NaCe(SO₄)₂ and KCe(SO₄)₂.

INTRODUCTION

The effect of some oxides on the thermal decomposition of sodium and potassium peroxodisulfates (persulfates) and the behavior of these oxides towards the thermally produced pyrosulfates have been investigated [l-3]. In addition, it has been proved that lanthanides, e.g. Gd_2O_3 , Dy_2O_3 and Sc_2O_3 , behave like p-type semiconductors [4,51.

It is also mentioned that the catalytic activity of $CeO₂$ lowers the decomposition temperature of hydrated lithium perchlorate [6] as follows

2 LiClO₄ · 3 H₂O
$$
\frac{\Delta}{c_1 c_2}
$$
 Li₂O₃ + Cl₂ + 3.5 O₂ + 6 H₂O

This paper gives the results of the thermal solid state reactions of CeO₂ with sodium or potassium persulfate as well as the thermal stability of the double salts obtained, and accounts for the distinct behavior of this rare earth oxide towards either persulfate.

 $CeO₂$ is a p-type semiconductor at high temperatures [7]. This property is due to its structure which has positive vacancies [8] (contains excess of $Ce_{1+\nu}$), and its

0040-603 1/82/oOOO-oooO/%O2.75 a 1982 Ekevier Scientific Publishing Company

^{*} To whom correspondence should be addressed.

 $\overline{}$

Fig. 1. TG and DTA curves of cerium(IV) oxide-sodium persulfate mixtures.

 $\bar{\mathcal{A}}$

TABLE 1

oxidation states $(+3, +4)$. It seems that the oxide has many phases and colors due to structural changes [9]. The α -phase is CeO₂, and contains less vacancies in its crystallographic structure, while the β -phase is CeO₁₈₁₂ which is derived from eight-unit cells of the structure $CeO₂$, so the most stable structure of this oxide is CeO₂ which can be reduced to Ce₂O₃ at 1400°C using H₂ atmosphere.

EXPERIMENTAL

 $CeO₂$ (> 99% pure) was supplied by Fluka AG Buches SG. All other chemicals, equipment, and techniques were as described previously [10].

RESULTS AND DISCUSSION

Ce02 -Na,S,O, system

Figure 1 illustrates the non-isothermal behavior of the various $CeO₂: Na₂S₂O₈$ molar ratios. The DTA curves show that the initial decomposition temperature, T_i , is lowered by an amount which is proportional to the percentage of oxide in the mixture (Tables 1 and 2). The reaction between $CeO₂$ and sodium pyrosulfate produced thermally, occurs after the fusion temperature of the pyrosulfate, 350- 400 $^{\circ}$ C, in which cerium(IV) is reduced to cerium(III). The product of the reaction is a double sulfate of chemical formula $NaCe(SO₄)₂$. This is evidenced by the XRD patterns (Table 3) of the double salt and TG curves. Calculations indicate that 2:3 CeO₂: Na₂S₂O₈ is the stoichiometric molar ratio which gives the stoichiometric reaction

2 CeO₂ + 3 Na₂S₂O₇
$$
\rightarrow
$$
 2 NaCe(SO₄)₂ + 2 Na₂SO₄ + 0.5 O₂

 Λ

TABLE 2

Fig. 2. TG and DTA curves of cerium(IV) oxide-potassium persulfate mixtures.

in which 78% of pyrosulfate reacted with the oxide, and this is to be considered as the optimum ratio of the reaction.

Samples sintered at 580°C gave XRD data (Table 3) identical to those available in the ASTM index cards, and belonging to the compound $NaCe(SO₄)₂$.

The horizontal plateau from 530° C to about 1050° C on the TG curve indicates the thermal stability of the product. The broad endotherm on the DTA curve, and the TG curve (weight losses of 9, 6, and 4 mg) for the 1:3, 2:3 and 1:1 molar ratios at 460-540°C indicates the decomposition of the excess pyrosulfate. The sharp endotherms at 740-775°C belong to the lowering of the melting point of $Na₂SO₄$ due to the presence of solid impurities of $CeO₂$ and NaCe(SO₄)₂ in various proportions.

TABLE 3

$d(\text{A})$ 2.846 3.275 4.690 4.870 I/I_0 100					
		78	62	57	

Data for XRD patterns obtained for 2:3 CeO: Na₂S₂O_K system sintered at 580°C

TABLE 4

Data for XRD patterns obtained for the 2:3 $CeO₂$: K₂S₂O₈ system sintered at 840°C

CeO₂ -K₂S₂O₈ system

Several interesting features are illustrated in Fig. 2, of which the most striking is the 2:3 CeO₂: $K_2S_2O_8$ stoichiometric molar ratio of the reaction

$$
2 \text{ CeO}_2 + 3 \text{ K}_2 \text{S}_2 \text{O}_8 \xrightarrow{\Delta} 2 \text{ K Ce(SO}_4)_2 + 2 \text{ K}_2 \text{SO}_4 + 0.5 \text{ O}_2
$$

which occurs at 350–400°C, i.e. directly after the β - to α -phase change of potassium pyrosulfate at 320-350°C. Calculation of the reacted percentage of pyrosulfate with the oxide is found to be 76% which is the optimum value. In the case of the 2: 1 molar ratio, **the DTA curve shows thermal neutrality.**

The product, $KCe(SO₄)$, undergoes a phase change at 810°C, a fact shown on the DTA curve as an endotherm. The succeeding endotherm at 850°C refers to the melting point of the product in the presence of small amounts of K_2SO_4 and CeO_2 . Samples sintered at 840° C (after the first endotherm) and at 1000° C (after the second endotherm) and identified by X-ray diffraction analysis, gave different XRD data, respectively (Table 4). However, the second sample was a melt, in the mean time the first sample did not indicate a phase change. Further, the same crystalline cubic KCe(SO₄)₂ was identified when samples of 1:1 molar ratio sintered at 660, 830 and 85O"C, as well as samples of 1: 1 ratio sintered at 760°C.

In conclusion, the thermal treatment. of alkali persulfate with cerium(IV) oxide can be regarded as an alternative route for the preparation of the double salts $NaCe(SO₄)₂$ and $KCe(SO₄)₂$ by solid state reactions, other than that reported by Degtiarev et al. [11] using the reactions in solutions.

REFERENCES

I M.M. Barbooti, F. Jasim and S.K. Tobia, Thermochim. Acta, 21 (1977) 399. 2 M.M. Barbooti, F. Jasim and S.K. Tobia, Thermochim. Acta, 21 (1977) 237.

- **3 &f&f.** Barbooti and F. Jasim. J. Therm. Anal.. 13 (1978) 563.
- 4 D.B. Basler. Nucl. Sci. Abstr,. 26 (1972).
- 5 M.D. Larvov. Deposited Doc., 10 (1973) 6733.
- 6 A. Burcat and M. Steinberg, J. Inorg. Nucl. Chem., 30 (1978) 35.
- 7 **Chcm. Abstr.. 62 (1965) 139OOd.**
- **S** R.&l. AI-Shukv snd F. Jasim. J. Therm. Anal.. 19 (1980) 125.
- 9 T. Hattori. J.-I. Inoko and Y. Murakami. J. Catal.. 42 (1976) 60.
- 10 K.R. Idan and F. Jasim, Thermochim. Acta, 39 (1980) 227.
- 11 P.A. Degtiarev, A.N. Pokrovskii. L.M. Kovba and F.M. Korytnaia, J. Solid State Chem., 22 (1977) 412.