# NON-ISOTHERMAL STUDIES OF CERIUM(IV) OXIDE-ALKALI PERSULFATE BINARY SYSTEMS

### JALIL R. IGAL and FADHIL JASIM \*

Department of Chemistry, College of Science, University of Baghdad, Baghdad (Iraq) (Received 11 September 1981)

### ABSTRACT

TG and DTA investigations, under static air atmosphere, of mixtures of CeO<sub>2</sub> with Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> and K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> in different molar ratios (1:6, 1:3, 2:3, 1:1, and 2:1) are reported. The purpose of these investigations is to study the effect of CeO<sub>2</sub> on the thermal decomposition of the persulfates from ambient to 1050°C, using the derivatograph. It has been found that CeO<sub>2</sub> lowers the initial decomposition temperatures of these two persulfates by an amount which is directly proportional to the percentage of the oxide in the mixture through a catalytic effect. Reaction products are identified by X-ray diffraction analysis. The stoichiometric molar ratio of the solid state reaction is found to be 2:3 CeO<sub>2</sub>: Na<sub>2</sub>/K<sub>2</sub>/S<sub>2</sub>O<sub>8</sub>, which leads to the formation of double salts for both persulfates, namely, NaCe(SO<sub>4</sub>)<sub>2</sub> and KCe(SO<sub>4</sub>)<sub>2</sub>.

### INTRODUCTION

The effect of some oxides on the thermal decomposition of sodium and potassium peroxodisulfates (persulfates) and the behavior of these oxides towards the thermally produced pyrosulfates have been investigated [1-3]. In addition, it has been proved that lanthanides, e.g.  $Gd_2O_3$ ,  $Dy_2O_3$  and  $Sc_2O_3$ , behave like *p*-type semiconductors [4,5].

It is also mentioned that the catalytic activity of  $CeO_2$  lowers the decomposition temperature of hydrated lithium perchlorate [6] as follows

2 LiClO<sub>4</sub> · 3 H<sub>2</sub>O 
$$\xrightarrow{\Delta}_{CeO_2}$$
 Li<sub>2</sub>O<sub>3</sub> + Cl<sub>2</sub> + 3.5 O<sub>2</sub> + 6 H<sub>2</sub>O

This paper gives the results of the thermal solid state reactions of  $CeO_2$  with sodium or potassium persulfate as well as the thermal stability of the double salts obtained, and accounts for the distinct behavior of this rare earth oxide towards either persulfate.

 $CeO_2$  is a *p*-type semiconductor at high temperatures [7]. This property is due to its structure which has positive vacancies [8] (contains excess of  $Ce_{1+\nu}$ ), and its

0040-6031/82/0000-0000/\$02.75 © 1982 Elsevier Scientific Publishing Company

<sup>\*</sup> To whom correspondence should be addressed.

| $CeO_2$ :<br>Na <sub>2</sub> S <sub>2</sub> O <sub>8</sub> | Sample<br>wt. (mg) | $Na_2S_2O_8$<br>in sample | O <sub>2</sub> lost (n | ng)    | Decomp<br>Na <sub>2</sub> S <sub>2</sub> C | on. of<br>D <sub>e</sub> to |  |
|------------------------------------------------------------|--------------------|---------------------------|------------------------|--------|--------------------------------------------|-----------------------------|--|
| 1-1-6                                                      |                    | (mg)                      | Theor.                 | Pract. | Nia <sub>2</sub> S <sub>2</sub> C          | 0 <sub>7</sub> (°C)         |  |
|                                                            |                    |                           |                        |        | $\overline{T_{i}}$                         | T <sub>f</sub>              |  |
| 0:1                                                        | 200                | 200.00                    | 13.40                  | 12.50  | 190                                        | 225                         |  |
| 1:6                                                        | 200                | 178.49                    | 11.99                  | 12.00  | 180                                        | 225                         |  |
| 1:3                                                        | 200                | 161.16                    | 10.83                  | 11.00  | 175                                        | 220                         |  |
| 2:3                                                        | 200                | 134.96                    | 9.06                   | 9.00   | 160                                        | 200                         |  |
| 1:1                                                        | 200                | 116.08                    | 6.56                   | 7.00   | 150                                        | 190                         |  |
| 2:1                                                        | 200                | 81.77                     | 5.49                   | 6.00   | 190                                        | 220                         |  |





Fig. 1. TG and DTA curves of cerium(IV) oxide-sodium persulfate mixtures.

TABLE 1

oxidation states (+3, +4). It seems that the oxide has many phases and colors due to structural changes [9]. The  $\alpha$ -phase is CeO<sub>2</sub>, and contains less vacancies in its crystallographic structure, while the  $\beta$ -phase is CeO<sub>1.812</sub> which is derived from eight-unit cells of the structure CeO<sub>2</sub>, so the most stable structure of this oxide is CeO<sub>2</sub> which can be reduced to Ce<sub>2</sub>O<sub>3</sub> at 1400°C using H<sub>2</sub> atmosphere.

### EXPERIMENTAL

 $CeO_2$  (>99% pure) was supplied by Fluka AG Buches SG. All other chemicals, equipment, and techniques were as described previously [10].

#### RESULTS AND DISCUSSION

# $CeO_2 - Na_2S_2O_8$ system

Figure 1 illustrates the non-isothermal behavior of the various  $CeO_2: Na_2S_2O_8$ molar ratios. The DTA curves show that the initial decomposition temperature,  $T_i$ , is lowered by an amount which is proportional to the percentage of oxide in the mixture (Tables 1 and 2). The reaction between  $CeO_2$  and sodium pyrosulfate produced thermally, occurs after the fusion temperature of the pyrosulfate, 350– 400°C, in which cerium(IV) is reduced to cerium(III). The product of the reaction is a double sulfate of chemical formula  $NaCe(SO_4)_2$ . This is evidenced by the XRD patterns (Table 3) of the double salt and TG curves. Calculations indicate that 2:3  $CeO_2: Na_2S_2O_8$  is the stoichiometric molar ratio which gives the stoichiometric reaction

$$2 \text{ CeO}_2 + 3 \text{ Na}_2 \text{S}_2 \text{O}_7 \rightarrow 2 \text{ NaCe}(\text{SO}_4)_2 + 2 \text{ Na}_2 \text{SO}_4 + 0.5 \text{ O}_2$$

А

### TABLE 2

| The preparation of various CCO3. 12,03,08 motal ratios, and the criter of the upplied neuring prog. | The preparation ( | of various CeO | $_{2}: K_{2}S_{2}O_{8}$ molai | r ratios, and the | e effect of the app | lied heating progra |
|-----------------------------------------------------------------------------------------------------|-------------------|----------------|-------------------------------|-------------------|---------------------|---------------------|
|-----------------------------------------------------------------------------------------------------|-------------------|----------------|-------------------------------|-------------------|---------------------|---------------------|

| $CeO_2$ :<br>$K_2S_2O_2$ | Sample<br>wt. (mg) | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub><br>in sample<br>(mg) | O <sub>2</sub> lost (mg) |        | Decompn. of<br>K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> to |                |  |
|--------------------------|--------------------|-------------------------------------------------------------------|--------------------------|--------|----------------------------------------------------------------|----------------|--|
| 2-2-8                    |                    |                                                                   | Theor.                   | Pract. | K <sub>2</sub> S <sub>2</sub> O <sub>7</sub> (°C)              |                |  |
|                          |                    |                                                                   |                          |        | $\overline{T_{i}}$                                             | T <sub>f</sub> |  |
| 0:1                      | 200                | 200.00                                                            | 11.84                    | 11.80  | 180                                                            | 200            |  |
| 1:6                      | 200                | 171.25                                                            | 10.13                    | 10.00  | . 180                                                          | 210            |  |
| 1:3                      | 200                | 164.98                                                            | 9.70                     | 9.50   | 160                                                            | 200            |  |
| 2:3                      | 200                | 140.39                                                            | 8.31                     | 8.00   | 160                                                            | 210            |  |
| 1:1                      | 200                | 122.19                                                            | 7.23                     | 7.00   | 150                                                            | 200            |  |
| 2:1                      | 200                | 87 <b>.9</b> 7                                                    | 5.20                     | 5.20   | 170                                                            | 210            |  |



Fig. 2. TG and DTA curves of cerium(IV) oxide-potassium persulfate mixtures.

in which 78% of pyrosulfate reacted with the oxide, and this is to be considered as the optimum ratio of the reaction.

Samples sintered at 580°C gave XRD data (Table 3) identical to those available in the ASTM index cards, and belonging to the compound NaCe(SO<sub>4</sub>)<sub>2</sub>.

The horizontal plateau from 530°C to about 1050°C on the TG curve indicates the thermal stability of the product. The broad endotherm on the DTA curve, and the TG curve (weight losses of 9, 6, and 4 mg) for the 1:3, 2:3 and 1:1 molar ratios at 460-540°C indicates the decomposition of the excess pyrosulfate. The sharp endotherms at 740-775°C belong to the lowering of the melting point of Na<sub>2</sub>SO<sub>4</sub> due to the presence of solid impurities of CeO<sub>2</sub> and NaCe(SO<sub>4</sub>)<sub>2</sub> in various proportions. TABLE 3

| d(Å) 2.846 3.275 4.690 4.870         |
|--------------------------------------|
|                                      |
| <i>I/I</i> <sub>0</sub> 100 78 62 57 |

Data for XRD patterns obtained for 2:3 CeO: Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> system sintered at 580°C

# TABLE 4

Data for XRD patterns obtained for the 2:3 CeO2: K2S2O8 system sintered at 840°C

| d(Å)             | 3.118 | 2.720 | 1.904 | 2.164 |  |
|------------------|-------|-------|-------|-------|--|
| I/I <sub>0</sub> | 100   | 47    | 26    | 23    |  |

# $CeO_2 - K_2S_2O_8$ system

Several interesting features are illustrated in Fig. 2, of which the most striking is the 2:3  $CeO_2: K_2S_2O_8$  stoichiometric molar ratio of the reaction

$$2 \operatorname{CeO}_2 + 3 \operatorname{K}_2 \operatorname{S}_2 \operatorname{O}_8 \xrightarrow{\Delta} 2 \operatorname{KCe}(\operatorname{SO}_4)_2 + 2 \operatorname{K}_2 \operatorname{SO}_4 + 0.5 \operatorname{O}_2$$

which occurs at 350-400°C, i.e. directly after the  $\beta$ - to  $\alpha$ -phase change of potassium pyrosulfate at 320-350°C. Calculation of the reacted percentage of pyrosulfate with the oxide is found to be 76% which is the optimum value. In the case of the 2:1 molar ratio, the DTA curve shows thermal neutrality.

The product,  $KCe(SO_4)_2$ , undergoes a phase change at  $810^{\circ}C$ , a fact shown on the DTA curve as an endotherm. The succeeding endotherm at  $850^{\circ}C$  refers to the melting point of the product in the presence of small amounts of  $K_2SO_4$  and  $CeO_2$ . Samples sintered at  $840^{\circ}C$  (after the first endotherm) and at  $1000^{\circ}C$  (after the second endotherm) and identified by X-ray diffraction analysis, gave different XRD data, respectively (Table 4). However, the second sample was a melt, in the mean time the first sample did not indicate a phase change. Further, the same crystalline cubic  $KCe(SO_4)_2$  was identified when samples of 1:1 molar ratio sintered at 660, 830 and 850°C, as well as samples of 1:1 ratio sintered at 760°C.

In conclusion, the thermal treatment of alkali persulfate with cerium(IV) oxide can be regarded as an alternative route for the preparation of the double salts NaCe(SO<sub>4</sub>)<sub>2</sub> and KCe(SO<sub>4</sub>)<sub>2</sub> by solid state reactions, other than that reported by Deguiarev et al. [11] using the reactions in solutions.

#### REFERENCES

1 M.M. Barbooti, F. Jasim and S.K. Tobia, Thermochim. Acta, 21 (1977) 399. 2 M.M. Barbooti, F. Jasim and S.K. Tobia, Thermochim. Acta, 21 (1977) 237.

- 3 M.M. Barbooti and F. Jasim, J. Therm. Anal., 13 (1978) 563.
- 4 D.B. Basler, Nucl. Sci. Abstr., 26 (1972).
- 5 M.D. Larvov, Deposited Doc., 10 (1973) 6733.
- 6 A. Burcat and M. Steinberg, J. Inorg. Nucl. Chem., 30 (1978) 35.
- 7 Chem. Abstr., 62 (1965) 13900d.
- 8 R.M. Al-Shukry and F. Jasim, J. Therm. Anal., 19 (1980) 125.
- 9 T. Hattori, J.-I. Inoko and Y. Murakami, J. Catal., 42 (1976) 60.
- 10 K.R. Idan and F. Jasim, Thermochim. Acta, 39 (1980) 227.
- 11 P.A. Degtiarev, A.N. Pokrovskii, L.M. Kovba and F.M. Korytnaia, J. Solid State Chem., 22 (1977) 412.