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ADSTRACT 

It is demonstrated that non-isothermal traces of thcmmal decomposition reactions of solids must fit the 

equation’dcvclopcd by Freeman and Carroll for performing the kinetic analysis of “II order” reactions 

cvcn if they arc following a quite different mechanism. Thcrcforc. it is concluded that this method dots 

not allow one to determine if a reaction is obeying an “II order” kin&c law or a diffcrcnt enc. 

INTRODUCTION 

The Freeman and Carroll method [l] is perhaps one of the most widely used in 
the literature [2-41 for performing the kinetic analysis of reactions that fulfil the 
kinetic law 

da 
-_A e-WR7-( 1 - a)” 

dr 

where (Y is the reacted fraction at the time I, E is the activation energy, A is the 
pre-exponential factor of Arrhenius and n stands for the reaction order. 

By differentiating the logarithmic form of eqn. (1) with respect to d ln( 1 - a), 
Freeman and Carroll obtained 

d ln(da/dt) = E d(l/T) 

d In(1 -a) -?? dln(1 -a) +’ (2) 

or 

A In(da/df) = E A(l/T) 
Aln(l -a) .-x AIn(1 -a) (3) 

l To whom correspondence should be addressed. 
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The plots of the left-hand side of eqn. (2) or (3) against d( l/T)/d In( 1 - cx) [or 
&l,‘T)/A ln(1 - ar)] should be a straight line with a slope -E/R and an intercept 
equal to n. Therefore this method allows one to determine simultaneously both the 
acti\.ation energy and the ‘reaction order w-ithout a previous knowledge of this last 
parameter. as required by the majority of the methods proposed in the literature 

[X6]. 
However. it is well known that solid state reactions are often described by kinetic 

laws quite different from eqn. (1). Heide et al. [7] have developed a differential- 
differential method similar to Freeman and Carroll’s in order to discriminate the 
actual mechanism of reactions whose rate is not expressed by eqn. (1). 

In the present paper we try to determine if the Freeman and Carroll method 
alIovrs one to discern clearly between solid state reactions fitting an n order kinetic 
law and those following a different mechanism. 

Tl iEORETICAi 

It is well known that the rate of a reaction of thermal decomposition of solids can 
be expressed in the general form 

f(cu) being a function depending on the actual reaction mechanism. 
If \ve differentiate the logarithmic form of eqn. (4) with respect to ln(1 - cr). we 

get 

d ln(da,/dr ) E d(W-1 d In f(a) 

d In(l --a) =-Xdln(l-n)+dln(l-aa) (5) 

By taking increments in the logarithmic form of eqn. (4) and dividing by A ln(l - (x), 
we may also \vrite 

;1 ln(da/dr ) E A(i/‘T) A in f(cu) 

a ln(1 -tr’) = 
-- 

R Aln(l--)+Aln(l-au) (6) 

On the other hand. if the temperature of the sample is increased at a constant rate 
fi = dT/df. eqn. (4) may be integrated 

So that, after taking logarithms and considering Doyle’s approximation [S] for 
integrating the Arrhenius equation, this becomes 

-- lng(a)-ln;fSRE 5.34- 1.057$ 

By differentiating eqn. (8) with respect to ln(1 - cu), one obtains 

(8) 

d In da) -c _ 1 o5 E d(l/T) 
dln(l-a) _ R dIn(l-o1) 



161 

If the following relationship can be established 

d In f( cy) d ln g(4 
dln(l-~)=ffdln(l-~)+b 

(a and b being constants) from eqns. (S), (9), and (10) one obtains 

d ln(dcy/dt) = E’ d(l/T) -- 
d ln( 1 - a) R dln(l--)+b 

where E’ = (1 -!- l.OSa)E. 

(10) 

(11) 

By comparing eqns. (2) and (11) it can be seen that if eqn. (10) applies then the 
reaction would be seen to obey an n order kinetic law in spite of really following a 
quite different mechanism. In this case, an apparent reaction order H = b, and an 
apparent activation energy E’ = (1 + 1.05a)E would be obtained. 

In order to see if the above assumptions work, we have collected in Table 1 the 
mathematical expressions of the functions d In g(cu)/d ln( 1 - cy) and d In f( cu)/d 
ln( 1 - a) corresponding to some of the mechanisms of thermal decomposition found 

in the literature, and have used eqn. (10) to obtain values of n and b which are shown 
in Table 1, together with their linear correlation coefficients. 

It must be noted that in the case of reactions following the Avrami-Erofeev 

mechanism there is no agreement in the literature with regard to a method of 
defining the specific reaction rate for the reaction. Some authors [7,9.10] express the 
isothermal kinetic law in the form 

[In-$---]""'=kr (12) 

~II being a constant depending on the nucleation and growth mechanism. (This factor 
is usually quoted as n, but is called nz here to distinguish from the previous use of N.) 

The results included in Table 1 are obtained from the kinetic analysis of eqn. (12) 
under a linear heating rate. 

However, we must point out that the Avrami-Erofeev kinetic law would be more 
properly written as [ 1 l- 131 

[In&]““‘= kl/“It 

or in differential form 

dcu -~=~k~/“~(l -a)[-ln(1 -LY)]‘-“‘~) 
dt 

(13) 

(14) 

and that under non-isothermal conditions this becomes 

dar 
dt- 

_,,,~l/nz~-VmRT(l _a)[_ln(l _(y)]‘--(l/n’) (15) 

By taking logarithms and differentiating with respect to ln( 1 - cy), eqn. (15) becomes 

d ln(dar/dt) = 

dln(l-aa) 
- E d(1/T) + [l - (l/m)] 

mR d ln(l,- a) (16) 
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TABLE I 

Values of u and h calculated by correlating the functions d In f( a)/~! In( 1 -a) and d In g( u)/d In( I -a) 
according to eqn. (10): leading to apparent order and F/E 

~Mechanism 

(symbol) a 

d In g(a) d In f(a) 

dln(l--a) d In( 1 -a) 

Avrami-Erofeev ’ 

Undimcnsionaf diffusion 

cn,, 

Two-dimensional diffusion 

(D,) 

Three-dimensional diffusion 

(Jander mechanism) 

(PI) 

Three-dimensional diffusion 

(Gnstling-Brounshtein mechanism) 

C’,) 

-I 

nr In( I -a) 
-2(1-a) 

P 

(1 -P) In{ 1 -a) 

(i-a) In(l-~)+a 

2 (I-ay 
-7 ++_*)“J 

-2[(l--a)“““-l](l--a) 
3[1-(2a/3)-(i-n)“‘“] 

-1 

In(l-a) 

1 (I--aj'." +z 

T J-(t--a)‘/~ 3 

(~--cr)-“J 

3[(1-4’%] 

’ Symbols of Sharp et al. [IS] have been used. 

h If the kinetic law is written in the form [-In{ 1 -Q)]‘/“’ =kr. 

On the other hand, integrating eqn. (15) taking into account the Doyle’s ap- 
proximation, we get 

In[-ln(1 --n)]‘/“=lns- 5.34- l-05-& 

which on differentiation with respect to In(1 - cy) can be rearranged to 

-1 E dO/T) 
in(1 -a) = -‘-05?? d In(1 -a) 

By substituting eqn. (18) into eqn. (16) we obtain, after collecting terms 

d ln(da/dt) 

d ln(1 -a) 

E d(V) 
=-Tidlg(l-cy)+l 

(17) 

(18) 

w 
From the comparison of eqns. (2) and (19) we can conclude that employing the 

Freeman and Carroll’s method for performing the kinetic analysis of a reaction 
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4.4 I + 1.05u= E’/E Apparent 
order II= h 

Correlation 
coefficient ( f) 

(0.05GYG 1.0) 

I?1 - I 1 .osm -0.05 1.00 I .ooooO 
=tn 

-0.500 0.475 0.00 l.m 

- 0.503 0.472 0.30 0.99999 

-0.500 0.475 213 l.OOOOO 

-0.501 0.414 0.43 0.99999 

taking place through an Avtami-Erofeev mechanism it would be erroneously 
interpreted as first order. This is true whatever the way of defining the rate constant. 
Moreover, the apparent activation energy obtained from eqn. (2) coincides with the 
actual one if we take into account that the proper rate constant is defined by eqn. 
(13). However, if eqn. (12) is considered, a ratio E’/E very close to m would be 
obtained as shown in Table 1. 

The results in Table 1 and the above considerations seem to show that the 
equation developed by Freeman and Carroll for carrying out the kinetic analysis of n 
order reactions is fulfilled whatever the reaction mechanism of thermai decomposi- 
tion of solids. (Note in the above equations dcu/dt may be substituted by dcr/dT 
with the same result.) 

In order to test the validity of the above considerations we have constructed both 
the TG and the DTG cunx.s included in Fig. 1 by assuming a Ginstling-Brounshtein 
diffusion mechanism (D4) and the following kinetic parameters: E = 30 kcal mole-’ 
(125.4 kJ mole);‘, A = 1013 set-’ and a heating rate= 10°C min-*. The integration 
of the Arrhenius equation was performed by a third order rational approximation 
developed by Senung and Yang [ 143 with an accuracy better than 10V2 %. 

/ 

T E exp(-x) 
e--E/RT dT=R 

x2 + 10x+ 18 

0 x x3 +12x2 +36x+24 
(20) 
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Fig. I. Plors of the values of a and da,‘d. caiculatcd as a function of the tcmpcraturc by assuming a D4 

mechanism and the following kinetic paramctcrs: E= 30 kcal molt ’ ( 125.4-J molt .. ’ ): A = IO’” see _ I: 

p= 10aC min- ‘. 
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Fig. 2. Plots of data taken from Fig. 

(59.5 W mole-‘) (ie...E'/E=0.475): 

1 according to eqn. (3). Results obtained: E= 14.25 kcal mole-’ 
nz0.432; correlation coefficient r= -0.99999. 
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The results of the kinetic analysis of data in Fig. 1 according to eqn. (3) are 
included in Fig. 2. The values of the kinetic parameters calculated from this Figure 
are E’= 14.24 kcal mole-’ (59.5 kJ mole-‘) (i.e., E’/E = 0.475) and tl = 0.432. 
.These results are in excellent agreement with those previously calculated in Table 1. 

In summary, we conclude that the Freeman and Carroll method cannot be used 
for determining if a solid state reaction is following an “n order” kinetic law 
because, as we have shown, eqns. (2) and (3) must be fulfilled in spite of the reaction 
following a quite different mechanism. 
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