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ABSTRACT 

In this study the effect of a pre-exponential function A =A,T” on rising tcmpcraturc kinetic 
parameter calculations has been shown. The integral methods have been derived using this function and 
an improvement has been proposed. This eliminates the error induced by introducing more complex 
temperature integrals and removes the reed to recalculate the integral for new values of JI. 

INTRODUCTION 

The application of integral methods in non-isothermal kinetics of solid state 
reactions usually assumes the temperature independence of the pre-exponential 
factor A in the Arrhenius equation [ 1,2] i.e. 

k=Aexp(--E/RT) (1) 

where k is the specific reaction rate, R is the gas constant, T is the temperature and 

E is the activation energy. However, the transition state theory predicts the relation- 

ship [3,41 

RT f k=xK (2) 
where N is the Avogadro number, h is the Planck’s quantum theory constant and 
K * is the equilibrium constant. In the case where T= 00 then from eqn. (1) it can 
be seen that k, = A. Thus from eqn. (2) it is clear that A is temperature dependent. 

The tr&sition state theory was developed around a concept of a bimolecular 
reaction in free space. In reality it is only possible to express A as a function of 
temperature, thus 

A =A,T” (3) 

There are two general cases, where n = f and II = 1, the first describing a surface 
reaction between a gaseous and a solid reactant and the second a single reactant 
solid state decomposition. However; other possibilities do exist to describe such 
reactions as’ solid-solid, diffusion controlled and pressure dependent interactions.. 



Thus from eqns. (1) and (3) it can be seen that 

k =.4,T” exp( -E/RT) (4) 

where A, is now temperature independent. However, the integral methods of kinetic 
parameter evaluation implicitly assume that )I = 0. The aim of this paper is to 
analyse the effect of real value of n on these methods. 

DERIVATION OF INTEGRAL METHODS 

In order to understand fully the effect of eqn. (3) on the integral methods it is 
necessary to repeat the integral derivation using eqn. (4). 

Substituting dn/dT= k - f(a) - /3-’ for k into eqn. (4). where a is the fraction 
decomposed during a reaction with a heating rate B gives 

/3 da 
--=AA.T”exp(-E/RT) f(a) dT 

Rearranging shows that 

exp(-E,/RT) dT 

With the substitution of x = E/RT, eqn. (6) can be written as 

which after integration becomes 

In the more usual logarithmic form this becomes 

In g(x) - In p,,( x) = In 
A,E”+’ 

i i PR 
N-i I 

(5) 

(6) 

(7) 

(9) 

and is the basis of all integral methods. Two general approaches using eqn. (9) are 
possible. these arising from two methods of expressing the temperature integral 19 
x-(“+~) exp(-x) dx or p,,(x). The first is based on series expansions of this 
indefinite integral and the second uses simple approximation. 

METHODS UTILISING SERIES EXPANSIONS 

These methods [5,6] use the fact that since In p,,(x) is simply the logarithmic form 
of the increase in area of an exponential function of l/T then a plot of ln p,(jc) vs. 
l/T is linear. Thus since 

dlnPn(x) I dPn(X) 

dx =p,o’ dx (10) 
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then 

d ln P,(X) E 

dx =Rx n+2 e”p,( x) 
(11) 

incorporating the original definitions of p,(x) and x. Therefore the activation energy 
can be found by either an iterative process from the gradient of a plot of In p,,(s) vs. 
l/T [7] or- from tabulated In p,,(x) values for particular ranges of x [8]. 

Since, from eqn. (9), the difference between In g(a) and In p,,(x) is constant then, 

assuming the reaction to be isokinetic, a plot of In g(o) and In p,,(x) vs. l/T should 
give two parallel lines, the distance between them being In(A,, E’If ‘/PPfl) so 

allowing A,, to be calculated. 
There are many series expansions of p,(x) where II= 0, these having been 

reviewed by Wendlandt et al. [8]. Recent papers [9-l 1] have compared these 
expressions and shown that a Schloemilch series is the most accurate for s > IS. 
However, these expansions are based on the partial integration of p,,(x), a process 
not applicable for non integer values of II. Thus Varhegyi [ 121 using work by 
Bateman [ 131 has shown, for complete integration, the Schloemilch series to be 

P”(X) = 
exd--xl 1 + Q, 

x n-t2 ( x+ 1+ (Xf $x+2) + (x+ 1)(X:2)(X+3) +.-. ) 

where the values of a,, corresponding to n are shown in Table 1 (taken, in part, from 
ref. 12). In addition Varhegyi has shown how to use Pade approximations and 
Legendre fractions for any value of n. Also SegaI [14] has derived approximations to 
the temperature integral assuming any positive values of tz. 

In order to satisfy the requirements of eqn. (9), it is clear that In g(cr) and In p,,(x) 
vs. l/T must be parallel for any isokinetic reaction. However, although not 
immediately obvious the two lines will be parallel for any value of r; whether correct 
or not. This is because the RHS of eqn. (9) is always constant. Figure 1 shows a 
graph of In g(o) and In p,(x) vs. l/T for n = 0, 0.5, 1.0, 1.5 and 2.0 for the 
decomposition of 1.0% nickel nitrate on fumed silica (wt./wt.W) calculated for 
g(a) = 1 - (2a/3) - (1 - CY)~‘~ using eqn. (12) with constants from Table 1 [ 151. All 

TABLE 1 

Coefficients to eqn. (12) (taken. in part, from ref. 12) 

t1 “I fJ2 u3 u4 

0 - 2.0 4.0 - 10.0 30.0 
0.5 - 2.5 6.25 - 18.125 6 I.563 
1.0 -3.0 9.0 - 30.0 114.0 
1.5 -3.5 12.25 -46.375 190.985 
2.0 -4.0 16.0 - 68.0 3 14.0 
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Fig. I. A plot of In g(a) and In p,,(x) vs. I/T for varying values of II. 

six lines shown on the graph have equal slopes. The Arrhenius parameters calculated 
from Fig. 1 are shown in Table 2, the activation energies showing a decreasing trend 
with increasing values of 11. This can be understood by referring to eqn. (1 l), the 
RHS requiring the values of p,,(x) and x”+~ to be known, 

However. E is recognised as being temperature independent, although Gorbachev 
[ 161 has postulated an algorithm for the case where E(T) = E, + RBT. However, the 
initial proof of this is in error. Thus Table 2 shows that the activation energy can be 
miscalculated by up to 6% depending on the choice of n. In addition some of the 
expansions for p,,(x j [ 121 are invalid [ 171 for non integer values of n. A proposal for 

TABLE 2 

Arrhenius parameters calculated from Fig. 1 

11 CJc. using eqn. (12) 

E (kJ mole-‘) .4, (s-l) 

Cnlc. using eqn. (14) 

E (kJ mole-‘) cl, (s-l) 

0 13.2 5.SO El0 13.2 5.80 El0 

0.5 13.0 1.57 EO9 13.2 1.45 E09 

1.0 12.8 4.25 E07 13.2 3.64 ED7 

1.5 12.6 1.10 EM 13.2 9.12 EO5 

2.0 12.4 3.13 E04 13.2 2.29 E04 
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a modified method of calculating the Arrhenius parameters is based on the following 
argument. 

If we consider a distance between the two plots of d,, as 

4 = In 
/I$“+ 

i 1 pR”+ ’ 

then for ariy expansion of p,,(x) for n = 0, A,, can be calculated from d, by 

lnA, =d, +h 

for any value of k. Thus using the normal integral methods outlined earlier for IZ = 0, 
A, can be calculated for any value of n using eqn. (14) with eqn. (9). Recalculated 

results using this method and the data used previously are shown in Table 2. As can 

be seen, the activation energies are the same for any value of II and thus A, is 

calculated to a slightly different value. 

METHODS UTILISING SIMPLE APPROXIMATIONS 

These approaches to integral methods of kinetic parameter evaluation utilise 

simple approximations to the temperature integral. They either use equations of the 
type y = mx + c or more complex series expansions truncated after one or two terms. 

The following equation is an example of the first type of approximation 

lnp,,(x) = -c-171x (15) 

where, according to Doyle [ 181, ri? = 0.4567 and c = 2.3 15 when II= 0 and x > 20. 

Ozawa [ 191 using the Doyle approximation combined eqns. (15) and (9) to show that 
a plot of In p vs. l/T will give a linear plot. However, looking at the equation for 

any value of n 

(16) 

shows that an incorrect choice of n will affect the slope (--mE/R) since the 

constants in eqn. (15) vary with tr. This possible error in the calculation of E will, 

however, be insignificant compared with the error introduced by utilising this type of 
approximation. 

Coats and Redfern [20,21] used an approximation of 

~~(4 =exd--x)[W--2/x2)] 
and obtained from eqn. (9) 

ln($-)=ln($$)(l--y)-& 

(17) 

(18) 

This method of treatment is, however, dependent on the type of approximation used. 
Using eqn. (18) a plot of ln[g(a)/T*] vs. 1 /T will yield a straight line over a narrow 
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temperature interval. The approximation is obtained through partial integration of 
the temperature integral and is not valid for non integer values of n. In addition it is 

not one of the more accurate approximations, being truncated after the second term. 

Thus in conclusion it must be noted that in any calculation of E care must be 
taken to ensure that the uncertainty of n in the pre-exponential function does not 
affect the accuracy to which E is calculated. Also series expansions of the tempera- 
ture integral must be checked for validity with non-integer values of n. A method of 

calculating A, and E for any value of n has been proposed for use with the “dual 

plot” method of calculating Arrhenius parameters. This removes the need to 

formulate complex p,,(x) functions since only one expansion is needed. 
Methods of kinetic parameter evaluation utilising simple approximations are very 

dependent on the type of approximation used. The nature of the approximations 

introduces an error into the calculations. In addition they are specifically for one 
value of n. 
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