Note

KINETICS OF THE NON-ISOTHERMAL DECOMPOSITION OF SOME METAL HIPPURATES FROM DTG CURVES

S.S. SAWHNEY and ALKA KOHLI *

Department of Chemistry, D.A.V. (P.G.) College, Dehra Dun (India) (Received 5 January 1982)

Sawhney and Bains [1] studied the non-isothermal decomposition of metal complexes of hippuric acid with Cu(II), Cd(II), Pb(II), and Fe(III). Sawhney and Matta [2] and Matta [3] probed kinetically the desolvation of cerium(III), neodynium(III) and erbium(III)-hippuric acid complexes. This note describes the kinetics of the pyrolytic dissociation of anhydrous complexes of hippuric acid with Ce(III), Nd(III) and Er(III) and solvated silver hippurate using Dave-Chopra eqns. (1) and (2)

$$\frac{-E/2.303 R(T^{-1})}{\log(A-a)} = -n + \frac{\log(dx/dt)}{\log(A-a)}$$
(1)

$$k = \frac{(A/m_0)^{n-1}(-dx/dt)}{(A-a)^n}$$
(2)

where the terms have their usual meaning [4].

EXPERIMENTAL

All the reagents used were of analytical grade. The metal derivatives were isolated by the slow addition of sodium hippurate to the metal solution. The precipitate was digested over a water bath for 1 h, allowed to stand, filtered, washed, and dried at 35-40°C. Analytical data were in agreement with the composition given by Matta [3]. For solvated silver hippurate, elemental analysis suggested the composition: $C_6H_5CONHCH_2COOAG \cdot 1.5 H_2O$:

	C%	H%	Ag%	
Found	34.51	2.56	35.64	
Calcd.	35.07	3.31	34.51	

* M.K.P. Degree College, Dehra Dun, India.

0040-6031/82/0000-0000/\$02.75 © 1982 Elsevier Scientific Publishing Company

217

Air-dried metal hippurates were pyrolysed on a manually operated assembly equipped with a Toshiniwal furnace at a rate of $6^{\circ}C \text{ min}^{-1}$ [Ce(III), Nd(III) and Er(III) complexes] and $10^{\circ}C \text{ min}^{-1}$ (silver hippurate).

RESULTS AND DISCUSSION

All the reactions under investigation follow the type of reaction [5] $A(s) \rightarrow B(s) + C(g)$

Each sigmoidal trace in the pyrolysis curves was separately analyzed kinetically. The pyrolysis curves of the metal complexes, except solvated silver hippurate which showed three sigmoidal traces:

	% Loss		
	Found	Calcd.	
$\overline{(1) \operatorname{Ag} R \cdot 1.5 \operatorname{H}_2 O \rightarrow \operatorname{Ag} R + 1.5 \operatorname{H}_2 O}$	9.41	8.63	
(2) Ag R \rightarrow Ag 1/8R + 7/8R	58.42	58.39	
(3) Ag $1/8R \rightarrow Ag + 1/8R$	64.36	65.50	
	$\overline{R = C_6 H_5 CONH CH_2 COO}$		

were explained by Sawhney and Matta [2].

TABLE I

Kinetic parameters for the non-isothermal decomposition of metal hippurates

Reaction	Temp.	Eqn. (2)			Eqn. (1)	
	range (°C)	n	E (kcal mole ⁻¹)	Z	n	$E \\ (kcal \\ mole^{-1})$
$Er R_3 \rightarrow Er 1.5 R + 1.5 R$ Er 1.5 R \rightarrow Metal oxide +	240-440	1	11.44	0.21	0.67	16.02
volatile product	480600	1	19.87	0.14	0.63	45.70
Nd $R_3 \rightarrow Metal oxide +$						
volatile product	265-640	1	7.45	0.14	0.64	7.31
Ce $R_3 \rightarrow$ Metal oxide +						
volatile product	227-520	1	7.95	0.12	0.68	9.13
Ag $R \cdot 1.5 H_2O \rightarrow Ag R +$						
1.5 H ₂ O	60-180	1	12.42	1.74	0.80	25.42
Ag $R \rightarrow \tilde{A}g 1/8 R + 7/8 R$	220-460	1	8.94	0.30	0.70	11.43
Ag $1/8 R \rightarrow Ag + 1/8 R$	250-600	1	19.87	0.29		

 $R = C_6 H_5 CONHCH_2 COO$ (hippurate ion).

The total area (A) and area (a) at time t under the DTG curves corresponding to different temperatures were calculated with a planimeter. A plot of $T^{-1}/\log(A-a)$ vs. $\log(dx/dt)/\log(A-a)$ [eqn. (1)] for the reactions under study gave a straight line of slope -E/2.303 R and intercept n. The Kinetic parameters for the reactions were also estimated by presuming n=1 and using [eqn. (2)]. A straight line relationship followed on plotting $\log k$ vs. the reciprocal of absolute temperature; this indicates that desolvation/decomposition follows first order kinetics. The activation energy (E)and frequency factor (Z) were obtained from the slope, -E/2.303 R, and the intercept of the straight line $(\log Z)$, respectively.

Table 1 gives the values of the kinetic parameters for the non-isothermal desolvation/decomposition of metal hippurates. Analysis of the data shows that the decomposition/desolvation reaction under study with abnormally low Z values is a slow process.

REFERENCES

- 1 S.S. Sawhney and S.S. Bains, Thermochim. Acta, 45 (1981) 361.
- 2 S.S. Sawhney and S.D. Matta, Thermochim. Acta, 51 (1981) 363.
- 3 S.D. Matta, Ph.D. Thesis, Garhwal University, Srinagar, U.P., India, 1980.
- 4 N.G. Dave and S.K. Chopra, Z. Phys. Chem. N.F., 48 (1966) 257.
- 5 E.S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.