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ABSTRACT 

Values of a have been obtained from the rate equation 

dew: __=A(*_+-w/Rr 
dT Is 

by solving it numerically usir?g a fourth order Runge-Kutta method for several values of )I in 
the range O-2. In each case, the solutions have been analyzed by the iterative method of 
Reich and Stivala. Calculated values of n and E were found to be virtually identical to those 
used in the differential equation. 

INTRODUCTION 

A great deal of attention has been focussed on the evaluation and 
approximation of the temperature integral 

I= Te-E/RfdT 
/ 0 

where E is the activation. energy, T is the temperature (K) and R is the molar 
gas constant [l-8]. This attention arises from the fact that the usual 
nonisothermal rate equation 

where a’is the fraction reacted, n is the reaction order, and /3 is the heating 
rate, cannot be solved exactly. Thus, the usual procedure is to represent the 
temperature integral as a truncated series [ 1,2,6]. Reich and Stivala obtained 
the equation 

In 
1. 

1 - (1 -C&” 

1 ~.(l - al,‘,)‘:” 
(#Yi’i =3*-g (3) 
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as a two point form of such an approximate equation [1,9]. Representing the 
left-hand side as f( a. T, jr) and the right-hand side as f( l/T). a linear 
relationship having an intercept of zero exists when the correct value of II is 
used. An iterative procedure was devised to determine the value of 11 giving 
the intercept closest to zero [lo]. The slope of the line ( E/R) is used to 
calculate E. One problem of usin, * calculated test data is that the values of CY 
are calculated using the approximate equation from which eqn. (3) is derived 

[*a Two alternatives exist here. First. approximation of the temperature 
integral. can be made to any desired accuracy [6.8] and test data can be 
generated to see if the series approximations of the temperature integral 
affect the outcome of the Reich-Stivala method. Second. the differential rate 
equation [eqn. (2)] can be solved by numerical methods and the results 
analyzed by the Reich-Stivala method. In either case. a valid test of the 
Reich-St&ala method can be made using data that are not obtained by 
means of the same equation which is used to derive the iterated function. 
This paper describes the numerical solution of eqn. (2) and the analysis of 
the (a. T) data by the Reich-Stivala method. 

hdETHODS 

Cor~~prcrtzriorral procedrtr?s 

The rate equation 

dcu A 
dT=--(l _a)“e-v?T (2) 

was solved numerically for various values of T using the previously selected 
values for E. A/P. and n. The numerical solution was carried out using a 
fourth order Runge-Kutta method. A comparison of the results obtained by 
this method with those obtained by several other methods has been made 
[ 111. In general, the fourth order Runge-Kutta method is equal or superior 
to other methods in general use, especially when a large number of iterations 
per integration step are used. The computations were programmed for 
analysis using a Texas Instruments TI-59 programmable calculator. Two 
fourth order programs were used. The first involved a program adapted from 
that given by Meek [12] while the second made use of the Runge-Kutta 
program in the PROM Math/Utilities library module as a subroutine [ 131. 

Validation of the procedures 

Since eqn. (2) cannot be solved exactly, it is not possible to compare the 
results of a numerical solution with those obtained by analytical methods. 
Therefore, the computational techniques were tested by comparing such 
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results for an equation that can be solved analytically. The equation chosen 
was 

dr? --=x-y+ 1 
dx 

which has been used to compare various numerical techniques [ 1 I]. and it 
was solved subject toy = 1 at x = 0. The exact solution is 

y = e -.\’ _t _Y (5) 

Table 1 presents values of the exact solutions J;,(x,,), the approximate 
solutions as determined by a computer solution [I 11. and the solutions 
calculated in this work. The procedure used 10 iterations in each s,, -s,,., , 

interval. The data shown in Table 1 indicate that the fourth order Runge- 
Kutta method used in this work reproduced the exact solutions to nine 
decimal places when the TI-59 is used. This represents greater accuracy than 
the usual computer method [ 1 I] because the TI-59 computes with 13 digits 
in ternally. 

Other equations have been used with simiiar resuits. Clearly. the accuracy 
of the computations is adequately established. This is necessary in order to 
attribute any inconsistencies in the computed results to their proper source. 
We have also found that certain types of computations that involve small 
differences in iterated parameters can be carried out more effectively with 
the TI-59 calcuIator than with small computers [14]. In cases such as the 
present one, it is frequently necessary to use a doubie precision routine with 
the computer to produce the same result as is obtained with the TI-59 
calculator. 

TABLE 1 

Exact solutions of eqn. (4) and those obtained by Runge-Kutta methods ’ 

X” Exact Computer R-K TI-59 R-K 
of order four’ of order four 

0.1 1.0048374180 1.0048375000 1.0048374 1 S 

0.2 1.0187307531 1.0187309014 1.018730753 

0.3 I .0408 182207 1.0408184220 1.040818221 

0.4 1.0703200460 1.0703202889 1.070320046 

0.5 1.1065306597 1.1065309334 1.106530660 

0.6 1.1488116360 1.1488119344 1.148811636 

0.7 1.1965853038 1.1965856187 l_ 196585304 

0.8 1.249328964 1 1.2493292897 1.249328964 

0.9 1 a3065696597 1.30656999 12 1.30656966 1 

1.0 1.3678794412 ! .3678797744 1.367879441 

a In’each case the integration step size is 0.1 with 10 iterations per step. 

b Ref. II, p. 206. 
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Reich-Stivala analysis 

Implementation of the Reich-Stivala analysis of the computed (a, T) 

data was carried out using the algorithm developed for use with the TI-S9 
programmable calculator [ 151. 
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RESULTS AND DISCUSSION 

The values chosen for the kinetic parameters used in the numerical 
solution of eqn. (2) were: E = 100 kJ mole-‘, A/P = 3 X 10”’ min-‘. R = 
8.3143 J mole-’ deg- ‘, and )z = 0, l/3, l/2, 2/3, 1, 4/3, 5/3, and 2. The 
initial boundary conditions chosen were that LY = 0 at 340 K. Changing that 
condition to (Y = 0 at 300 K did not materially change the computed cy values 
or the results produced by Reich-Stivala analysis of them. The results of the 
Runge-Kutta method are shown in Table 2. Each of these sets of (LX. T) data 
was then subjected to the Reich-Stivala analysis. As an example, Table3 

TABLE 3 

Results of the Reich-Stivala analysis of the numerical solutions of the rate equation for II = I, 
E=lOO kJ mole-‘, and A//3=3X IO’” min-’ 

Trial 11 Intercept - Slope - corr. cocff. 

0.1 1.81366 42696 0.96803 
0.2 1.69407 40719 0.96604 

0.3 1.55815 38458 0.96445 
0.4 1.40411 35881 0.96353 
0.5 i.23014 32 956 0.96365 

0.6 1.03450 29652 0.96537 
0.7 0.81560 25941 0.96947 
0.8 0.57206 21799 0.977 10 
0.9 0.30285 17208 0.98920 
1.0 0.00729 12156” 0.99999 
1.1 -0.31482 6638 0.908 10 

1.01 -0.02372 11625 0.99958 
1.02 - 0.05500 11089 0.99843 
I .03 - 0.08655 IO549 0.99628 
1.04 -0.11837 10004 0.9928 1 

1.05 -0.15045 9455 0.98756 
1.06 - 0.18279 8901 0.97998 

1.07 -0.21540 8342 0.96932 
1.08 - 0.24828 7779 0.95464 
1.09 -0.28142 7210 0.93472 

a Calculated E is 101.06 kJ mole-‘. 



TABLE 4 

A summary of results computed by the Reich-Stivala analysis of numerical solutions 

II 

Actual a Calcd. h 

Intercept -Slope - Corr. coeff. Calculated L: 

E(kJ mole-‘) 

0 0.02 - 0.00007 12055.3 0.99964 
1 ,,‘_I J 0.34 0.00495 12129.4 0.99976 
I /2 0.50 0.0 1046 l2211.1 0.9999s 
2/3 d 0.67 0.00568 12137.1 
1’ 

0.99952 
1 .oo 0.00729 12155.5 0.99999 

4/‘3 d I .34 - 0.00348 11981.9 0.99983 
s,/3 d 1.67 - 0.00374 lI946.1 0.99999 
2 2.00 0.00539 12112.4 0.99999 

100.231 

100.848 
101.526 

100.912 

101.065 
99.62 1 
99.323 

100.707 

3 The value used in the numerical solution of eqn. (2). 
* Vnlue giving the intercept closest to zero in the Reich-Stivala analysis. 
’ Actual & used in eqn. (2) is 100 kJ mole-‘. 
’ Soninteger orders were input ns I+ 3 =0.333.. . . etc. 

shows the results as output of the Reich-Stivala analysis applied to the 
computed solutions for II = 1. 

The results shown in Table3 indicate quite clearly that the Reich-Stivala 
method identifies the correct order for this 13 = 1 case and that the resulting 
actrvation energy (101.06 kJ mole-‘) gives excellent agreement with the 
value of 100 kJ mole-’ used in the equation solved numerically. Table 4 
provides a summary of the results obtained from the Reich-Stivala analysis 
for all the values of tz used. These results clearly show that the Reich-Stivala 
method determines the order to within a maximum error of 0.02 and E to a 
maximum error of about 1.5 kJ mole-’ (1.5%) when tz varies from 0 to 2. 
Although they are not presented here. other cases having other values of E 
and A/P were.used with similar accuracy in the results. 

The approximate integrated rate equation used by Reich and Stivala to 
obtain their function for iteration was based on the rate law shown in eqn. 
(2). While this method may not give the correct order if a rate law of a 
different form is followed [16], it is easily apparent that this method gives 
excellent results when the reaction does follow a rate law in the form of eqn. 
(2). In fact, in view of the uncertainties arising from sample-to-sample 
variations [ 171, it is safe to conclude that the Reich-Stivala method will 
accomplish all that the experimental data will allow if eqn. (2) represents the 
form of the rate law. 
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