KINETICS OF THE THERMAL DEHYDRATION STAGES OF $B_{2}Cl_{2} \cdot 2 H_{2}O$ BY MEANS OF TG AT CONSTANT TEMPERATURES

HARUHIKO TANAKA

Chemistry Laboratory, Faculty of School Education, Hiroshima University, Shinonome, Hiroshima 734 (Japan)

(Received 24 April 1981)

ABSTRACT

The kinetics of the thermal dehydration stages of $BaCl_2 2 H_2O$	
$BaCl_2 \cdot 2 H_2O(s) \rightarrow BaCl_2 \cdot H_2O(s) + H_2O(g)$	(I)
$BaCl_2 \cdot H_2O(s) \rightarrow BaCl_2(s) + H_2O(g)$	(11)

were studied by means of TG at constant temperatures Two possible mechanisms of Avrami-Erofeyev and phase-boundary reaction were assigned for each stage by plotting various functions against time Activation energies were determined from the Arrhemus plot as $262 \sim 269$ and $186 \sim 194$ kcal mole⁻¹ for stages (I) and (II), respectively The kinetics of dehydration stage (I) was also examined by means of DSC recorded simultaneously with TG at constant temperatures

INTRODUCTION

It is generally accepted that it is hard to determine the reaction mechanism from the dynamic method alone, although this has some advantages over the isothermal method. Among others, a comparison of kinetic parameters under the same conditions of measurement is cited [1-3].

It has been also widely believed that the reaction mechanism can be elucidated from the conventional isothermal method in a rather simple way. However, we have reported that the correct kinetic model cannot necessarily be selected uniquely from the isothermal analyses if order parameters in such mechanistic equations as phase boundary reaction and Avrami-Erofeyev mechanisms can be not only integers but also non-integers [4].

The present paper deals with the problem of isothermal analyses in determining the reaction mechanism and kinetic parameters for the solid state reaction. For this purpose, the dehydration stages of $BaCl_2 \cdot 2H_2O$, which were studied earlier [5-8], have been examined by means of TG at constant temperatures.

EXPERIMENTAL

Crystalline $BaCl_2 \cdot 2H_2O$ powders were classified by sieving and the 170-200 mesh fraction used. Simultaneous TG-DSC measurements at various constant temperatures were done in a stream of dry N₂ using a Rigaku Thermoflex TG-DSC(8085E1). Other experimental conditions were the same as those described in a previous study [8].

RESULTS AND DISCUSSION

It is well-known that $BaCl_2 \cdot 2H_2O$ is subjected to the stepwise dehydration via $BaCl_2 \cdot H_2O$ to $BaCl_2$ [6.8].

$$BaCl_2 \cdot 2 H_2O(s) \rightarrow BaCl_2 \cdot H_2O(s) + H_2O(g)$$
(I)

(II)

$$BaCl_2 \cdot H_2O(s) \rightarrow BaCl_2(s) + H_2O(g)$$

For the isothermal dehydration stages of $BaCl_2 \cdot 2H_O$, the equation

$$\mathbf{F}(\alpha) = kt \tag{1}$$

can be assumed where $F(\alpha)$ is a function depending on the isothermal dehydration mechanism, α is the fraction dehydrated, k is the rate constant, and t is time. The $F(\alpha)$ examined in the present study are listed in Table 1. The correct $F(\alpha)$ for the dehydration stages of $BaCl_2 \cdot 2H_2O$ may be estimated, at least to some extent, by plotting it against t [4].

From the correlation coefficient r and error δ as a measure of linearity in the least square fitting for plots of $F(\alpha)$ vs. t, it is deduced that either the R_n or A_m mechanism controls the dehydration stages of $BaCl_2 \cdot 2H_2O$. Table 2 lists the values of r and δ for both stages. The best values of n and m were found by "scanning" using the computer [4]. The mean values of n and m over the temperature ranges $53.8-64.6^{\circ}C$ for stage (I) and $81.3-96.9^{\circ}C$ for stage (II) are listed in Table 3. The

F(α)	Symbol	Rate-controlling process
$\overline{\alpha^2}$	 D1	One-dimensional diffusion
$\alpha + (1-\alpha) \ln(1-\alpha)$	D_2	Two-dimensional diffusion
$[1-(1-\alpha)^{1/3}]^2$	D_3	Three-dimensional diffusion (Jander function)
$1 = \frac{2}{3}\alpha = (1 = \alpha)^{2/3}$	D_4	Three-dimensional diffusion (Ginstling-Broushtein function)
$\ln[\alpha/(1-\alpha)]$	Au	Autocatalytic reaction (Prout-Tompkins function)
$1 - (1 - \alpha)^{1/n}$	R_{π}	Phase boundary reaction: $n = 1, 2, and 3$ (one-, two-, and three-dimensional, respectively)
$\left[-\ln(1-\alpha)\right]^{1/m}$	A _m	Random nucleation, $m = 1$
		Random nucleation and subsequent growth, $m = 15, 2, 3$, and 4 (Avram-Erofeyev functions)

Various	mechanistic	functions

TABLE |

7	
Е	
AB	
E	

The corre	lation coefficient:	s, r, and er	tror, å, in ti	he plots of 1	F(a) vs I fo	or the isothe	ermal dehydi	ration stage	s (l) and (ll) of BaCl ₂	2 H ₂ 0 m tł	re a range) 2-0 9
Stage ^a	Coefficient ^b	F(α)											
		D'	D,	D,	D_4	4"	R,	R_{2}	R,	4,	ŕ	A,	A.4

\$ ×10 ²	3 073	4 697	3 224	1 565	6 256	1 843	1 265	1 782	14 92	2 083
^a The temperatures wei	c 53.8 and 81	3°C for sta	ges (1) and ((II), respect	ıvely					

0 9995 66170

0 9982

0 9772

0 9937 0 9724 U 9972

0 9980 0 9993 0 6392

0 9682 0 9728 1 080

0 9434 0 9547 1 981

0 9784

7566 0

E

0 9969 1 757 0 9972

0 9964 8 778 0 9986

1412

1266 0

26660 0 7761

14

ť

۲.

0 9803

0 9929

3473

2 708

8×10² r

.

lΞ

^b δ refers to the error defined by the equation, $\delta = [\Sigma \epsilon_1^2/(N-1)]^{1/2}$, where ϵ_1 is the deviation from the straight line and N is the number of experimental data

3

i L

ì

;

!

E

¥

Stage	n	m	
(1)	1 54 ± 0.06	208=0.07	
(II)	150 ± 0.03	292 ± 009	

The best values of n and m for R_n and A_m mechanisms obtained from TG analysis in the α range 0 2-0 9

plots of the appropriate $F(\alpha)$ vs. : at a given temperature are given for each stage in Fig. 1.

Values of k at various temperatures deduced from the plot of $F(\alpha)$ vs. t using the mean order parameters are listed in Tables 4 and 5. Table 6 shows the activation energy. E, and frequency factor, A, for the dehydration stages of $BaCl_2 \cdot 2H_2O$ obtained from the Arrhenius plot.

It is seen that meaningful kinetic parameters can be deduced irrespective of the

Fig 1 Typical plots of the appropriate $F(\alpha)$ vs. t from the analyses of TG. (a) Stage (I) at 53 8°C in the α range 0 15-0 85. (b) Stage (II) at 81.3°C in the α range 0.25-0 85

TABLE 3

TABLE 4

Temp (°C)	$k (s^{-1}) \times 10^4$		· ·
	R ₁₅₄	A ₂₀₈	
53 8	2.715	4 05	
56 2	3 607	5 354	
58 6	4.813	7 1 1 9	
60.9	6 163	9.213	
64 6	10 23	15 01	

The rate constants, k, for R_{154} and A_{208} mechanisms at various temperatures for stage (I)

actual dehydration mechanism if any $F(\alpha)$, which gives a straight line plot of $F(\alpha)$ vs. *t*, is used. This trend was also recognized for the other thermal decompositions [4,9]. In such a case, however, it is very difficult to determine the reaction mechanism uniquely from the isothermal analysis alone.

It seems worthwhile looking at the dehydration of $BaCl_2 \cdot 2H_2O$ in the light of DSC recorded simultaneously with TG at constant temperatures. From the DSC peak area, the enthalpy change for the dehydration stage (1), ΔH_I , was found to be 14.59 ± 0.20 kcal mole⁻¹. The enthalpy change for stage (II) could not be evaluated due to the poorly defined base line. The value of ΔH_I is much smaller than the corresponding activation energy. As pointed out by Osterheld and Bloom [5], this dehydration is one of the exceptions to the ordinary pattern for endothermic dehydrations where the value of E is nearly equal to that of ΔH [10]. They explained the higher value of E in terms of a transition state where the dihydrate structure was retained but with the lattice interaction removed for half of the water molecules [5].

The higher activation energy in the present study may be explained alternatively by assuming that the activation energy should include some contribution from the nucleation [10].

It is interesting to evaluate the kinetic parameters also by means of DSC for the dehydration stage (I) of $BaCl_2 \cdot 2H_2O$. In a similar manner to the above treatment, R_n and A_m mechanisms were selected from various $F(\alpha)$ for the dehydration stage (I) of $BaCl_2 \cdot 2H_2O$. The correlation coefficient r and error δ in the $F(\alpha)$ vs. t plot are

Temp (°C)	$k (s^{-1}) \times 10^4$		
< - /	R_{150}	A ₂₉₂	
81 3	3 063	3.255	
910	6.755	7 024	
94 8	8 494	8 700	
96 9	9.463	10 08	

TABLE 5

The rate constants, k, for R_{150} and A_{292} mechanisms at various temperatures for stage (II)

Stage	R"						A _n					1
	L (kcal m	ole ¹)	log.	A (5 ⁻¹)	·		E (keal n	nole ¹)	log .	1 (s ⁻¹)		
(i)	26 69 ± 0	23	14 2	8±015	66 0	178	2641±0	.19	14 2	7±013	66 O	115
(11)	19 11±0.	33	8 2	9-±0 20	(0.99)	742	0 - 88 81	25	8 1	7±015	166 Q	350
The correlatio	n coefficients, ,9	r. and error	, ô, in the pl	ots of variou	s F(a) vs 1 f	or the isoth	rmal DSC tr	ace for the d	chydration s	tage (l) of B	Cl ₂ 2 H ₂ 0	at 53.8°
Coefficient	$F(\alpha)$	D ₂	^r a	D4	Å	R ₁	R ₂	<i>R</i> ₃		A 2	κ.	A .
	1866 0		1120 0		0 9992	01000			-			099
7		8886 0	0 9014	09812		0 9948	0 9994	7666 0	0.9845	1666 0	1666 0	• • •

•

.

-1

))]

1 [

ſ

•

•

TABLE 6

Kinetic parameters for the thermal dehydration stages of $BaCl_2 \cdot 2H_2O$ derived from Arrhenius plots for R_n and A_m mechanisms

Fig 2 Typical plots of the appropriate $F(\alpha)$ vs t from the analyses of DSC for the dehydration stage (I) at 53 8°C in the α range 0 28-0 90

TABLE 8

The rate constants, k, for the thermal dehydration stage (I) of $BaCl_2 \cdot 2H_2O$ evaluated for R_{160} and A_{280} mechanisms by means of DSC

Temp	$k (s^{-1}) \times 10^4$		
	R ₁₆₀	A ₂₈₀	
53 8	2 754	3 155	
56 2	3 652	4.174	
58 6	4 840	5 524	
60 9	6 187	7 081	
64.6	10 42	11 92	

TABLE 9

Kinetic parameters for the thermal dehydration stage (I) of $BaCl_2 2 H_2O$ evaluated from the Arrhenius plots for R_{160} and A_{280} mechanisms by means of DSC

F(α)	E (kcal mole ⁻¹)	$\frac{\log A}{(s^{-1})}$	- <i>r</i>	
R ₁₆₀	26 72±0 29	14 30 ± 0.19	0 99817	
A 2 80	2671 ± 029	14 35±0 19	0 99814	

listed in Table 7. The best order parameters of n and m for stage (I) were then determined to be 1.60 ± 0.06 and 2.80 ± 0.07 , respectively, over the temperature range 53.8-64.6°C. Plots of $F(\alpha)$ vs. t for the R_{160} and A_{280} functions are shown in Fig. 2. The rate constants k at various temperatures at the fixed values of n and m are listed in Table 8. Table 9 shows the kinetic parameters derived from the Arrhenius

plots. It is seen that the result from DSC is in good agreement with that from TG, although the order parameters are slightly different.

In summary, both R_n and A_m mechanisms seem to be appropriate for each stage of the isothermal dehydration of $BaCl_2 \cdot 2H_2O$ in view of plots of $F(\alpha)$ vs. t. It may be noted here that the A_m mechanism was suggested for the dehydration stages by means of DSC at constant temperatures [6]. It seems, however, that the direct observation of dehydrating crystals or dynamic thermal analyses would be required in order to confirm the dehydration mechanism [8].

ACKNOWLEDGEMENT

The author wishes to thank Miss K. Maeda for her help in the experimental part of this work.

REFERENCES

- 1 H Tanaka, Thermochim Acta, 46 (1981) 139
- 2 H. Tanaka, S Ohshima, S Ichiba and H Negita, Thermochim Acta, 44 (1981) 37
- 3 E.P. Manche and B Carroll, Thermochum Acta, 24 (1978) 1.
- 4 H Tanaka, S Ohshima, S Ichiba and H Negita, Thermochim Acta, 48 (1981) 137
- 5 R K Osterheld and P R Bloom, J. Phys Chem, 82 (1978) 1591
- 6 G G T Guarini and R Spinicei, J Therm Anal, 4 (1972) 435
- 7 T.R. Ingraham and M. Rigaud, Can. Metall Q. 4 (1965) 247
- 8 H Tanaka and K Maeda, Thermochim Acta, 51 (1981) 97.
- 9 DW Johnson and P.K. Gallagher, J. Phys Chem, 75 (1971) 1179
- 10 W E Garner, in W E. Garner (Ed), Chemistry of the Solid State, Butterworths, London, 1955, p 219