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ABSTRACT

The applicability of the Arrhemius model for thermogravimetnic curves of non-isothermal heteroge-
neous thermal reactions was investigated The TG curves have been simulated with selected £, A and n
values and their parameter trniplets have been estimated by the method of total ecnumeration It was found
that a smali change 1n the simulated curve caused a considerable change 1n the parameter triplets, 1 ¢ the
parameter estimation problem is 1ll-conditioned. Examination of the measured TG curves shows that the
goodness of estimation continucs decrezsing because, 1n this case, the TG curves are deformed by the
experimental conditions and by the measurement error. Consequently, the authors deem the Arrhenius

model 1nadequate for the calculation of kinctic parameters from non-isothermal thermogravimetnic
curves

INTRODUCTION

For about two decades researchers have been trying to develop a calculation
method which would be suitable for computing reaction kinetic parameters from
thermoanalytical curves on the basis of the Arrhenius model [1]. However, there are
many observations which show that this kind of calculation cannot lead to a correct
result [2]. So, we pointed out earlier that the course of thermoanalytical curves is
characteristic of the experimental conditions rather than of the thermal reaction
itself [2-4]. Recently, we also showed that this kind of calculation cannot be
performed on the basis of the Arrhenius model because its parameters can be
estimated only with very great errors [1,5,6]. The practical significance of the
reaction-kinetic interpretation of thermal processes induced us to examine a suitable
way of demonstrating numerically the uncertainty of the above-mentioned calcula-
tion of kinetic parameters. In our present paper we wish to report on the results of
our research.
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PARAMETER ESTIMATION OF SIMULATED CURVES WITH TOTAL ENUMERATION

With the help of our examinations, we wanted first to determine how the selection
of the examined parameter values and the density of the examined lattice points
would influence the goodncss of the parameter estimation using total enumeration
(see Appendix. Sect. 5).

In order to have at our disposal all the results which were calculated with every
one of the possible parameter combinations, we selected total enumeration as an
optimization method. The magnitude of the parameters was changed one by one in
small steps by computer, to form a three-dimensional fine lattice for the total
enumeration.

The work was performed as follows. A simulated curve was prepared with the
paramster triplet (£=160 kJ mole™', n=1.1. 4 =10") actually occurring in
practice. Thereafter, using the discrete data of this curve, where the number of
discrete points was N =91, the extent to which the curves belonging to the lattice
points approached the simulated curve was examined.

The examined values of the parameters of the simulated curve were selected in the
domain examined with total enumeration in such a way that the value of the
parameter triplet of the simulated curve fell in the centre of one of the elementary
cells of the parameter value lattice.

The computer changed the value of the parameters by the steps AE=0.4 kJ
mole ™!, An=0.1, and Alog4 = 0.125. As can be seen from these steps, the com-
puter scanned with an appropriate “fineness” the interval in question.

Despite this, as Table 1 proves, the parameters could not be estimated with
sufficient accuracy. In Table 1, the parameter values and the average of the squares
of the deviations belonging to some examined points of the domain are demon-
strated. As can be seen, the “best” average of squares of deviations (point 7) and the
second best (point 9) are nearly equal, while the deviation of their parameters 1s

TABLE |
Parameters of TG cunves fitting the reference TG cunve satisfactonly
n r 4 Sum of the Temp
squares difference
(K)
1 06 3105 0237x10" 02996 146
2 07 3415 0422x10" 0.1931 095
3 09 3595 0237x 1043 01329 065
4 09 3725 0749x 10" 01270 062
5 09 3845 0237x10" 01563 077
6 10 39.75 0749 10% 01210 059
7 10 4035 0133x10' 00714 035
8 12 40 85 0237x%10' 01382 068
9 12 4215 0749%10'? 00829 041
10 12 43.45 0237x10'¢ 0.1184 058
8 1.3 4525 0.133x 10" 0.1518 074

(38

14 47175 0133x10™ 0 1991 097
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significant. It is also worth noting that between the parameters of similarly ap-
proaching curves (e.g. curves 4,6 and 10) there are very large differences.

As the data summarized in Table 1 show, no kind of regularity between the
parameters which could eventually make easier the search for an optimum, or could
serve with directives in this respect can be recognized.

In order to make perceptible the magnitude of the average of squares of
deviations, they are converted into temperature difference in the last column. This
conversion was performed by stating that the shifting of the two simulated curves by
a temperature difference of 1.5 K results in a value of 0.306 for the average of
squares of deviations, and so the deviation squares in Kelvin using this ratio are
given.

We also examined in what sense the goodness of estimation would change 1f the
magnitude of the lattice used at the total enumeration were reduced to one tenth, i.e.
the step intervals to AE =0.04 kJ mole ™!, An =0.01, and Alog4 = 0.0125.

On the basis of calculations, we could state that although the width of the
confidence domain decreased with about one order of magnitude, the length of its
axis decreased only to about half, which means that with refinement of the step
magnitude the goodness of estimation did not proportionately increase.

In contrast with that described earlier, the situation fundamentally changes if the
lattice points of the total enumeration are selected in such a way that the parameter
triplet of one of the lattice points of the lattice should be absolutely identical with
the parameter values of the simulated curve. In this case, we precisely regained the
original parameter triplet or, in other words, the average of squares of deviations of
the simulated curve and the best fitting curve became practically zero.

From the above, it follows that if we regard the theoretical Arrhenius curve as the
measured TG curve, the real parameters of the calculated TG curve can be estimated
by the computer with great probability only with errors, even in the case of very fine
step intervals.

THE CONFIDENCE REGION OF PARAMETERS IN THE CASE OF SIMULATED CURVES

Approaching the problems of practical calculations, we also examined the ques-
tion of what would be the situation if, with a shift of == 1.5 K we were to mark out
an uncertainty band to a simulated curve, what parameter triplets would describe the
curves belonging to this band limited by the two envelope curves. We purposely
defined the width of this band narrower than the real uncertainty domain of
thermogravimetric curves, taking into account that, in practice, we have to account
for a greater error.

First, by using six different parameter triplets, we prepared six simulated curves.
By means of a computer, we searched, in all the six cases, the minimum and
maximum values of the parameters of the sufficiently well-fitting curves, i.e. those
situated within the == 1.5 K uncertainty band.

The results of this calculation are summarized in Table 2. The values of the six
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TABLE2

The nunimum and maximum values of TG cunve parameters fitting vanous reference TG curves

Parameters Mimmum Simulated Maximum
values

1 Asec™) 10° 107 io!?

E&Imole™h 131 146 223

n 0 0 08
2 A (see™h 108 107 1012

F (kI mole ™ H 132 146 224

" 06 11 18
3 4(sec™h 107 10% 104

E (kI mole ™) 226 251 370

n 0 0 04
4 d (sec™ ) 108 10% 10"?

E(RJImole ™) 203 151 369

" 08 11 18
3 4 sec™h 10'2 1014 10'*

E (kJ molc ° 1) 150 167 209

n 0 0 05
6 4 (see™ ) 0" 1014 1020

EJImole™ ) 136 167 230

n 06 It i4

parameter triplets, with the help of which the base curves were simulated, are also
given. The third and fifth columns of Table2 contain the minimum and the
maximum values of the parameters, respectively.

As the above numerical data also prove, the fluctuations 1n the values of the
parameter tnplets are very large despite the narrow (== 1.5 K) uncertainty domain
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Fig. ! Cenfidence region belonging to the parameters of a given basis curve
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applied. Thereafter, for curve 6 (in Table 2) simulated with the parameter triplet
E =167 kJ mole ™!, n=1.1, and 4 = 10!%, we collected by means of the computer
the parameter triplets of all the curves which fitted better than the two envelope
curves shifted by = 1.5 K. Figure 1 illustrates the stereoscopic picture of the confi-
dence region in the parameter space. Figure 2 illustrates the same confidence region
as Fig. 1, but from another aspect (the order of the coordinates was changed).

Every parameter triplet which is an element of this domain shouid principally be
regarded as a “well”-estimated value, since the curves simulated with their help are
all situated in the *=1.5 K uncertainty domain. However, Fig.2 proves that this
deviation in the data of the curve already causes an inadmissible large fluctuation in
the estimated values of the parameters. For example, the points 4 = 10'!, E =130,
n=0.5, and 4 = 10", E=200, n= 1.25 are in this region.

These results supported in every respect our earlier statements, viz. that the
application of the Arrhenius model leads to an ill-conditioned parameter estimation
problem [1,5,6]. In practice, this means that, even by ensuring the strictest conditions
regarding the accuracy of thermoanalytical measurements attainable at present, the
fluctuation in the value of the estimated parameter triplet will be very large.

There is an often applied practice with thermoanalysts that, in the course of
kinetic calculations, they put restrictions on one of the values of the three parame-
ters, they assume it to be, constant, or take it into constraints, or even totally neglect
it. This is carried out by the transformation of the original problem with three
variables into a problem with two variables. These modifications and transforma-
tions of the original Arrhenius model are not permissible. However, to neither of the
three parameters of the Arrhenius model can a superior or an inferior role be
attributed since, as can be seen from Figs. 1 and 2, they are all in strong correlation
with one another. Consequently, we do not consider the transformation of the
Arrhenius model in the above-mentioned sense to be admussible.
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Fig 2 The confidence region demonstrated in Fig 1 from an alternative aspect



Furthermore, even this manipulation cannot lead to accurate Wesults. As an
example let us take the case demonstrated by Fig. lc. Here, for example, we
obtained the two-dimensional confidence domain by supposing that the reaction
order 1s n = 1.05 and we fixed this. In this case, the supposition corresponded with
reality, since at the simulation of the base curve we selected as reaction order
n = 1.05. From the figure it can be seen that, despite the fixing of the reaction order,
the values of the two parameters remained uncertain. From the two-dimensional side
pictures of the mentioned figures, 1t transpires that even if we could accurately
determine the value of one of the three parameters and were to use for our
calculations a model with two unknowns, by elimination of the third dimension, the
uncertzainty would decrease but not disappear.

Besides the fixing of the reaction order, let us investigate, on the basis of Fig. 1, in
what way the values obtained with various calculation methods would become
situated in the confidence region. Let us take two different kinds of calculation
method used in practice. According to the two various calculation procedures, the
path of estimations is shown by lines u-v-z and x-w-y, respectively, while the
resulting parameters are given by the values 4,, £, and A, E_, respectively. Within
the confidence region in question. by means of another calculation method, further
pairs of values similarly best approaching the data of the simnulated basis curve, can
also be found. Accordingly, the estimated values are “fixed” in the confidence
domain only by the calculation method applied. It is pointed out, as a reasonable
consequence of the above facts. that the estimation can only lose 1ts goodness if the
fixed value of the reaction order differs from the real one (e.g. Fig. 1 a,b,d).

THE CONFIDENCE REGION OF PARAMETERS IN THE CASE OF MEASURED TG CURVES

In order to better approach the practice of kinetic calculations, further investiga-
tions have been performed with measured TG curves. The courses of the curves
have, however, still been regarded as ideal, characteristic solely of the chemical
reaction.

On the one hand, the influence of the characteristics of reaction upon the
goodness of estimation was examined. Therefore the sublimation and simultaneous
dissociation processes of ammonium chlonde, the dehydration of calcium hydroxide
leading to equilibrium, and the decomposition of anhydrous calcium oxalate leading
to non-equilibrium have been chosen as model experiments.

On the other hand, information has also been sought regarding how the changes
of physical cohditions of measurement influence the goodness of estimation of
parameters. This is why sample holders of four different forms were applied to the
thermogravimetric examinations, making possible variation of the partial pressure of
gaseous decomposition products within wide limits ( p = 1-0.01 bar) in the vicinity
of the sample [7]. So, in common with other researchers who performed kinetic
calculations on the basis of conventionally recorded TG curves, as an approxima-
tion, we did not consider the influence on experimental conditicns of the partial
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Fig 3 The confidence regions of the TG curve parameters for NHCl

pressure of gaseous products, as well as its effect on the reaction equilibrium.

An uncertainty band of temperature difference #=2.0 K was marked on the TG
curves measured and parameter triplets of curves lying within this domain were
sought. Based on the data collected by the computer, Figs. 3—5 have been designed
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Fig 5 The confidence regrons of the TG cunve parameters for Ca(COO).,

to demonstrate schematically the change of confidence region of parameters 4, E
and n of the Arrhenius equation in cases where either the type of reaction or the type
of sample holder has changed.

Considering the data contained in Figs. 35, it can be established that, in the case
of the measured TG curves, the parameters of the Arrhenius model can be estimated
only with great error, which 1s practically unacceptable. Comparing the extension of
the confidence region obtained by the measured (Figs. 3—5) and simulated (Figs. 1
and 2) TG curves, it can be concluded that, in the case of measured curves, the
uncertainty of estimation is considerably greater than in the case of simulated
curves.

EXPERIMENTAL FACTORS INFLUENCING THE TG CURVES

In the case of non-isothermal thermoanalytical curves, reaction kinetic calcula-
tions based on the Arrhemius model involve a further problem in addition to the
uncertainty of parameter estimation. Namely. it can be proved [1,7] that under
conventional conditions of thermoanalytical examination, the course of reactions
leading to equihbnium taking place between the solid and gas phase is directed first
of all by various heat and gas transport processes depending on the applied
experimental conditions (shape and size of sample holder, grain size, sample amount,
compactness of sample, rate of heating. ventilation of furnace, etc.). Thus, according
to practical observations, the course of thermoanalytical curves is characteristic of
the experimental conditions rather than of the reaction itself [1,7].
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Fig 6 The cffect of different expenimental conditions on the thermogravimetne cuncs of NH,ClL
Ca(OH), and Ca(COO),

This is proved by Fig. 6, showing the thermogravimetric curves of the decomposi-
tion of ammonium chloride (a) calcium hydroxide (b) and calcium oxalate (c) made
in open (curve 1) and labyrinth (curves2 und 3) crucibles, with a dynamic heating
program (curves I and 2) and quasi-isothermal quasi-isobaric measuring technique
[1,7] (curve 3). Significant differences can be found among the courses of curves for
which the differing experimental conditions are exclusively responsible.

Curves 1 were recorded in an open crucible, and consequently the partial pres-
sure, as well as the decomposition temperature of the gaseous decomposition
products, changed in an uncontrollable way during the whole transformation. The
course of the curves was directed partly by gas transport and the actual conditions
(e.g. compactness of sample) influencing it, and partly by the heat transport. In the
case of dynamic heating, the sample having poor thermal conductivity is unable to
take up instantaneously the heat necessary for its change. This has also contributed
to the wide temperature limit of the course of curves 1.

In the case of curves 2, the course was influenced only by the slow heat transport
due to the labyrinth crucible used. Namely, in this crucible, the partial pressure of
the gaseous decomposition products reached atmospheric pressure early in the
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course of transformation and remained constant. So, in this case. retardation of
transformation can be explained simply by slow heat uptake.

The course of curves3 recorded by quasi-isothermal quasi-isobaric measuring
technique was influenced neither by heat, nor by gas transport, so the transforma-
tion took place at a well-defined constant temperature (quasi-isothermal). The use of
a labyrinth crucible eliminates a change in the partial pressure of the gaseous
decomposition products (quasi-isobar); the use of a quasi-isothermal heating tech-
nique [7] helps to eliminate the deformation effect of slow heat transport. The special
heating mechanism built into the derivatograph ensures that the transformation
takes place at a strictly constant rate. two orders of magnitude lower than the
conventional one. It is to be noted that curve 3 of Fig. 6(c) does not show a constant
decomposition temperature because the rate of decomposition is also dependent on
the concentration [7].

A remarkable secondary proof in favour of the significant influence of the change
in concentration of the gaseous decomposition products upon the decomposition
process is the decomposition of calcium oxalate. This process leads to non-equilitbrium
[Fig. 6(c)] and took place both in open (curve 1) and labyrinth (curve 2) crucibles 1n
a similar way and depended solely on the heat transport.

A consequence of the above facts is that, in the case of reactions taking place
between solid and gas phases, the experimental conditions indirectly and the heat
and gas transport processes directly influence the reaction to such an extent that all
information regarding the reaction itself is masked. So, the course of TG curves is
characterstic rather of the experimental conditions.

Based on the above facts. 1t can be concluded that the change 1n experimental
conditions may cause a drastic change in the TG curves, e.g. even to a shift of
50-100 K on the temperature axis. which also makes parameter estimation 1illusory.

According to experience, when using the same instrument for recording the TG
curves under similar conditions, the courses show only small differences. Uncer-
tainty of reproducibility usually causes no problem if the curve 1s prepared for the
purpose of qualitative or quantitative analysis or for discovering the thermal
characteristics of the sample. However, a similar difference in the course of the curve
makes the kinetic calculations impossible.

From the facts mentioned earlier, 1t 1s also clear that all attempts at standardiza-
tion aimung to improve the relhability of kinetic calculations are in vaia. The most
detailed international standardization of experimental conditions would be useless
since, although reproducibility would be improved, as regards the kinetic calcula-
tions. the errors belonging to the given conditions would only be fixed and not
eliminated.

CONCLUSIONS

The parameters of the Arrhenius model can be estimated only with a quite large
error, even in the case of simulated thermogravimetric curves, since the parameters
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are dependent on each other and their joint confidence region is stretched. This
uncertainty of parameter estimation further increases in the case of measured
thermogravimetric curves. At the same time, however, in the case of heterogeneous
reactions, the course of thermogravimetric curves is primarily influenced by the
experimental conditions and not the reaction itself. Therefore, a change in experi-
mental factors makes the interpretation of the estimated parameters impossible.
Based on the above consideration, in the case of non-isothermal thermogravimetric
curves for heterogeneous reactions, the Arrhenius model can be applied neither as an
empincal nor as a theoretical model.

APPENDIX
1. Process being examined

The applicability of the Arrhenius model was examined on thermogravimetric
curves of heterogeneous (solid—gas) thermal reactions accompanied by weight change
and taking place under the influence of a dynamic (linear) heating program. The
process examined is as follows

Experimental
conditions

\

Dynamic heating program — thermal - TG
process

2. Arrhenius model

The so-called Arrhenius model describing the kinetics of heterogeneous, non-
isothermal reactions demonstrates the progress of the reaction as follows
da(z) "

g, =Aexp[—E/RT()][1~a(1)] (1)
where 4 = pre-exponential factor (mun~!), E = activation energy (kJ mole '), n=
order of reaction (dimensionless value), 7= absolute temperature (K), ¢=time
(min), R = universal gas constant (kJ mole ™! K~!') and a = reaction coordinate
(dimensionless value).

In the case of reactions accompanied by weight change, the reaction coordinate «
is

g —m,
m,—m,

o=

where m_, m , m_  are the masses at the beginning, at time 7. and at the end.
respectively.



Using a linear heating program, the temperature depends on time according to
T(:)=T,+Gr

where T = initial temperature (K) and
G = rate of heating (K min™'").

Under certain conditions, instead of time temperature can be regarded as the
independent variable in eqn. (1) and thus the following equation is obtained
da(T)

dT
According to the earlier interpretation, the solutions a(¢), or a(7) gained by
integrating the differential eqn. (1) or (2), respectively are considered as “theoretical”
TG curves.

=Aexp(—E/RT)[1 —a(T)]" (2)

3. “Good” model of physico-chemical processes

A mathematical model describing some kind of physico-chemical process can be
regarded as a “good” one if it meets the following requirements: (a) the parameters
of the model should have a well-defined physico-chemical meaning (b) there should
be a one-to-one correspondence between the measured curve and the parameters
estimated from the measured curve.

If only condition (b) is fulfilled, then the model is a good empirical one.

4. Measure of deviation of calculated and measured curves

If it can be supposed that the Arrhenius model is an adequate model of the
process examined, then the solution curve, the so-called theoretical TG curve of the
model, is the adequate model of the TG curve belonging to a given process. Several
measures can be applied for characterizing the deviation between the measured and
the theorstical, the so-called calculated TG curve, belonging to a given fixed
parameter triplet 4, E, n.

The discrete form of continuous TG curves has been used in our examinations.
The deviation of curves has been evaluated by the average of squares of deviations
S, ie. by

N
S(A’E’") = 2 %7 [TGr'neasured - TGéalculatcd(A’E’n)]z (3)

=1

where index i represents the /th point of the discrete curve, :1=1,...N.

5. Parameter estimation

The purpose of the kinetic calculations is the estimation of parameters 4, E and n
contained in model (1), or (2). Estimation of parameters of differential equations can
be done i two ways: either by the differential or the integral methods. In our case,
we applied the integration method, i.e. the solution of the Arrhenius model has been
used for the calculation of the TG curve,
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Fig 7 Logical structure of parameter estimation

Estimation of parameters of a given model means the optimization of parameter
values according to the measure of deviation between the calculated and measured
curves. Logical structure of parameter estimation is shown in Fig. 7.

For the optimization of the minimum of the deviation measure, the so-called

“least-squares method”, has been applied, 1.e.
min S(4,E,n)
A,E.n (4)
The above optimization problem can be solved in various ways; in the course of our
examinations, the so-called total enumeration was used. The principie of this method
lies in the determination of the average of squares of deviations for all possible
parameter combinations and then from among them the optimal one is chosen.

6. Goodness of model fitting

Since the measured results always involve errors, they can be regarded as
stochastic variables, as can the estumated parameters, fluctuating at random depend-
ing on the measunng results. In addition to giving the estimated parameter values,
the goodness of model fit and parameter estimation should also be somehow
characterized.

For the characterization of model fit, the optimum value of the average of squares
of deviations can be used, i.e.
min S(A,E,n) =S(A4,E,#)

A,E,n (5)
which is a measure of the deviation between the calculated and measured TG curves
encountered even when choosing the “best” parameter values. The model fit can be

called “good” if this optimum value of the average of squares of deviations is
“Qmall”'
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7. Goodness of parameter estimation

In addition to model fit, the goodness of parameter estimation can be char-
acterized by, on the one hand, how a little fluctuation in the measured values
changes the average of squares of dewiations, and on the other, by how a great
change is caused in the estimated parameter values by a small fluctuation in the
average of squares of deviations, or inversely how the small fluctuation of parame-
ters changes the average value of squares of deviations. The parameter estimation is
regarded as good if the fluctuation of measured data (through that of squares of
deviations) influences the estimated parameter data only to a small extent.

Goodness of parameter estimation can be characterized mathematically in several
ways. In our present work, the effect of changing the TG curve and parameter values
upon the value of average of squares of deviations is investigated.

8 Confidence region of parameters

The joint confidence region of parameters is defined as that region of space of
parameters 4, E, and n which contains all the parameter triplets of those TG curves
calculated from them which do not deviate from the given reference (measured) TG
curve by more than a given average value of the squares of deviations. The
confidence region is limited by the minimum and maximum elements of parameter
values belonging to the given goodness of fit. Any parameter triplet lying within
these confidence limits can be considered as a parameter estimation of the measured
curve being within the given goodness of fit.

9 Correlation of parameters

The shape of the confidence region allows some conclusions to be drawn
concermung the correlation of parameters. The more stretched the shape of this
hyper-ellipsoid region, the stronger the correlation among the parameters and the
stronger the correlation among the parameters, the more 1ll-conditioned the problem
of parameter estimation.
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