VAPORIZATION STUDY OF THE TI₂S SYSTEM

M.R CONTE, M PELINO and V PIACENTE*

Istituto di Chimica Fisica, Università aegli Studi di Roma, 00185 Rome (Italy) (Received 16 July 1981)

ABSTRACT

The vaporization of thallium sulphide has been studied by different techniques. The resulting pressure temperature equation is

 $\log P(kPa) = (11.0 \pm 0.2) - (11.4 \pm 0.3) 10^3 / T$

The standard sublimation enthalpy $\Delta H_{298}^0 = 230 \pm 15$ kJ mole⁻¹ has been derived. An estimation of the standard entropy of solid Tl₂S ($S_{298}^0 = 134 \pm 16$ J K⁻¹ mole⁻¹) is also reported.

INTRODUCTION

Thallium sulphide is widely employed as a semi-conductor at high temperatures [1] but at the moment its vaporization behaviour is not well known. Two different sets of data are reported in the literature. Klanberg et al. [2] and Isakova et al. [3], both employing the transpiration method, found vapour pressure data in fair agreement between them but very different to those measured at lower temperatures by Shakhtakhtinskii [4] using the Knudsen method

In view of this discrepancy and in order to investigate the vaporization process and the vapour composition of this compound, we have studied this system by three different techniques.

EXPERIMENTAL

The Tl_2S sample, 98% pure, was supplied by Alfa Inorganics Ventron. Before determination of its vapour pressure by torsion and Knudsen effusion methods, part of the sample was analyzed using a Bendix ToF mass spectrometer (model 3015) coupled with a high temperature Knudsen source in order to study the vaporization process and the vapour composition. On heating the sample at about 500 K an initial vaporization of sulphur vas observed, probably due to impurities in the sample. On further heating, at about 650 K the ions observed by the ionization of the vapour

^{*} To whom correspondence should be addressed.

were Tl_2S^+ , TlS^+ , Tl^+ , S^+ and SO_2^+ but the corresponding appearance potentials and the substantial constancy of the ion intensity ratios in the temperature range studied showed that $Tl_2S_{(g)}$ is practically the only species present in the vapour phase. The intensity of the Tl_2S ion measured at 45 eV in the temperature range 626-674 K is plotted as $log(I_{Tl_2S}^+T)$ vs. 1/T in Fig. 1. Least-squares treatment of the data gives the equation

$$\log(I_{\Pi_2S}^+T) = (22.16 \pm 0.32) - (11628 \pm 206)/T$$

where the associated errors are standard deviations. The absolute vapour pressure values were determined by the torsion method from measurement of the torsion angle α of the effusion cell at each experimental temperature, employing the well-known equation [5]

$$P(kPa) = \frac{2ka}{(a_1l_1f_1 + a_2l_2f_2)L} = k^0\alpha$$

where k is the constant of the tungsten torsion wire, a_1 and a_2 are the areas of the effusion holes, l_1 and l_2 are the respective distances from the rotating axis, f_1 and f_2 are the corresponding geometrical factors [6], and L is the torsion wire length. The constants of the employed cells are reported in Table 1. The experimental assembly has been described elsewhere [7].

In order to test if the thermodynamic equilibrium condition, temperature measurements and geometric factors of the used cell are reliable, the absolute vapour pressure of pure zinc as standard element was measured, and the correspondir vaporization enthalpies determined by second- and third-law treatment of the vapour data were compared with the selected value of Hultgren et al. [8]. The comparison showed a very good agreement.

The Tl₂S_(g) pressure data, measured in three runs in the temperature range

Fig 1 Temperature dependence of I_{TLS}^+ ion intensity measured by the mass spectrometer.

Torsion cell	Effusion hole (cm ²)		Momen (cm)	it arm	Correctio	on factor
	$a_1 (\times 10^{-2})$	$a_2 (\times 10^{-2})$	$\overline{I_1}$	12	$\overline{f_1}$	
A	0.95	0.95	0 86	0 85	0 926	0 916
В	1 25	1 25	0 89	0.86	0 591	0 792

Constants of the employed cells

768-883 K, are reported in Table 2. For each run a pressure-temperature equation was derived by least-squares treatment and consequently, weighting the slope, the intercept and the corresponding errors proportionally to the number of experimental measurements, the following equation was selected

 $\log P_{(T1,S)}(kPa) = (10.99 \pm 0.11) - (11391 \pm 92)/T$ (1)

This equation is drawn in Fig. 2.

Some vapour pressure data were also determined by the Knudsen effusion technique, measuring at different experimental temperatures the mass-loss of the Tl_2S sample filled in a Knudsen cell. Determination of the absolute vapour pressure was performed using the equation [9]

$$P(kPa) = 2.29m(T/M)^{1/2}(s\Delta t)^{-1}K^{2}$$

where *m* is the mass of the vapour effused from the cell in time Δt , *S* is the effusion hole area, *M* is the molecular weight, *T* is the experimental temperature, and *K'* is Clausing's correction factor [10].

Fig. 2 Comparison of the vapour pressure data for the Tl₂S system.

2	74
---	----

TABLE 2

 ${\rm Tl}_2 S$ vapour pressure measured by torsion method

Cell	T	P	ΔH_{298}^0	ΔS_{298}^{0}
	(K)	(kPa)	$(kJ mole^{-1})$	$(J K^{-1} mole^{-1})$
A	827	1 53×10 ⁻³	218	123
	833	1.76×10^{-3}	218	124
	834	1.88×10^{-3}	217	123
	837	2.22×10^{-3}	217	123
	841	243×10^{-3}	217	123
	843	2.66×10^{-3}	217	123
	847	2.86×10^{-3}	217	124
	849	320×10^{-3}	217	124
	851	328×10^{-3}	217	124
	855	385×10^{-3}	217	124
	858	423×10^{-3}	217	124
	859	453×10^{-3}	217	124
	863	520×10^{-3}	216	124
	867	583×10^{-3}	216	123
	868	6 55×10 ⁻	216	124
	871	7 17×10 ⁻¹	216	124
	873	7.87×10^{-3}	216	124
A	811	7 69×10 ⁻⁴	218	123
	826	1 31×10 ⁻³	218	124
	829	1 53×10 ⁻³	218	123
	831	1 76×10 ⁻³	217	123
	841	2 43×10 ³	217	123
	845	2.86×10^{-3}	217	123
	850	352×10^{-3}	216	123
	852	3.85×10^{-3}	216	123
	856	433×10^{-3}	216	123
	860	485×10^{-3}	216	123
	861	520×10^{-3}	216	123
	863	544×10^{-3}	216	123
	865	6.11×10^{-3}	216	123
	867	670×10^{-3}	216	123
	869	685×10^{-3}	216	123
	873	751×10^{-3}	216	123
	875	824×10^{-3}	215	123
В	768	1 64×10 ⁻⁴	219	123
	784	3 35×10 ⁻⁴	217	121
	794	496×10^{-4}	216	121
	804	7 51 × 10 ⁻⁴	216	121
	811	1.08×10^{-3}	216	121
	817	140×10^{-3}	216	121
	821	1 93×10 ⁻³	214	119
	828	2.17×10 ⁻³	215	121
	831	243×10^{-3}	215	121
	836	2.92×10^{-3}	215	121
	841	3 43×10 ⁻³	215	121
	844	3.94×10^{-3}	214	121

Cell	T	Р	ΔH_{298}^{0}	ΔS_{298}^0	
	(K)	(kPa)	$(kJ mole^{-1})$	$(J K^{-1} mole^{-1})$	
	853	4.96×10 ⁻³	214	121	
	857	5 83×10 ⁻³	214	121	
	858	6 39×10 ⁻³	214	120	
	862	7 34×10 ⁻³	214	121	
	864	7 86×10 ⁻³	214	121	
	875	1.13×10 ⁻²	213	121	
	879	1 28×10 ⁻²	213	121	
	883	150×10^{-2}	213	121	

TABLE 2 (continued)

^a Values derived using $S_{298}^{0}(Tl_{2}S_{(5)}) = 159 \text{ J K}^{-1} \text{ mole}^{-1}$ (see text)

TABLE 3

Vapour pressure data measured by Knudsen technique

T	Time	Weight loss	Р	
(K)	(sec)	(mg)	(kPa)	
758	6600	3.33	1 41×10 ⁻⁴	
774	6120	5 88	2 73×10 ⁻⁴	
807	3600	10 56	845×10^{-4}	
833	3600	26 40	215×10^{-3}	
845	1800	16 58	272×10^{-3}	
852	3600	52.59	433×10^{-3}	
867	2400	65 76	8 19×10 ⁻³	

The experimental apparatus used consists essentially of a conventional graphite Knudsen cell (1.2 mm in diameter and K' = 0.951) inserted in a molybdenum block. The heating of the assembly is performed by radiation and electron bombardment and the temperature is measured by a calibrated Pt-Pt/Rh(13%) thermocouple or a Leeds-Northrup optical pirometer, depending on the temperature range covered. Also with this technique an assembly calibration was performed vaporizing pure zinc as standard. The Tl₂S pressures measured with this method are summarized in Table 3. Considering the small number of experimental points, no pressure equation was derived from these data; however, the obtained pressure values agree well with the torsion results, as shown in Fig. 2, indicating the reliability of the measurements.

DISCUSSION

Our selected pressure eqn. (1) is compared in Fig. 2 with those reported in the literature [2-4]. As is apparent, our data agree enough with those of Klanberg and

Spandau [2] and Isakova and Nesterov [3]. From the slope of eqn. (1) the vaporization enthalpy $\Delta H_{825}^0 = 218 \pm 2 \text{ kJ mole}^{-1}$ was derived; that derived from the slope of the mass-spectrometric equation was $\Delta H_{650}^0 = 222 \pm 4 \text{ kJ mole}^{-1}$. In both cases the associated errors are the only standard deviations. From these values the average standard, sublimation enthalpy $\Delta H_{298}^0 = 247 \pm 10 \text{ kJ mole}^{-1}$ (the error is estimated) was derived by using the enthalpic function obtained experimentally by Bencivenni [11] for the gaseous phase and estimated following the procedure suggested by Kubaschewski and Alcock [12] for the condensed phase.

The enthalpic function values are summarized in Table 4. It is interesting to note that the difference in the heat content of the Tl_2S gaseous and condensed phase is comparable with that used by Mills [13] in the evaluation of the standard enthalpy of vaporization.

The third-law ΔH_{298}^0 was also derived at each experimental temperature. The necessary free energy functions. $-(G_T^0 - H_{298}^0)/T$, for the gaseous phase were obtained by Bencivenni [11]. while for the condensed phase they were derived, employing the above reported heat contents, the estimated Tl₂S_(s) standard entropy $S_{298}^0 = 159 \text{ JK}^{-1} \text{ mole}^{-1}$ proposed by Mills [13] and the heat of fusion $\Delta H_{730}^m = 12.6 \text{ kJ mole}^{-1}$ reported by Kelley [14]. These values are summarized in Table 4.

The derived ΔH_{298}^0 data showed a temperature trend and their mean value $\Delta H_{298}^0 = 216$ kJ mole⁻¹ is in disagreement with the second-law value. Considering that a possible error source could be connected with the estimated standard entropy of Tl₂S_(s), a series of this value was derived by the third-law procedure employing the second-law sublimation enthalpy $\Delta H_{298}^0 = 247$ kJ mole⁻¹. The S_{298}^0 values so determined do not show any temperature trend and the standard deviations associated with the mean values of each run are very small. Another error source could be the estimated heat capacity of the Tl₂S_(s) but this error, minimized in the energy function calculation, would not explain the temperature trend of the third-law ΔH_{298}^0 values. Errors in the instrument calibration could also be taken into consideration in order to explain the temperature trend and the difference between the second- and third-law ΔH_{298}^0 (sub), but this error should be of a factor ~ 50 which was not observed in our calibrations.

In view of these considerations and the agreement of the results obtained by different techniques, it may be concluded that the uncertainties associated with the slope and intercept of the pressure-temperature dependence should not be greater than the estimated values reported in the equation

 $\log P(=kPa) = (11.0 \pm 0.2) - (11.4 \pm 0.3) 10^3/T$

With regard to the Tl₂S standard sublimation enthalpy change, considering that the value $\Delta H_{298}^0 = 247$ kJ mole⁻¹ is affected by uncertainties related to the estimated heat capacities, and the corresponding value obtained by third-law procedure is in addition affected by an error in the Tl₂S_(s) standard entropy, we propose a value of $\Delta H_{298}^0 = 230 \pm 15$ kJ mole⁻¹ which, although higher than that selected by Mills [13] (209 ± 29 kJ mole⁻¹) is within the limits of the associated uncertainty. Also, concerning the S_{298}^0 (Tl₂S) we feel that the estimated value 159±13 J K⁻¹

TI ₂ S (gase	suc) a		TI ₂ S (liquid))
7 (K)	$H_{\rm T}^0 - H_{298}^0$ (kJ mole ⁻¹)	$-(G_1^0 - H_{298}^0)/T$ (J K ⁻¹ molc ⁻¹)	$II_{T}^{0} - II_{298}^{0}$ h (kJ molc ⁻¹)	$-(G_{\rm T}^{0} - H_{208}^{0})/T^{\rm t}$ (J K ⁻¹ molc ⁻¹)	$\frac{-(G_T^0 - H_{208}^0)/T^d}{(J \ K^{-1} \ mole^{-1})}$	
750	25.9	323	52.4	169	131	1
800	28.8	327	570	174	136	
850	31.7	330	616	178	140	
006	34 6	333	66 2	182	144	
^a Reported	by Bencivenni [11]					ļ

Thermodynamic functions of T12S

TABLE 4

^b Estimated using the procedure of Kubaschewski and Alcock [12]

^c Derived using the estimated $S_{298}^0(T_2S_{33}) = 159 J K^{-1}$ mole ⁻¹ reported by Mills [13] ^d Obtained using $S_{298}^0(T_2S_{33}) = 122 J K^{-1}$ mole ⁻¹ derived from our second-law T_1_2S sublimation $\Delta II_{298}^0 = 247$ kJ mole ⁻¹

t ii f

| ;

| | | |

]

[

:

;

•••••

mole⁻¹ proposed by Mills can be considered as an upper limit, and we propose $134 \pm 16 \text{ J K}^{-1}$ mole⁻¹ as the most probable.

REFERENCES

- 1 IV Viktorovskii and MS Gutenev, Fiz Khim Stekla., 1(4) (1975) 390.
- 2 F Klanberg and H Spandau. Naturwissenschaften, 45 (1958) 209
- 3 R A Isakova and V N Nesterov, Tr Inst Metall Obogashch, Akad Nauk Kaz SSR, 5 (1962) 29.
- 4 M.G. Shakhtakhtinsku, Inst. Fiz. Akad. Nauk Az. S.S.R., II (1963) 1071
- 5 R D. Freeman. in J L. Margrave (Ed.). The Characterization of High Temperature Vapors, Wiley, New York, 1967
- 6 R D Freeman and A W. Searey, J Chem Sci., 39 (1968) 549
- 7 V Piacente and G De Maria, Ric Sci., 39 (1968) 549
- 8 R Hultgren, R.L. Orr, P.D. Anderson and K.K. Kelley, Selected Values of Thermodynamic Properties of Metals and Alloys Wiley, New York, 1963
- 9 M Knudsen, Ann. Phys., 28 (1909) 75
- 10 S Dushman, Scientific Foundation of Vacuum Technique, Wiley, New York, 1958, p 90
- 11 L. Bencivenni, private communication, 1981
- 12 O Kubaschewski and C B. Alcock, Metallurgical Thermochemistry, Pergamon Press, Oxford, 1979, p 179
- 13 K C Mills, Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, Butterworths, London, 1974
- 14 K K Kelley, Bull US Bur Mines, (1936) 393