Note

FORMATION CONSTANTS AND THERMODYNAMIC FUNCTIONS OF Cd(II), Zn(II), Pb(II), VO²⁺ AND Ce(IV) WITH LAPACHOL

S S SAWHNEY, NEELUM VOHRA and SURYA K CHANDEL Department of Chemistry, D A V. (P G.) College, Dehra Dun (India) (Received 23 June 1981)

Sawhney and co-workers [1-4] have demonstrated pH-metrically the chelating tendency of lapachol[2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] in solution. This note concerns the interaction of Cd(II), Zn(II), Pb(II), VO²⁺ and Ce(IV) with lapachol in non-aqueous media (50% by volume of EtOH and water) and at 0.1 M ionic strength (KNO₃), and subsequent estimation of the stoichiometry, formation constants and thermodynamic functions of the systems.

EXPERIMENTAL

All chemicals used were either BDH or Aldrich analar quality. Potentiometric titrations were performed using a Beckman H-2 model 8509 pH meter. Buffer solutions of pH 4 and 9.2 were used to standardize the electrodes. Ionic strength was maintained at 0.1 M with KNO₃. All work was at $20 \pm 1^{\circ}$ C and $40 \pm 1^{\circ}$ C. The shapes of the curves after correction following Van Uitert and Haas [5] for non-aqueous media were as usual. Formation constants of the different systems were ertimated by various methods.

RESULTS AND DISCUSSION

Formation functions, $\bar{n}_{\rm H}$, \bar{n} and pL were calculated using the expressions of Irving and Rossotti [6]. For proton-ligand stability constants, a plot of $\bar{n}_{\rm H}$ vs. pH together with the Bjerrum half integral method [7], and the use of eqn. (1) were employed.

$$\log {}^{P}K^{H} = B + \log [\bar{n}_{H} - (n-1)] / (n - \bar{n}_{H})$$
(1)

The difference between $\log k_1$ and $\log k_2$ vas much less than 2.5; under these conditions, employment of the Bjerrum half integral method for stability constants could not be justified. Pointwise and graphical methods using eqn. (2) were used for the purpose

$$\log k_n = pL + \log\left[\bar{n} - (n-1)\right] / (n-\bar{n})$$
⁽²⁾

0040-6031/82/0000-0000/\$02.75 © 1982 Elsevier Scientific Publishing Company

TABLE I

Metal 10n	Constants	Temperature (°C)		$-\Delta G^0$ (kcal mole $^{-1}$)		$\frac{\Delta H^0}{(\text{keal mole}^{-1})}$ at 40°C	ΔS^0 (cal mole $^{-1}$) at 40°C
		20	40	20°C	40°C		
	log PKH	6 45	5 85				
Cd²-	log K ₁	3 51	3 49				
	log k 2	271	2 70	8 34	8 84	- 73 5	28 00
Zn²-	log K 1	3 52	3 50				
	log k ₂	2 70	2 68	8 34	8 85	- 58 82	28 09
vo ²⁺	log K ₁	2 48	2 49				
	log A 2	2 74	2 70	8 34	8 87	-44 10	28 18
Pb ^{2 -}	log k_1	341	3 38				
	log k 2	2 70	2 69	8 19	8 70	- 59 90	27 55
Ce⁴⁺	log K	3 50	3 41				
	log k ₂	2 71	2 70	8 33	8 84	- 58 90	28 05

Protonation consant of the ligand, ligand stability constants of the complexes and thermodynamic functions at 20 and 40°C

The \bar{n} values approach 2 for all the systems, indicating that under these experimental conditions 1:2 complexes are formed. Conductometric titrations also supported the pH-metrically concluded stoichiometry of the complexes.

Values of thermodynamic functions have been calculated from the well-known temperature coefficient and the Gibbs-Helmholtz equation [8]. Table 1 contains the mean values of the protonation constant (${}^{P}K^{H}$), formation constants and thermodynamic functions, and shows that the values of $\log {}^{P}K^{H}$, $\log k_{1}$ and $\log k_{2}$ decrease as the temperature increases, indicating that a lower temperature favours complexation because of the decrease in kinetic energy of molecules, and thus their stabilities are lowered. Interaction of the ligand and metal is a spontaneous process as the free energies of formation (ΔG^{0}) have a more negative value in all cases with the rise in temperature. The entropy (ΔS^{0}) is favourable for complex formation in all cases since it has a positive value.

REFERENCES

- 1 SS Sawhney and BML Bhatta, Thermochim Acta, 42 (1980) 105
- 2 B.M.L. Bhatia and S.S. Sawhney, Thermochim Acta, 45 (1981)

3 S S Sawhney and Neelam Vohra, Acta Ciencia Indica, 6C (1980) 183

- 4 SS Sawhney and SD Matta, J Indian Chem Soc., 57 (1980) 497
- 5 L G Van Uttert and C G Haas, J Am Chem Soc, 75 (1953) 451
- 6 H Irving and H Rossotu, J Chem Soc, (1953) 3397.
- 7 J Bjerrum, Nictal Ammine Formation in Aqueous Solutions, Hasse and Son, Copenhagen, 1941
- 8 K B Yatsimirskii and V P Vasi'lev, Instability Constants of Complex Compounds, Van Nostrand, New York, 1960, p 63