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ABSTRACT 

The frequent publrcation of contradrctmg or mearungless kmetic parameters and the 
resulting cnticrsm of the “111-condttioned nature” of non-tsothermal reactton kmettcs led the 
authors to an examination of the sensitivity of kinetic parameters to experimental errors. 
Using simple mathemattcal deductrons, conditions were given at which about 10% precision 
of the kinetic parameters can easily be achieved. To obtain a graphic picture about the 
information content of a thermoanalytical curve and the effect of the sysLematic measurement 
errors, mathematmal relatronshtps were deduced to show the dependence of the kinetic 
parameters on the formal (geometric) charactenstics of the thermoanalytlcal curves. 
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Heating rate 
Pre-exponential factor 
Energy of activation 
formal reachon order 
A shape index charactenzmg the degree of asymmetry of a thermoanalyhcal 
curve 
Gas constant 
Time 
Temperature 
Temperature at the peak maximum 
Reacted mole fraction 
Reacted mole fraction at the peak maximum 
Function describmg the dependence of dx/dr on x 
Integral of 1 /f(x) 
A function approximately equal to (C/RT + l)/( E/RT -t 3) 
Indrcates measurement errors or small finite differences 
Indrcates average quantities 
Indicates approximations with preciston better than 1% 
Indicates approximahons with precisron worse than 1% 
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INTRODUCTION 

In the field of thermal analysis, about 25% of the publications deal with 
reaction kinetics or contain reaction kinetic evaluation [l]. The overwhelm- 
ing malority of these works is based on equations of the type 

dx/dt = A evEjRTf( x) 

where x is the reacted mole fraction, A is the pre-exponential factor, and E is 
either the true or the formal energy of activation. The actual form of 
function f(x) depends on the type and mechanism of the reaction. From a 
mathematical point of view, f(x) may be any continuous function with 
positive values in the interval 0 G x -C 1. 

The validity of eqn. (1) is limited to the simplest type of processes [2-51, 
including 

(i) evaporation, sublimation, desorption and one part of the phase transi- 
tions; 

(ii) simple diffusion processes; 
(iii) chemically simple one-step reactions and surface reactions; 
(iv) a few multistep reactions, e.g. a few polymer decompositions; 
(v) elementary steps in complex physical or chemical processes. 
The direct application of eqn. (1) in thermal analysis requires special care 

in the choice of proper samples and experimental conditions. In o&her cases, 
eqn. (1) can only be applied as part of a more compiex mathematical model. 
For example, if a chemical reaction is not sufficiently far from chemical 
equilibrium, the backward reaction also has to be taken into consideration. 
If diffusion control arises, the equations of the forward and backward 
reactions have to be combined with an equation or approximate expression 
describing the diffusion, etc. At this time, however, only the direct applica- 
tion of eqn. (1) is usual in thermal analysis. 

Unfortunately, many researchers have applied eqn. (1) outside the domain 
of applicability outlined above. In this way, a huge but incoherent set of 
kinetic parameters has been accumulated in the literature. Seeing the con- 
tradicting (and sometimes even physically meaningless) kinetic data, re- 
searchers have begun to suspect that the source of the problem is in the 
mathematical properties of eqn. (1). The most explicit attack against the use 
of eqn. (1) was carried out by Arnold et al. [6,7], who stated [6]: “the 
measured data should be known with an error not greater than 0.0001% in 
order to ensure that the uncertainty of the parameters should not be greater 
than 10%“. 

The criticism that has arisen in connection with eqn. (1) has shown that 
the basic mathematical and numerical properties of equations of this type 
have not been fully revealed or proven. In this paper, we examine three 
problems strongly correlated with each other: 

(i) how the experimental errors change the parameters obtained in the 
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evaluation of thermoanalytical curves; 
(ii) what experimental precision is required for kinetic evaluation; 
(iii) what may be the mathematical reliability of the kinetic data published 

in the literature of thermal analysis. 
Although we cannot give definite and final answers to these questions, we 

shall try to show that a lo-2055 precision can easily be achieved in the 
evaluation of the kinetic parameters, and the kinetic compensation effects 
describe6 in the Jiteralme are nD1 a consequence of the “N-conditione& 
nature” of eqn. (1). We do not state that higher precision cannot be 
achieved; we only list arguments to show that at least lo-20% precrslon can 
be achieved. 

EVALUATION FROM HOTHERMAL CURVES 

Classical reaction kinetics are based on the evaluation of isothermal 
measurements_ This method is also widely used in thermal analysis. Its 

fundamental assumption is that the kinetic parameters (E, log A. etc.) do 
not depend on the size, shape and Iattice error distrrbution of the measured 
sampIes, or these properties do not vary from measurement to measurement. 
This assumption is always implied if more than one thermoanalytical curve 
is &3432&& by ex.&Gy 2328 same va)ues DE ZG2S S~&Q>G p~7~7X4373. Uz6Dr- 
tunately, this -assump;ion is frequently not 
thermal analysis. 

The error propagation in the evaluation 
kin&es is beyond the scupe of the present 
simple example will be treated here in order 
non-Isothermal methods. 

Let us introduce the usual notation 

applicable-in the pm&&e of 

methods of classical reaction 
wari& thus oniy arr extXme?j 
to make comparisons with the 

and integrate eqn. (1) in the isothermal section of the heating program 

g(x) =A e -WRTt + c (3) 
where C is an integration constant connected to the amount of sample 
reacted during the heating until the isothermal section of the heating 
program. [If we denote the reacted mole fraction at the starting point of the 
isothermal section by x0, then C = g(xO).] To eliminate C, eqn. (3) is written 
at two fixed conversions, say at x = 0.2 and x = 0.8, and the corresponding 
changes of g(x) and t are denoted by Ag and At, respectively 

Ag = A eSEiRTAt (4 

Now let us consider two isothermal curves at temperatures T, and T2 and 
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denote the values of Ar belonging to the same conversions by AZ, and At,. 
respectively. Usin, 0 eqn. (4) at T, and &. we can eliminate A and get a 
simple estimator of E 

E In( At,/Ar,) 
-= l/T, - l/T, R (5) 

Similar formulae for the evaluation of E are widely used in thermal analysis 
as ~11 as in other areas of chemistry. 

In eqn. (5) only Ar,/Ar, ~111 be regarded as a measured quantity. Note 
that 7’, and r, are the values set on the instrument. If the actual tempera- 
tures differ from the set valcss, All/Art “inherits” some error. (Note that a 
constant or quasi constant error in the temperature calibration only slightly 
changes Alr,/Atr,). The sensitivity of eqn. (5) to the measurement errors 
depends on the value of Af,/At,. If this ratio is far from unity, eqn. (5) is 
not sensitive to measurement errors. 

A rlrmerrcaf example 

In the case of normal chemical reactions, a temperature increase of 30-40 
K results in an approximately IO-fold increase of the reaction rates. Let us 
suppose that the true value of Ai,/Atz is Just 10 and its uncertainty is as 
much JS 20%. Now the numerator m eqn. (5) is 2.3 I 0.2, thus the corre- 
sponding error of E IS less than 10 %. This example shows that even a poor 
measurement precision can be sufficient to estimate kinetic parameters, 
provided that eqn. (I) is valid, there is no diffusion control, and the kinetic 
parameters do not vary from measurement to measurement. Finally, we 
should hke to underline that eqn, (5) serves only for illustration. Obviously 
better estimators can be deduced if more than two curves are used and more 
than two points on a curve are used. 

CALCULATIONS FROM TWO NON-ISOTHERMAL THERMOANALYTICAL 
CURVES 

If thermoanalytical mesurements arr= carried out at various heating rates, 
the temperatures of the characteristic points of the curves show strong 
correlation with the heating rate and energy of activation. The mathematical 
description of this phenomenon yields simple and easily applicable estima- 
tors for the energy of activation. In this section we shall treat the simplest of 
this type of evaIuation technique, i.e.. when two measurements of heating 
rates a, and CI~ are available and the temperatures of points x = 0.5 are used 
in the calculation. These temperatures will be denoted by Tl and T,, 
respectively. 

In the case of the usual linear heating programs, the solution of eqn. (1) 
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has to be approximated. Two simple approximations are frequently used in 
the literature [8,9] 

lng(x)=const-E/RT-lna (6) 
and 

ln[g( x)/T’] = const - E/R T - In a (7) 

It can be shown [lo] that eqn. (7) is a significantly better approximation, 
provided that the constant term is properly chosen. In this paper we shall use 

eqn. (7) in a slightly rearranged form 

in g(x) = const - E/RT - In a + 2 In T 

and we shall neglect the term 2 In T only when rough approximations are 
deduced. 

Considering points x = 0.5 at two different heating rates, we get 

$(1/T, - l/T,) =ln(a,/a,) -2 ln(TJT,) (8) 

In eqn. (8), the measured quantities are T, and T2. The heating rates on the 
right-hand side are the values set on the instrument. If the actual heating 
programs differ from the preset ones, the temperatures of points x = 0.5 will 
be changed. 

If T, is close to T,, eqn. (8) is quite sensitive to experimental errors. 
However, if a2/a, is at least 10, the difference of r, and r2 IS about 50-100 
K for normal chemical reactions and eqn. (8) becomes suitable for the 
estimation of E. To illustrate this, let us consider that on the right-hand side, 
2 ln(T,/T,) is small compared to ln(a,/a,) and its sensitivity is negligible. 
Thus the relative precision of E is approximately equal to the relative 
precision of the difference (l/T, - l/T,). If both r, and T, are changed by 
the same magnitude of errors in the same direction, (l/T, - l/T,) changes 
only slightly and the error of E is small. For other types of experimental 
errors, the relative precision of (l/T, - 1/T2) is roughly equal to the relative 
precision of (T. - T,). Thus if ( T2 - r,) is about 50-100 K, estimation of E 
with a relative precision of 10% requires a precision of 5- 10 K of ( T2 - T,). 
In our opinion, modem instruments of high precision can give smaller errors 

for (T2- T,), provided that the kinetic parameters themselves do not vary 
from measurement to measurement. 

A numerical example 

Let T, and T2 be 770 and 840 K, respectively. These values correspond to 
E = 163.5 W mole-’ at a, = 1 K min-’ and a2 = 10 K min-‘. If the errors 
of Ti and T2 are -C 3 K, the relative error of l/T, - 1 /T, is less than 9% 

* 91 ~ l/(71023)-- l/(840+3) 
. 

l/770 - l/840 
e 1.09 
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If there is a constant error of 5 K besides the random error of 43 K, the 
relative error will be less than 10% 

090<‘/(770+5=3)-11/(843+5~3)<*07 . -2- 

l/770 - l/840 
L . 

* 93~ l/(770-553)- l/(840-553) 
. 

l/770 - l/840 
G 1.10 

The relative error of the right-hand side of eqn. (8) is negligible (less than 
0.7% in both cases). 

As m the previous sections, we should like to emphasize that eqn. (8) 
serves only to show that a 10% precision can be achieved in the estimation of 
E. Higher precisions may also be achieved if more than two curves are 
measured and more than one point is used on a curve. However, analysis of 
the errors In that case seems difficult. since no general assumptions can be 
made on the randomness or independence of the errors. For example, the 
errors of the temperatures corresponding to points x = 0.1, x = 0.2, x = 0.3, 
etc.. of a given curve cannot be regarded random or independent, thus the 
usual considerations of mathematical statistics cannot be applied. 

EVALUATION OF E FROM A SINGLE NON-ISOTHERMAL THERMOANALYTICAL 
CURVE 

In many cases it is advantageous to evaluate each measured curve sep- 
arately and later compare or average the parameters obtained from the 
different measurements. Thus in many kinetic investigations two or three 
parameters are calculated from a single thermoanalytical curve. Usually 
these parameters are the energy of activation. the pre-exponential factor and 
the formal reaction order, 17. In the following sections we shall briefly show 
that it is a mathematically correct practice: the information content of a 
non-isothermal thermoanalytical curve is sufficient for the unique determina- 
tion of at least three parameters. In the present section we shall start with the 
simplest case: when function f(x) is known and we want to estimate only E. 

Let us choose two points on a given thermoanalytical curve, for example, 
points x = 0.2 and x = 0.8, and denote the corresponding temperatures by 7’i 
and T,, respectively. As in the previous section, we shall use eqn. (7) which 
immediately gives 

WN l/T, - VT, I= ln[gCx, Vgb, >I - 2 wi/T 1 (9) 
Here the measured data are T, and T’.. (xi and x2 on the right-hand side are 
arbitrarily chosen values.) 

Formally, eqn. (9) is analogous to eqn. (S), thus the same considerations 
can be applied: the relative precision of E is approximately equal to the 
relative precision of (l/T, - l/Tz) which is roughly equal to the relative 
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and ln(T,/7’,) into a Taylor 
maximum, TP 
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this more clearly, let us expand ( 1 /Z’, - l/T.) 
series around the temperature of the peak 

Experience shows that E/R is considerably larger (usually at least IO-times 
larger) than 2TP. (Note that from the point of view of reaction kinetics, the 
heating rates applied in thermal analysis are slow, thus a sample can hardly 
survive until a temperature where the thermal energy of the molecules is 
colmparable with the bond energies.) Thus, if only a rough estimation of the 
error of E is required, the term 2TP can be neglected. Forming the differen- 
tial of the logarithm of eqn. (lo), we immediately get the following relation- 
ship between the errors of E, TP and ( T2 - r,) 

Since 2 8T,/T, is small (usually it is not more than 0.01 - 0.02), the relative 
error of E is roughly equal to the relative error of (T, - T,). 

The drawback of eqn. (9) is that only two points, (x1, T,) and (x2, T2), are 
used in the evaluation. However, we can write eqn. (9) by several (x1, T,) 
and (xt, T,) pairs of points and can form the average of these equations. If 
we indicate the averages by angular brackets, we get 

(E/R)C/T, - VT,) = ~~&Ybd/dx,m - w4ww 02) 
Note that eqn. (12) stands at any type of averaging, thus the angular 
brackets may also indicate weighted averages. Using the same considerations 
as before, we get 

and 

If points (x,, T,) fall on the first half of the curve and points (x,, T2) fall on 
the second half, ( T2 - T,) can be regarded as a measure of the average width 
of a thermoanalytical curve. Obviously, the width of a thermoanalytical 
curve can be characterized in an endless number of ways. We prefer 
quantities of the type (Tz - Tl) for the simplicity of the corresponding 
mathematical considerations. We should like to underline that (T, - T,) 
may be the simple average of differences ( T2 - T,) as well as any weighted 
average deduced by statistical considerations. 

Regarding ( T2 - Tl) as a measure of the average width, eqn. (14) shows a 
strong correlation between E and the width of the thermoanalytical curves. 
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Thus, if an experimental error widens the curves, the calculated energy of 
activation is lower than the true one, while if any factor sharpens a 
therrnocanalytical curve, the apparent energy of activation increases. The 
relative precision of E is roughly equal to the relative precision of ( Tz - 7’,} - 

ESTIMATION OF E WHEN f(x) IS ONLY APPROXIMATELY KNOWN 

In the previous section, the function f(x) was supposed to be known 
exactly. In practive, however, this assumption is never satisfied. Usually we 
have only an approximation of the true f(x). We shah denote the true f(x) 
by f’(x) and its approximation by f(x). Their difference [i.e. the error of 
f(x)] will be denoted by 8f(x). A part of Sf(x) arises from simplification of 
theoretical considerations. Usually, the mathematical approximation of f O( x) 
contains adjustable parameters, for example, the formal reaction order, n. 
These adJustable parameters have to be determined from experimental data, 
thus 8f(.x) will be increased by the effect of the experimental errors. 

Regarding the previously treated estimation method, 6f(x) changes 

ln[g(xt )/g(x, 13 on the right-hand side of eqns. (9) and (12) and in this way 
an additional error term is added to the errors of E. Obviously, this 
additional error term will be small if f(x) approximates f’(x) in such a way 
that g(x) is close to go (x). [Here g“(x) is the integral of l/f’(x).] From a 
mathematical point of view. it is quite simple to get such approximations 
from isothermal thermoanalytical curves. The thermoanalyst, however, might 
be more interested in the answer to the following type of question: “What 
will be the error of the energy of activation if a thermoanalytical curve of a 
contracting sphere mechanism ()I = 2/3) is evaluated by first order kinetics?” 

TABLE I 

Dependence of In[g(x,)/g(x,)] on the formal reactlon order 

n 
,n do61 

g(O-4) 
In g(O.8) 

8~0.2) 
ln g(O-95) 

do-05) 

000 0.41 1 39 2 94 
0.25 045 1 52 3.17 
0.50 0.49 1.67 3 42 
0.75 0.54 1.81 3.72 
I.00 0 58 1.98 4.07 
1.25 0.64 2.16 4.46 
1.50 0.69 2.35 4.90 
1.7s 0.75 2.56 5.37 
2.00 0.81 2.77 5.89 
2.25 0.88 3.00 6.44 
2 so 0.94 3.24 7.01 
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‘To answer tis, we have &own in 19bie i how I’nig<xx2 j/g<x, ,\I depends on 12 
iif f(x) =(I - X>“. Three represent&&e pairs of x) and x2 were chosen. I4 
%nay be interesting tu observe that a change of 17 by 0.25 changes 
In[g(x,)/g(x,)] by only 8-10s. Thus even an error of 0.25 of n adds only an 
error of 8-10s to the value of E. 

To obtain an explicit relationship for the error of E, we have calculated 
the differential quotient of In[g(x,)/g(x,)] at nine representative pairs of xl 
and x2 in the range 0 G n G 3. (The pairs of x, and x2 were: 0.45 and 0.55, 
0.40 and 0.60,0.35 and 0.65, 0.30 and 0.70, 0.25 and 0.75,0.20 and 0.80. 0.15 
and 0.85,O.lO and 0.90, 0.05 and 0.95.) From these data, the following rough 
approximation is obtained 

& lnCg(x, Vg(x,)l = 0.33 ln[g(x, Vg(x*)l 

Using approximations (i5) and (13), we can estimate the relative error of E 

bY 

6E % a(T,--T,) +. 336n -~2-- 

E Tp T2 - T, - 

THE DEGREE OF ASYMMETRY OF THE THERMOANALYTICAL 

In 1957, Kissinger [ 1 l] studied the properties of 

dx/dt = A e--E/RT( 1 - x)” 

(16) 

CURVES 

(17) 

and showed that n can be estimated from the degree of asymmetry of the 
thermoanalytical curves. His results, in a slightly modified form, have been 
re-established by other authors and are used today [12]. Kissmger char- 
acterized the degree of asymmetry of a curve (dx/dt)( t) by the “absolute 
value of the ratio of the slopes of tangents to the curve at the inflection 
points”. Regarding the corresponding mathematical deductions, however, a 
mathematically simpler definition can be given if we divide curve (dx/dt)( r) 
into two parts at the peak maximum and characterize the degree of asymme- 
try by the ratio of the areas of the parts right and left from the peak 
maximum [ 171. We shall denote this ratio by r. At symmetric peaks the value 
of r is obviously one. The area of the part left of the peak maximum is the 
reacted mole fraction at the peak maximum, xP, while the area of the part 
right of the peak maximum is (1 - xP). In this way we can write 

r=(l -x,)/x, (18) 

Rearrangement of eqn. (18) gives 

xP = I/(r + 1) W) 

This type of characterization is based on the work of Horowitz and Metzger 
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[ 131. They showed that, approximately, xP is a function of only n and in this 
way IZ can be estimated from the experimental value of xi.,. 

In the present section we shall examine to what extent the degree of 
asymmetry depends on the formal reaction order and to what extent it 
depends on the other parameters of eqn. (17). First. we shall deduce a 
general relationship between xr, E, TP and the adjustable parameters of any 
function f(x) at which eqn. (I) has a solution. Let us begin this deduction by 
writing the condition of the maximum of dx/dr, d2x/dr2 = 0. Differentiat- 
i”rg 2 :n. (1) and rendering it equal to zero gives 

(Here subscript “p” indicates that the corresponding quantities belong to the 
point of the peak maximum.) Now we have to eliminate (dx/dt), from eqn. 
(20) without reintroducing e -E’Rr. To achieve this, we shall combine eqn. (1) 
with its integrated form. As is known from the literature, the integrated form 
of eqn. ( 1) can be written as 

where q(E/RT) denotes a slowly changing (nearly constant) function 
[ 10.11.8.3]. Combining eqns. (1) and (21) gives 

RT2 
g( _Y)f(_..) = - aE q(E/RT) dx/dt 

Using eqn. (22), we can eliminate (dx/dt), from eqn. (20) 

(22) 

Equation (23) is the desired relationship. If f(x) = (1 - x)” and IZ P 0, the 
following algebraic solution can be deduced 

xP 
= 1 -[(l/n- l)q( E/RT,) + I] ,:I n#l 

xP 
= 1 _ e-q(E/RT,) n= 1 

From a mathematical point of view, dx/dt has no maximum if n = 0. From 
a physical point of view, xp = 1 if n = 0. Equation (24) also gives x, = 1 as a 
limit when n - 0. 

It follows from eqn. (24) that r is a function of )Z and E/RTp. We shall 
denote this function by r(n, E/RT,); a general overview of it is given in 
Tabie2. Note that at the usual heating rates of thermal analysis, E/RT, 
varies within a limited range, i.e. there is some correlation between E and TP. 
Thus we found it sufficient to study r(n, E/RT,) only in the domam 
20 G E/RT, G 40. Table2 shows that the dependence of r on E/RT, is 
slight: a rough estimation of n can always be obtained by the assumption of 
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TABLE 2 

The degree of asymmetry at E/RT, =20, 30 and 40 

n r(n, 20) r(n, 30) r(n, 40) 

0 0 0 0 

0.25 0.21 0.20 0.20 
0.50 0.38 0.36 0.36 
0.75 0.53 0.51 0.50 
1.00 0.67 0.64 0.63 
1.25 0.81 0.77 0 75 
1.50 0.94 0.89 0.87 
1.75 1.07 1.01 0.98 
2.00 1.19 1.13 1.10 
2.25 1.31 I .24 1.21 
2.50 1.43 1.35 1.31 

E/q, = 30. At small values of n (at PI < 0.5). the dependence of r on E/RT, 

is negIigibie. At higher vaIues of 11 we have found that a 100% change of 
E/RT, corresponds to about a 10% change of II. This is illustrated in 
Table 3. Thus r(0.9,20) = r(1.0,40), r(1.0,20) = v(1.1,40), v(2.25,20) = 
r(2.50,40) and r(2.50,20) = r(2.75,40). 

Although it is possible to estimate n without the estimation of E, it is 
obviously better to estimate n and E together. This does not require actual 
simultaneous calculations. For example, we can get a first estimation of n by 
assuming E/R Tp = 30, then we can use this value of n to calculate a first 
approximation of E and with this E we can get a better approximation of n, 

TABLE 3 

The dependence of the degree of asymmetry on I: and E/RT, 

n dn, 20) r(n. 40) 

0.90 062 0 57 
1.00 0.67 0.63 
1.10 0.73 0.68 

1,35 
1.50 
1.65 

1.80 
2.00 
2.20 

2.25 
2.50 
2.75 

0.86 
0.94 
1.02 

1.09 
1.19 
1.29 

0.80 
0.87 
0.94 

1.01 
1.10 
1.18 

1.31 1.21 
1.43 1.31 
1.56 1.42 
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and so on. In consequence of the slight dependence of r on E/RT,_, this 
simple iteration rapidly converges and the final value of n only shghtly 
“inherits” the errors of the calculated value of E. 

The sensitivity of n on the experimental errors of t can be seen from 
Tables2 and 3. In this way, we can estimate the sensitivity of E on the 
experimental errors of I’. In the previous section, we showed that an error of 
0.25 of tz results in an error of 8- 10% of E. Table2 shows that an error of 
Srz = 0.25 is caused by an experimental error of Sra 0.10-0.14 in the range 
0.75 c )z < 2.5. and at smaher values of n the sensitivity is more favorable. 

ESTIMATION OF THREE PARAMETERS FROlM A SINGLE NON-ISOTHERMAL 
THERMOANALYTICAL CURVE 

In this section, we shall briefly show that the information content of a 
non-isothermal thermoanalytical curve IS sufficient for the unique determina- 
tion of parameters E. log A and tr. We shall also deal with the information 
content of a thermoanalytical curve in the case of a general f(x) function in 
eqn. (1). 

First. let us consider that the simple geometric characterization of a 
thermoanalytical curve requires at least three independent parameters which, 
among others may correspond to the following three independent geometric 
properties: (I) the position of the peak; (ii) the width of the peak; and (iii) 
the degree of asymmetry. (Here we do not make distinction between integral 
and differential thermoanalytrcal curves. Geometric properties (I)-(iii) can 
be defined in both cases.) In the case of a good fit, the fundamental 
geometric characteristics must be approximately the same on the measured 
curve and its mathematical approximation. Thus if a mathematical model 
can provide good approximations of thermoanalytical curves in a wide range 
of position, width and degree of asymmetry, it must have at least three 
independent adjustable parameters. 

BesIdes the theoretical Independence, however, we have to examine whether 
the parameters are sufficiently independent for the actual parameter estima- 
tions. In other words, we have to show that the change of the value of a 
given kinetic parameter cannot be “compensated” by the proper adjustment 
of the other kinetic parameters without a considerable change of at least one 
of the fundamental geometric characteristics. 

The considerations of the preceding section, especially eqn. (21), show 
that the degree of asymmetry is almost entirely determined by function f(x). 
Thus if a function f(x) is suitable to describe thermoanalytical curves in a 
wide range of degree of asymmetry, it must have at least one adJustable 
parameter correlated with the degree of asymmetry. The strong correlation 
between the formal reaction order and the degree of asymmetry is well 
known. For example, an experienced researcher can distinguish a first order 
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and a contracting sphere (n = 2/3) reaction by a uuick glance at the 
measured non-isothermal curve. 

The correlation between E and the geometric properties can be deduced 
from eqn. (13). If f(x) does not contain variable parameters, eqn. ( 13) shows 
that any change of E is accompanied by the change of the width, ( Tz - T,), 
or (and) by the position of the peak, TP. If f(x) contains variable parameters, 
a change of E may be compensated by the change of (ln[g(x,)/g( x,)]). 
From a mathematical point of view, one may construct such f(x) functions 
at which ln[g(x,)/g(x,)] can vary without considerable variation of the 

shape of the corresponding curve g(t). However, we do not believe that 

such functions may arise in the case of a useful mathematical model of 
thermoanalytical curves. 

In the previous sections we have shown that if f(x) = (1 - x)“, then the 
value of ln[g(x,)/g(x,)] cannot be changed considerably without a consider- 
able change of the degree of asymmetry. Using the data of Tables 1 and 2, 
we could formulate this relationship by the following rough approximation 

(25) 

Using this approximation we get the followmg approximation from eqn. ( 13) 

(26) 

Equation (26) shows that a change of the value of E cannot be compensated 
by the proper adjustment of the other kinetic parameters (log A and n) 
without a considerable change of at least one of the geometric properties. 

Finally, we shall briefly deal with the estimation of the third parameter. 
log A, in the case of f(x) = (1 - x)“, Let us take the logarithm of eqn. (21) at 
the point of the peak maximum 

log g( x,) = log A - 0.434( E/RT,) - log( E/RT,) 

+m(Tp/a) + 1% 9(E/RTp) (27) 

Calculating the numeric values of xP, we found that log g(x,) is between 0 
and - 0.1 if E/RT, a 20 and n G 2.5. Thus log g(x,) can be neglected. In a 
similar way, log q( E/R*,) can also be omitted and we get 

log A = 0.434( E/R*,) + log( E/R*,) - log( *,/a) (28) 

Equation (28) shows that, in a good approximation, 1ogA is the functron of 
only E, Tp and the heating rate, a. Since a significant change of E is always 
accompanied by a considerable change of at least one of the geometric 
parameters, no significant change of log A can be compensated by the proper 
adjustment of E and n without a considerable change of at least one of the 
geometric parameters. 



The correlation between log .A and the fundamental geometric parameters 
can be explicitly expressed as follows. Since the logarithmic terms vary only 
slightly with E/RT, andTp 

8 log/I = 0.434 s( E,/RT,) (29) 

Taking the differential of (E/RT,) gfves 

d( E/XT,) = (E,‘RT,)(dE,‘E - dT,,‘7,) (30) 

Combining eqns. (26). (29) and (30) we get the relationship between S 1ogA 
and the geometric parameters 

8 logA = 0.434( E/RT,)(0.65 6/s+ STp/Tp - S( T, - TJ,‘( T, - T,)) w 

Keeping m mmd that E/RT, is usually between 20 and 40. we can read from 
eqn. (31) that the value of IogA cannot be changed significantly without the 
considerable change of at least one of the geometric parameters. For exam- 
ple, a change of 8 IogA = 1 may correspond to 

(i) an increase of 6- 12% of Tp 
(ir) a decrease of 6- 12% of (T, - T,) 
(iii) an increase of r by 0.09-0.18 

H\‘PERROLIC TEMPERATURE PROGRAMS 

The conslderatlons of the present paper remain valid at hyperbolic T(t). 
The deductions. however, are simpler in that case, since terms 2 In T and 
2 In( Z/T,) do not arise in eqns. (7)-(g). Thus eqn. (13) also becomes 
simpler 

VQ’R)(T, - T&/T,‘= (ln[g(-v&g(-y,>]> (32) 

In the case of hyperbohc hentm g programs, function q( E/RT) in eqns. 
(21-24) must be replaced by unity. thus the degree of asymmetry depends 
entirely on the parameters of funclion f(s). 

CONcLUSIONS 

We have briefly dealt with the frequently used types of kinetic evaluation 
methods thermal analysis: 

(i) evaluation from isothermal curves; 
(ii) evaluation from non-isothermal curves of different heating rates; 
(iii) evaluation of two parameters from a non-isothermal curve; and 
(iv) evaluation of three parameters from a non-isothermal curve. 
We do not rank these types of evaluation; each has its own merits and 

drawbacks and the nature of the examined samples determines which type of 
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evaluation is the most favorable. Thus the methods based on the simulta- 
neous evaluation of more than one curve require that the kinetic parameters 
themselves do not vary from measurement to measurement, i.e., they require 
that the distribution of the lattice errors, impurities and the geometric 
parameters of the samples do not vary from measurement to measurement or 
do not influence the kinetic parameters. On the other hand, the separate 

evaluation of the curves requires that neither side reactions nor the errors of 
the temperature program could distort the shape of the thermoanalytical 
curves. Although there may exist such materials at which none of the 
available kinetic evaluation methods is applicable, we firmly believe that a 
10% precision of the kinetic parameters is usually an attainable goal, 
provided that, eqn. (1) describes well the reaction. The actual conditions of 
this precision can be found in the discussion of the corresponding equations 
and tables. However, we do not state that better precision cannot be 
achieved. 

From the considerations of this paper it follows that the kinetic com- 
pensation effects are not the necessary consequences of the “ill-conditioned 
nature” of eqn. (1). Although “ill-conditioned” (non-correct) evaluation 
methods are frequently used in thermal analysis, correct, well-condrtioned 
techniques are also available and, as we have shown here, the correct 
methods are not necessarily more complicated than the non-correct ones. 
(Regarding the observed kinetic compensation effects, however, we cannot 
exclude the influence of the frequently used non-correct methods.) 

We have also dealt here with the correlation between kinetic parameters 
E, n, 1ogA and the geometric characteristics of the thermoanalytical curves. 
These considerations can be directly applied in the least squares curve fitting 
of kinetic equations to the thermoanalytical curves [14]. We should like to 
emphasize here again that the determination of three kinetic parameters 
from a thermoanalytical curve always requires agreement between the funda- 
mental geometric characteristics of the calculated and observed thermoann- 
lytical curves. If this agreement is not checked, one of the parameters may 
appear redundant. (This may be the cause of the non-correctness of an 
evaluation method.) However, one of the kinetic parameters may actually be 
redundant if only a short section of the measured curve is evaluated. The 
evaluated section of the therrnoanalytical curve should have at least three 
independent geometric characteristics in order to determine three kinetic 
parameters. 

Finally, we should like to underline that the evaluation of partially 
overlapping thermoanalytical peaks can yield more than three kinetic param- 
eters, provided that the geometric properties of the individual peaks are not 
concealed completely [ 14- 161. 
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