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ABSTRACT 

An Iterative method is described for determinmg the reactlon order and activation energy 
from TG curves. The method makes use of equations to represent the temperature Integrals 
which are derived using numerical relatlonshps m terms of E, T, and emplncal constants. 
Like the method of Reich and Stivala, the computation involves varying the value of n until 
the appropriate linear relationship gives an intercept of zero. The slope of the line IS YEx, 
where Y and X are constants in the equation 

-logI=YEX(l/T)+log E”+U 

The method IS tested using data obtained by means of a fourth order Runge-Kutta solution 
of the rate law for bcth Arrhenius and non-Arrhemus cases. 

INTRODUCTION 

Most of the methods of analyzing TG data are based on the rate law 

where a is the fraction of reaction completed, T is the temperature (K), p is 
the heating rate, E is the activation energy, n is the order, and R is the molar 
gas constant. Owing to the fact that the temperature integral 

I= Te--E/RTd~ 
/ (2) 

0 

has no analytical closed from, approximations based on 

1-(1-a)‘-n=A 
(l---n) P (3) 

abound [l- 131. Most of these methods make use of a truncated series 
approximation of the integral. It has also been suggested that non-linear 
heating rates be used to make the direct integration possible [I43 and thus 
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avord errors introduced by approximations of the integral. 
Recently, Reich and Stivala described a compact computer method that is 

based on the approximate equation 

1 - (1 -a)‘-” 

(1 -11) (4) 

in which the temperature integral IS represented by a truncated series 12,153 
Since E>>2RT. (1 - ZRT/E) is approximately constant and the two point 
form of eqn. (4) is 

*n 

i 

l- (1-1Yp 
1 - (1 -CX,+l)‘-n 

(++_;(+_J-) 

Thus, when 

(5) 

i 

1 - (1 -cXJ-” q+, 2 
y = In 

1 - (1 - CX,+,)‘-” ( ) 7; 

and 

( 1 1 _v= _-- 
T T+i 1 

eqn. (5) represents a linear equation with a slope of -E/R and an intercept 
of zero. Linear regression is then performed iteratively to find t!re value of n 
resulting in an intercept of zero [ 161. One of the deficiencies of this method is 
that it is valid only for reactions obeying the rate law of eqn. (1). For this 
case, only the Arrhenius temperature Integral [eqn. (2)J is approximated by a 
truncated series and the method thus represents a special case. Further, the 
truncated series and the approximation that (1 - 2RT/E) is a constant are 
not equally valid for all values of E and T. What is needed is a general 
iterative method that is not Zirnited to a rate law of the form of eqn. (1) but 
one that will be valid for 

- ,$‘T”’ e-E/Rr 

where m = 0, -C l/2, -Cl,... This paper describes such a method where the 
temperature integrals 

I= 
/ 

‘T~nr e--E/RT dT 
0 

are approximated by numerical relationships [ 17,l SJ. 
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THEORY 

If we start with the rate law 

dtu A dT=p(l -a)nTme-E/RT 

integration when n # 1 leads to 

I- (I- a)‘- A 
0 -4 ‘pl, TTrn e-.s/RTdT 

(6) 

(7) 

For two different temperatures, ‘I: and T+l, there wiII be two different 
fractions of reaction, CY, and LX,+ ], respectively, Taking the ratio of these two 
gives 

Simplifying and taking logarithms yields 

log 
1 - (1 -Ly,)‘-‘” 

1 -(I 
l-n 

- al+1 ) I (9) 

which can be written as 

b3 
1 - (1 - a,)*-” 

1 - (1 - a,, I)‘-n 
= log &YTrn e --E/RT dT- log 

J 
‘+I*” e--E/RT do 

0 

We have recently shown that an accurate representation for the temperature 
integral is afforded by empirical relationships in the form 

-logI=N(I/T)+D (11) 

or, more precisely 

-logZ=YEX(l/T’)+IogE”+U (12) 

where X, Y, W, and U are constants that have been tabulated for integrals 
involving several values of 112 [ 17,181. Therefore, we can write 

1% 
1 - (1 - a,)*-’ 

I - (1 -*,+I)‘--n I = - (YEX(l/T) +logEW+ u) 

+(YEX(l/T,,,)+logEw+U) 0% 

Since the last two terms of eqn. (12) are not functions of temperature, eqn. 
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( 13) simplifies to 

and. therefore. values of only Y and X are required for the particular value 
of M used. In the method developed in this work, the left-hand side of eqn. 

(14) and (l/T+i - l/T;) are subJected to linear regression starting with 
it= 0.1. The iterative variation of ~7 is carried out until the intercept is closest 
to zero as before [ 16.191. Then 

- Slope = YE x 05) 

or 

log( - Slope) = log Y + X log E (16) 

from which E IS readily determined using the tabulated values of Y and X 
previously reported [ 18.20]. 

TESTING THE METHOD 

In order to test the method, values of cy are needed at 
tures for known values of E, A//3, r~, and m as they appear 

various tempera- 
in eqn. (6). Since 

the purpose was to determine if the iterative method would yield accurate 
computed values of n and E, these parameters were given values of 17 = 1.000 
and E= 100 kJ mole-’ to compute the (cr, T) data. The values of (Y at 
various temperatures were then computed by means of a fourth order 
Runge-Kutta program using a TI-59 programmable calculator. This method 
has been shown to yield extremely accurate results [21]. The (cy, T) data 
resulting from numerical solution of eqn. (6) using values of E, A/& and n 
given above and using values of nz = 0, -C l/2, -t 1, 4 3/2, and k-2 are 
shown in Table 1. To analyze these (a, T) data, a program was written to 
perform the iterative method described by eqn. (14). Details of the program 
and its use will be reported elsewhere. Because this program produces an 
iterative evaluation of the intercept nearest zero for the correct n, the 
procedure starts with II = 0.1 and n is incremented by O.lOOCOl (so that II is 
never exactly I) until the intercept becomes negative. At this point, the value 
of n is reduced to that of the previous iteration and incrementing by 0.01 
occurs so that the “correct” n is determined to two decimal places [16,19]. It 
is then necessary to evaluate E from the slope of this regression relationship 
for the “correct” n. Thus, the values of Y and X used to determine E as a 
function of l/T in eqn. ( 12) are required and these are shown in Table-2 for 
each value of m. 
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TABLE 2 

Values of X and Y of eqn. (12) for different values of m 

m X Y 

2 0.93 139 310.184 
3/2 0.93943 297.632 
1 0.94762 285 404 
l/2 0.95595 273.489 
0 0.96443 261.884 

-l/2 0.97309 250.578 
-1 0.98 187 239.6 1 I 
- 3/2 0.99086 228.9 I 9 
-2 0.99993 218 593 

RESULTS AND DISCUSSION 

The ( CY, T) data shown in Table 1 were subjected to analysis by the 
iterative method described m this work. Table3 shows the results obtained 
by means of these computations. These results show that the iterative 
method produces an intercept that differs from zero by about 0.007 at most. 
In each case, the value of n is within 0.01 of the “correct” value of n = 1.00 

used for the computation of the ((r, T) data. Values of the intercept could be 
found closer to zero by using increments for n smaller than 0.01. Although 

TABLE 3 

Results computed using the iterative procedure when analyzmg (a,T) data shown tn Table 1 

m BeSt”n Intercept - Slope - Corr. Coeff. Calcd. E 
(kJ mole- ’ ) 

2b 1.00 
2= 1.01 
3/2 c 0.99 
1 1.00 
*/2 0.99 
0 0.99 

-l/2 0.99 
--I 0.99 
-3/2 1.00 
-2 1.00 

- 0.0057 1 I 11262.806 0.999874 197.94 
0.001017 8720.059 0.996424 150.39 
0.007135 8695.624 0.999525 151.96 
0.005144 5758.696 0.9996 12 99.67 
0 004124 5683.246 0.9998 18 99.99 
0.006410 5689.732 0.999835 101 83 
0.001860 5552.899 0.999904 101.01 
0.003079 5529.432 0.999927 102.3 1 

- 0.003063 5293.001 l.OOOOOO 99.59 
0.000242 5232.320 l.OOOOOO 100.17 

a n = 1.00 used to calculate the (a,T) data by the Runge-Kutta method. 
b AvdueofE=200kJmole-’ was used to calculate the (a, T) data. 
’ A value of E = 150 k.J mole-r was used to calculate the (a, T) data. 



the results shown in Table3 have been obtained using data calculated with 
?l= 1.00, other values of n produce similar results. 

The values of X and Yin eqn. (13) were obtained from linear regression of 
-log I and l/T and then treating the slopes and intercepts by linear 
regression 118,201. Thus, there are slight errors in these empirically obtained 
values of X and Y. Further, the values of the integrals themselves are not 
exact [5,17,18,20]. Although the value of Q at each value of T is accurately 
determined by the Runge-Kutta method [21], the solutions are also inexact. 
Finally, like the method of Reich and Stivala, the iterative method described 
here makes use of linear regression to determine when the intercept is closest 
to zero. Thus, the method described here makes use of a considerable 
amount of numerical analysis and the results of other numerical methods. 
While each of these procedures could be made slightly more accurate, the 
increase in computation is hardly worth the effort. This is quite evident from 
the results shown in Table 3. The total process represents the numerical 
integration of the temperature integrals, determining X and Y [l&20], 
calculating the (a, T) data by a fourth order Runge-Kutta method [21], and 
the present iterative method of analyzing the ( LY, T) data. In fact, the results 
shown in Table 3 give verification of the consistency of the calculations and 
that the errors are indeed negligible in each process. 

An interesting feature of the iterative computation is that the slope varies 
considerably even for small differences in intercept as IZ is varied by units of 
0.01. For example, in Table 3 in the case where m = 0, the trial value of 
n = 0.99 produces an intercept of 0.006410 while the trial value of II = 1.00 
yields an intercept of -0.006942. Both of these values are close to zero and 
the actual value of n indicated by the data is between 0.99 and 1.00. 
However, the corresponding slopes are 5689.732 and 5461.433 when iz = 0.99 
and n = 1.00, respectively. The values of E calculated from these slopes are 
10 1.832 and 97.60 kJ mole- I, respectively. Thus, an error of about 2% results 
in the calculated value of E in either case. An intercept closer to zero can be 
obtained but it requires that increments in n be smaller than 0.0 1. It is 
readily apparent from this example that an error in E of perhaps 22% could 
result simply because of the difference in the slopes produced by an iteration 
step for n of 0.01. Obviously, the actual difference from zero that can be 
tolerated in the intercept will depend on the values of E and n. However, 
from this example, it is clear that determining E to a greater accuracy than 
e-2% could require iterations smaller than 0.01 in n. While it is not difficult 
to program the computation with an iteration of say 0.001, it is meaningless 
from a phenomenological point of view to try to interpret a value of 11 
known to three decimal places instead of two. Furthermore, it is highly 
unlikely that experimental data would ever justify such a procedure 1221. 
Finally, the example discussed here shows that a sophisticated data analysis 
technique does not remove all the errors in calculating E. Reducing the 
increment in n to values smaller than 0.01 can increase the accuracy of the 



computation, but it cannot remove experimental errors in the data which 
render additional numerical analysis useless. It appears that dais analysis 
methods are now available that are far more precise in calculating kinetic 
paramleters than the experimental data are in providing input data. 

For the case where 772 = 0, the temperature integral is of the Arrhenius 
type and the results are directly comparable with those obtained by the 
method of Reich and Stivala [ 161. We have previously given (cy, T) data for 
such a case computed with E= 100 kJ mole-‘, A//3= 3 X IO’* min-‘, and 
n = 0. l/3. l/2. 2/3, 1, 4/3, 5/3, and 2 [21]. These (a, T) data have been 
analyzed by the present method and the method of Reich and Stivala. 
Table4 shows a comparison of the results obtained by the two iterative 
methods. It is readily apparent that two methods give virtually identical 
results for this case of Arrhenius behavior. The activation energies are, in 
fact, identical within the errors involved in the variation in slope produced 
by an iteration of 0.0 1 in II. 

The value of the present method of analysis of TG data lies in the fact 
that the values of the temperature integral have been accurately determined 
by numerical integration, and the constants in eqn. (12) have been de- 

TABLE4 

A comparison of results obtamed usrng the present method and the method of Reich and 
Stwala 

I1 

Actual Calcd. 

Intercept - Slope -Corr. Coeff. E 
(kJ mole-‘) 

- 
Present method 
0 0.01 
l/3 0.33 
l/2 0.50 

v3 0.66 
1 0.99 

4/3 1.33 
5/3 166 

2 1.99 

- 0.00576 1 5491.03 0.99983 1 98.15 
-0 W24 5582.23 0.999966 99.83 
- 0.002764 5537.69 0.999936 99.01 

0.003598 5641.95 0.999933 100.95 
0 006410 5689.72 0.999835 101.83 

- 0.0025 11 5540.69 0.999979 99.07 
- 0.002237 5540.56 0.999998 99.07 

-0.001545 555 1.36 0.999999 99.27 

Retch and Sttvala method 
0 0.02 - 0.000074 
l/3 0.34 0.004982 
l/2 0.50 0.0 10463 
2/3 0.67 0.005684 

1 1.00 0.007294 
4/3 1.34 - 0.003485 
5/3 1.67 - 0.003742 
2 2.00 0.005388 

12055.26 0.999636 100.23 
12 129.45 0.999755 100.85 
12211.07 0.999984 101.53 
12137.11 0.999822 100.91 

12 155.54 0.999986 101.06 
11981.94 0.999825 99.62 
I 1946.07 0.999993 99.32 
12 112.45 0.999986 loo.71 
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termined for various m values [ 18,201. Thus, the accuracy of the expression 
representing the temperature integral is assured. Second, the constants in 
equations similar to eqn. (12) have been tabulated for cases having tempera- 
ture dependent frequency factors [ 18,201 making the same iterative method 
applicable to these cases as well when the appropriate m value is known for 
the reaction. Finally, the constants in eqn. (12) have been evaluated for a 
large range of E and T values. Therefore, the present method is accurate for 
all temperatures and activation energies. It is also general in the sense that it 
can be used for cases involving both temperature dependent and temperature 
independent frequency factors. 
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