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ABSTRACT 

It is suggested that dete rmining the kinetics of a sohd-state decomposition requires at least 
two experiments. The kinetic function can be determined from an isothermal experiment and 
the rate constants from a dynamic experiment. A method is described by which the rate 
constants, namely activatron energy and frequency factor, may be evaluated from the 
dynamic data if a single kinetic function applies throughout almost the entire course of the 
reaction. For special cases of the kinetic function, the rate constants can be simply calculated 
by noting the points of maximum positive and maximum negative slopes on the experimental 
curve of reaction. 

There are many decomposition reactions of current interest, in which the 
reactant is in a solid phase. The rate of a reaction involving the solid state 
can almost always be expressed as 

%=A exp(-EE/KT)f(l -a)GKf(l -cu) 

where cy is the molar fraction of the reactant which has decomposed by time 
z, A is the frequency factor, E is the activation energy, T is the temperature, 
and k is the Boltzmann constant. Often the kinetic function f( 1 - ar) and the 
rate constants A and E remain unchanged throughout a major ?art of the 
course of a reaction. This note describes an alternative approach in measur- 
ing these parameters of such a reaction, requiring minimum experimental 
and numerical work. In contrast Cl], the kinetic analysis of a multi-stage 
reaction is much more complicated, and sometimes gives unambiguous 
results only after the plausibility of alternative physical mechanisms for the 
reaction has been carefully evaluated. 

Many methods have been proposed for kinetics determination by dynamic 
experiments, in which the reaction is made to proceed under a linearly rising 
T. Dynamic measurements to a high accuracy can easily be made with 
modem thermoanalytical instruments and do not suffer from the zero-time 
problem of isothermal experiments. However, f( 1 - a) cannot be reliably 
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ascertained from dynamic data, and those methods for finding E and A 
which presume no knowledge of the kinetic function require data from many 
experiments performed at different + G dT/dt [2]. Even when f( 1 - (r) is 
known, the analysis of data at one cp involves considerable numerical 
processing in any of the methods currently used [2]. 

It is suggested here that a minimum of two experiments are needed to 
determine f( 1 - au), A and E for the single stage of a reaction under 
investigation. A dynamic experiment is carried out, from which the ‘onset’ 
and “completion’ temperatures of the reaction at the chosen + can be 
estimated. The second, isothermal run is then made at a temperature roughly 
half way between these two approximate values. As far as possible the two 
experiments should be performed under identical conditions, excepting of 
course the temperature. The isothermal data are used to confirm f( 1 - LY) 
according to, for example, the log-ln method described in ref. 3. The 
dynamic data are then analyzed. A simple method is considered here which 
allows the convenient calculation of E and A from the dynamic experimental 
tune, representing da/dT as is the case when DSC, DTG, DTA or any of 
the other differential instruments has been employed. In general, three 
points of special significance stand out on the curve namely, maximum 
positive slope, zero slope and maximum negative slope, giving rise to five 
identifiable temperatures T,-T,, as illustrated in Fig. 1. The ‘onset’ and 
‘completion’ temperatures, TO and T,, are also shown but their (finite) values 

r, T, 

Fig. 1. Trace of reaction rate vs. temperature that increases linearly with time. Ftve tempera- 
ture values, T, -TS, can be specified by the trace; the ‘onset’ and ‘completion’ temperature-s, TO 
and T,, respectively, are less well defined. T, and Tb are any pair of temperatures at which the 
reachon rate is the same. 



95 

are really not sharply defined. The other five temperatures are given by 

T. d2a da 
3- dT* 

-=o, dT”tO (2) 

Now, among forms of f(1 -a) commonly met, those that may apply to 
almost the entire course of a reaction are (1 - a)‘-‘/“, 12 = 2 or 3, and 
(1 -cw) [-ln(1 -a)]‘-‘/“, n = 1, 2, 3, 4, . . . . Other usuai forms imply 
constant or accelerating reaction rates, and are unlikely to remain valid 
beyond a short stage at the beginning of the reaction. Equation (1) may be 
rewritten as 

J 
a da 

0 f(l-4 
= &=I $ 0 

(5) 

which, for the two forms of f( 1 - cu) stated above, becomes, respectively 

a=l-(l-1)” n=2or3 (6) 
a= 1 -exp(-_I”) n= 1,2, . . . (7) 

It is found here that, for certain cases of eqns. (6) and (?), E and A may be 
calculated very quickly from T2 and Tz_ Unfortunately, the calculation in the 
other cases has to be slightly less direct, and no elegant relations between the 
rate constants and T,, T3 or T5 have been uncovered. Consider eqn. (6). 
Successive differentiation gives 

_!i%=- E da n-1Kda ----- 
m-2 dr kT* dT l-I+dT 

d3a E d*a 2E da n-l K d2a -=--------- 
dT3 kT2 dT2 kT3 dT l--I+dT* 

(9 

n-l K*da n-l E Kda --a---- 
+(+I)~ ~2 QT I--1kT2 9 dT 00) 

If eqn (9) is put into eqn. (lo), and - 2 E/( kT3) is ignored compared with 

* The evaluation of E from T, and T4 was investigated in a recent paper [4]. However, the 
derivation there did not use the correct form of the kinetic equation [eqn. (5) here] and 
appears, therefore, to be erroneous. 
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( E/kT)E/( kT3)-a simplification which is acceptable unless, exception- 
ally, the activation energy E is very low and correspondingly T in the 
experiment is high- then eqns. (3) reduce to 

( Pf- l>(n-2)X2-3+ 1)x+ l=O (11) 
where XC (K/MkT2/E)/!1 -0. 

When n is 2, only one solution exists-there is no point of maximum 
negative slope on the da/dT curve. For the II= 3 case, however, expressing 
the ratio and then the product of the two solutions by the coefficients of the 
quadratic equation while making use of relation (8), finally gives 

(13) 

Note that in eqn. (12) only the relative heights of the curve at 7++ and T4 are 
required and they can be read directly from the chart recording. In practice, 
the terms involving them as well as that in the middle of the square bracket 
are often small compared to the leading term. Hence, as a first estimate 

15.4 
E* (l/T2 - l/T4) 

J mole-’ or 
0.159 

(l/T2 - l/T,) meV 

where T2 and T4 are in Kelvin. 
When n = 2, eqns. (6) and (8) lead to 

dar 2A 
----D--(1 
dT + 

- (Y)“~ exp( -E/kT) 

(14) 

(1% 

Thus, by drawing any horizontal line to cut the experimental dcu/dT curve 
at two points, corresponding to temperatures r, and Tb, respectively, one 
gets 

E =ikln 06) 

In this case, slightly more work is needed to find CY, c cu( Ta) and e& The 
quickest way, experience suggests, is by photocopying the curve and cutting 
out the area under it. The area is weighted, as a whole, with the part outside 
the line at Tb removed, and then with that beyond Ta cut off. The ap- 
propriate ratios give (rb and a,. 

Let us now consider the kinetic type (7). 

dcu 
d;T = 12P- l exp( --I”)$ 07) 
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(18) 

(19) 

and eqns. (3) eventually take the form 

+tr ln(l -Cr)]y+ 1 =o (20) 

where Y = (K/+)( kT2/E)/I, and the last term on the left-hand side has 
been obtained again with the assumption that E/kTa 2. When n is I, taking 
the ratio and then the product of the two roots of eqn. (20) we see that 

(21) 

It may be necessary to emphasize that, after E has been calculated, the 
magnitude: of E/kT, should be considered and the validity of the original 
assumption established. The same consideration applies to the use of eqn. 
(12), and usually the expression for E may again be simplified. Unless the 
heating rate adopted in the experiment has been very low, 2”’ and T4 are 
usually fairly close together, and if (say) T, - T, G AT-K 0. lT,, then 

~~~~~,r’~~~u”.~~2~~~~s~ $ F >,C$S- y >3= 4 2. -93 

SO r&4?, 20 be22eiT 252a2 XB accuracy 

r, T22 
E-O.166 1 _ l,(l f ATiT,) a0.166hTmeV (23) 

where T2 and AT are in Kelvin. 
Unfortunately eqn. (20) cannot be solved for n = 2, 3, . . . . Proceeding as 

in the previous case, one gets 

analogous to eqn. (16). 
A test of eqn. (23) has been made on data obtained by computer 

simulation. The curve in Fig. 1 was generated by a computer programme 
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according to 

(25) 

where $I was 1 K s- *, K- - (1012/s) exp( - 1.16 X lo4 K/T), i.e. E= 1 eV, 
and T increased to 420 K. As measured from the graph, T. and T4 are 372 
and 394 K, respectively. (This can be accurately done by drawing the 
respective line of maximum slope, and taking the mid-point of that segment 
of it which really cannot be distinguished from the dar/dt curve.) Thus 
AT= 22 K GK T2, and eqn. (23) gives 1 .OS eV, in good agreement with the 
original value. 

In conclusion, an approach to kinetic analysis has been suggested which 
requires only two experimental runs to be performed. An isothermal experi- 
ment confirms the type of kinetic function, and rate constants are de- 
termined from dynamic data, for which calculation several formulae have 
been derived. In particular cases of kinetic functions given in eqns. (6) and 
(7), an appr-ximate formula for the activation energy takes the form 
E = 0.16 Tz2/aT as in eqns. (14) and (23). The method may be of relevance 
to the situation when a rapid assessment of the therma reactivities of various 
chemicals is required. 
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