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(Received 20 January 1982) 

ABSTRACT 

In Part I of this paper, a new technique for the analysts of densiflcation kinetic data of 
powder compacts, obtained during sintenng under constant heating rates, has been suggested. 

In this part, the results of investigations on the densification charactenstics of haematite 
compacts, smtered under linearly rising temperature, are presented. Small cyhndrical corn- 
pacts, prepared from haematite powder of varying particle sizes, were sintered in air inslde a 
vertical tube-furnace m the temperature range 1173- 1373 K. Contmuous and in sttu record- 
ing of lmear shrinkage (AL) of the compacts was done by a mechanical-type dllatometer. 
From the recorded values of AL, the values of a at different temperatures (T) and times (t) 
were calculated. 

These kinetic data (a vs. T) were then analysed according to various methods suggested in 
Part I. The most probable rate law governing the denslftcation processes is seen to be the 
Ginstling-Rrounshtein equation which indicates a three-dimensional diffunon-controlled 
mechanum. 

The results (E and A) obtained for various sets of experiments conform excellently with 
the ‘Kmetlc Compensation Effect’ whch is usually observed in many non-Isothermal processes. 

INTRODUCTION 

The present work was undertaken to study the process of densification of 
powder compacts while sintered under constant heating rates. In Part I of 
this paper, mathematical methods of analysing non-isothermal densification 
kinetic data have been proposed [ 1 J. In I his part, results of such analyses, as 
obtained by analysing the densification kinetic data of haematite powder 
compacts are presented. 

0040-6031/82/0000-oooO/%O2.75 0 1982 Elsevier Scientific Publishing Company 
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EXPERIMENTAL 

(r) Haemorite powder 

A typical Indian iroll ore was selected for this study. It was crushed and 
sieved to four different particle size fractions, e.g. I(-?5 pm, -663 @xx& 
II{-63 pm, +553pm), III(-53 pm, +45 pm). IV(-45 pm, +38 pm). 
Chemical analyses showed that rhe variations in silica and alumina contents 
in different size-fractions were between 2.61-2.72% and 3.91-4.08%, respec- 
tively. Theoretical density ( pth) of the haematite powder is 5200 kg mW3 as 
determined by pyknometry. 

(x I) Con tpactiort 

Small cylindrical compacts were prepared by pressing the powder from 
both ends in a die with a compaction pressure of 49.03 MPa. A suspension 
of zinc stearate in acetone was used as a lubricant for the die and punch. 

(111) Sin?errng 

The compacts were sintered in a vertical tube furnace @x.z&J~ e&22c~s, 
silicon carbide rods) in an ordinary atmosphere. Linear shrinkage behaviour 
elf the rGmpa&ls during stilering was noted with the he2p oE a di1aWme~er 
{mechanicai type>. The dilar0meW cons&ts of one ve..Gc& quatfi iube 
@:0& a2 t’tte W<<GX%s endi ?& 0ne UFZX&& quartz rud berW%?!B WtiZcb .GW 
compact I% pfaced. The compact is located on the flat bottom of the tube, the 
~UZ& P&W T&I X&S upon ttzt compact and acts as a link between the top 
surf&e of the compact and a dial gauge (whose least count is 0.0001 in. or 
0.254 X 10e5 m). Any change in length of the compact is thus read in the dial 
gauge. 

Thirt;i six compacts of haematite were heated under constant heating rates 
from room temperature (- 298 K) to 1373 K. The initial dimensions, mass 
( M) and porosity (P) of the green compacts are given in Table 1. Rate of 
heating (#!), onset temperature (r,) (i.e. the temperature from which mea- 
surable shrinkage takes place), total time ( tr) of sintering, [here, 1, = (1373- 
r,)//3] for each compact are also shown in Table 1. 

Since the objective of this investigation was to study the kinetics of 
early-stage den&cation, GX~ ~=Px$ was sirztr~& up KJ a vo~unse s&r& 
&age i&v/‘%) of 12% (approx.), which corresponds to o = 0.3 (approx.). 
Subsequent SEM studies have not indicated initiation of grain growth 
phenomena within this extent of densification. 
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RESULTS AND DISCUSSION 

Linear shrinkages (AL) of the compacts during sintering at definite time 
intervals were noted and with the help of eqns. (1) and (2) from Part I [I] the 
corresponding values of CY were calculated. For instance, the values of AL 

TABLE 3 

Results of analysis of densification kinetic data for 36 haematite compacts according to 
Ingraham’s method 

Compxt B 
No. (K min-‘) mole- ‘) 

Correlation 
coefficient 

Variance 

I/l 10 195.02 0.977 0.054 13 

I/l 10 183.05 0.920 0 24475 

I/3 10 214 87 0 945 0.15104 

I/4 5 182 71 0.966 0.0893 1 

I/5 5 175.59 

I/6 5 191.75 0.962 0.10848 

I/7 2 208.25 0.978 0 07309 

10 2 

1 10 211.01 0.973 0.10198 
II/2 10 220.8 1 0.940 0 21634 
II/3 10 213.65 0.970 0 10603 
II/4 5 187.90 0.990 0 03424 
II/5 5 222.32 0.993 0.02830 
II/6 5 225.42 0.993 0 03067 
II/7 2 167.97 0.956 0.11721 
II/S 2 155.62 0981 0 04260 
II/9 2 154.74 0.98 1 0.0422 1 
III/I 10 492.58 0.980 0.0786 1 
III/2 10 473.99 0.963 0.08479 
III/3 10 479.26 0.954 0.10948 
III/4 5 248.6 1 0.966 0. ? 3369 
III/S 5 187.99 0 984 0 04755 
III/6 5 170.19 0.962 0.09474 
III/7 2 149 09 0.994 0.01682 
III/8 2 145.83 0.994 001727 
III/9 2 150.18 0.994 0.01556 

N/l 10 57129 3.934 0.27665 

l-V/2 10 524.35 0 953 0.16073 
IV/3 10 512 88 0.953 0.15641 

w/4 5 426.34 0.942 0.2 1760 

N/5 5 417.30 0.923 0.28359 

w/6 5 425.08 0.922 0.24785 

w/7 2 139.67 0.976 0.05214 

w/g 2 219.22 0.952 0.13667 

m/9 2 223.95 0.952 0.14160 
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and the corresponding values of a at definite time and temperature intervals, 
as obtained while sintering specimen no. I/ 1, are tabulated in Table 2. 

In order to get the values of (dar/dT) at various temperatures, a six-order 
polynomial of this type 

01= A, + A,T+ A,T2 + A,T3 + A,T4 + A,T’ + A,T6 (1) 

is fitted to these data ((r vs. T) by a least-squares method (with correlation 
coefficient = 0.998) and the values of (dar/dT) at different temperatures (T) 
were calculated and are tabulated (Table2). Similar procedures were em- 
ployed to obtain the value of (Y and (dar/dT) at different temperatures for 
the other 35 compacts from the recorded values of AL. These data were then 
subjected to the mathematical analyses proposed in Part I [ 11. 

(i) Method of Ingraham 

According to this method, a plot of In ( /hx/T3) vs. (l/T) is expected to 
give a straight line fit of the experimental data. The experimental data 
obtained were fitted to this linear relationship by a linear least-squares 
method. In each case, a reasonably good mathematical fit is obtained. From 
the slope of each of the straight lines, the value of the ‘derived activation 

TABLE 4 

Results of analysis of denstfication kinetic data of compact No. I/l by the Coats and 
Redfem method usmg 17 kinetrc functions as given m Table 1 [I] 
Particle size: (-75 pm, +63 pm), p=lO K min-’ 

Functron 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 . 
13 
14 
15 
16 
17 

mole-‘) 

431.11 
434.67 
436.89 
438.82 
133.81 
95.08 
56.60 
37.22 

208.00 
209.13 
205.19 

92.28 
54.59 

35.84 
210.97 
216.83 
213.95 

A Correlatton Variance 

(I-W coefficient 

0 1629X lOI 0.98 1 0.2141 
0.1183X lOI 0.982 0.2067 
0 3273 X 1013 0.982 0.2140 
0.4025 X lOI 0.983 0.2035 
0.1788X lo3 0.980 0.0232 
0.5708 X 10 0.977 0.0127 
0.1790 0.971 0.0062 
0.3490x 10-l 0.962 0.0040 
0.5439 x 10; 0.98 1 0 0524 
04084X lo5 0.98 1 0.05 10 
0.8072 X 10’ 0.979 0.0538 
0.4197 x IO’ 0.974 0.0140 
0.1443 0.967 0.0067 
0.3062X lo- 1 0.957 0.0040 
0.1491 x lo6 0.982 0.0504 
0.2790 x 106 0.984 0.0472 
0.1022x 106 0.983 0.0483 
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energy (E)’ is calculated. The results are shown in Table3 along with 
correlation coefficients and variances of least-squares fitting. 

(ii) Method of Coals and Redfem 

The data (a vs. Tj. as obtained for specimen no. I/l (see Table2), are 
fitted to the linear relationship proposed by Coats and Redfem (cf. eqn. (4) 
from Part I [I]) using all the seventeen known forms (cf. Table 1 of Part I [ 11) 
of g(a). The results are shown in Table 4. 

From these results, it becomes difficult to pin-point the exact form of 
g(a). because for each of the seventeen functional forms of g(a), very good 
mathematical fitting of experimental data to the equation is obtained. This 
problem was faced [2] earlier while re-analysing the non-isothermal thermal 
dehydroxylation data of Mg(OQ as published elsewhere [3]. It was pointed 
out clearly that from the results obtained by analysing the non-isothermal 
kinetic data by the method of Coats and Redfern, a logical discrimination of 
the probable form of the governing rate law [i.e. g(a)] is extremely difficult. 
In order to circumvent this problem, a combined integral and differential 
method of analysis of non-isothermal kinetic data has been suggested [2]. 
These data (see Table2) were subJected to this method of analysis. 

TABLE 5 

Results 0:’ analysis of denslfxation kmetlc data of compact No I/l by the integral method 
usmg I7 kinetic functions (as gtven in Table 1 [ 11). Particle sLze: (-75 pm, +63 r*m). B = 10 
K min- ’ 

Function E A Correlation Vanatxe 
no. (W mole-‘) (W coefftclent 

1 307.18 0.1667X108 0.993 0.0412 
2 310.67 o.1193x108 0.994 0.0390 
3 312.96 03326X10' 0.994 0.0406 
4 314.85 0.4048x10' 0.994 0.0379 
5 9.96 O.527OX1O-3 0.350 0.0217 
6 -28 64 0.2215 x 1o-4 0.660 0.0326 
7 -67.24 O.9296X1O-6 0.866 0.0464 
8 -86.50 O.19O8X1O-6 0.900 00543 
9 84.24 0.1108 0.983 0.0076 
10 85.20 0.8130X10-' 0.983 0.0080 
11 81.39 0.1654 0.984 0.0069 
12 -315.06 O.1648X1O-4 0.705 0.0309 
13 -69.17 o.7643x1o-6 0.875 0.0450 
14 -87.96 O.1647X1O-6 0.904 0.0532 
15 87.13 0.2970 0.982 0.0086 
16 93.03 0.5447 - 0.981 0.0106 
17 90.06 0.2009 0.982 0.0095 
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(iii) Combined integral and differentral method 

These data (a vs. T) were analysed according to the integral method (see 
eqn. (5) from Part I [ 11) and the results are shown in Table 5. It may be seen 
that reasonable values of E and A are obtained (along with a good correla- 
tion coefficient and variance) only for the first four functional forms of g( (u), 
each of which is indicative of a diffusion-controlled reaction mechanism. 

Similary, the same data were analysed according to the differential method 
(see eqn. (6) from Part I [l]), and the results obtained are shown in Table6. 
Here also, it is seen that acceptable valties of E and A are obtained only for 
the first four functional forms of g( (Y). Similar observations were made while 
analysing the non-isothermal densification data of the remaining 35 speci- 
mens. So, it may be concluded that the densification process (early stage) is a 
diffusion-controlled process. Amongst these four functional forms of g( ar), 
the first (parabolic law) and the second [Valensi (Barrer) equation] one may 
be ruled out as they indicate one- and two-dimensional diffusion-controlled 
mechanisms, respectively, whereas, the densification process is clearly a 
three-dimensional diffusion-controlled process. Between the third (Gins- 
tling-Brounshtein equation) and the fourth (Jander equation) function, 

TABLE 6 
Results of analysis of densification kinetic data of compact No. I/ I, according to the 

differential 

-ve 
-ve 
-ve 
147.15 
148.81 
142.25 
-ve 
-ve 
-ve 

0.2971 x IO2 0.887 0. 
0 2337X IO2 0.890 0 
0.3646X IO2 0.876 0. 

1805 
1777 
1884 

15 152.04 0.9686X 10’ 0.897 0.1731 
16 161.96 0.2607X 10’ 0.914 0.1592 
17 157.01 0.1591 x 10’ 0.906 0 1658 
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both of which are valid for three-dimensional diffusion-controlled processes, 
it appears logical to take the third one as the governing rate law, because, in 
other solid state diffusion-controlied reactions. it is observed that the Jander 
equation LS followed only at the initiation of the process, followed subse- 
quently by the Ginstling-Brounshtein equation. Drawing the same analogy 

TABLE 7 

Results of analiJIs of denslficatlon kinetic data for 36 compacts (cf Table I) accordmg to the 
method of Ccats and Redfem. The Gmstling-Brounshtein equation is used as governing 
kmetx law 

CompaCi [ E A 
no (I< min-‘) (kJ mole-‘) U-w 

Correlation 

coefficient 

Vanance 

I/l 
I/2 

113 

I/4 
I/5 

I/6 
I/7 
I/S 

I/9 
II/l 
II/2 
II,‘3 
II/4 
II/5 
Ii/6 
II,‘7 
II/8 
II/9 

III/ 1 
III/2 
III/3 

III/J 
III/5 
III/6 
III/7 
III/S 
III/B 
IV/ 1 
IV/2 

IV/3 
Ix;/4 
IV/5 
IV/6 
IV/7 

IV/% 
IV,‘9 

IO 
10 

10 

5 
5 
5 
2 
2 

2 

10 
10 

10 
5 
5 
5 

2 
2 
2 

10 
10 
10 
5 
5 
5 
2 
2 

2 
10 
10 
10 
5 
5 
5 
2 

2 
2 

436 89 0 3273 x 10” 0 982 02139 
413.82 0 125s x 1o13 0.937 0 9614 
476.2 1 0 2141 x 10’5 0 957 0 5713 
413 32 0.4236 X IO” 0.974 03401 
396 15 0.7038 x 10” 0.980 0 2601 
43 1.63 0.2249X 1013 0 970 0 4233 
466 07 0.2674 X 1OlJ 0.983 0.2737 
448 24 0.7011 x lOI3 0 982 0.2678 
445 27 0 3262 X lOI 0 975 0 3709 
470 05 0 2324X 1015 0 979 0 3809 
485 33 0.6068 x 10’5 0 955 0.7638 
473.90 0.2647X 1015 0.978 0.3753 
421.69 0.5179x 10” 0.991 0 1451 
494 46 04442x IO’S 0 994 0.1208 
498.19 0 8499 x 10 I5 0 994 0 1140 
382 38 0.7468 X 10’” 0 966 0 4557 
358 47 0.9982 X IO9 0 986 0 1573 

354 95 0 2587X IO’ 0.985 0 1731 

1035 19 0 2477X 1O36 0 982 0.3257 
100140 0 8505X 1o31 0.967 0 3413 

1010 69 0 1829X 1O35 0.959 0.4430 
544 99 0.6574X 10” 0.973 05115 
421 86 0.963 1 X 10” 0.989 0 1543 
389 33 06128X 10” 0971 0 3739 

349 99 0 5535x IO9 0.996 0.0455 
337 92 0 1574x lo9 0 996 0 0508 

345.70 02515x 10’ 0 996 00468 

119403 0 3427x lOA’ 0940 1.1196 

1094 01 0 3660X 10” 0.959 0 6245 
1071.78 0.5147x103’ 0.958 0.6140 

900 03 0.1071 x 103’ 0.948 0.8658 
886 39 0 7775 x 1030 0.932 1.1403 
899.16 0.3013 x 103’ 0.93 1 0.983 1 

323.43 0 1309x IO8 0.981 0.209 1 

487 13 0.1518X 10’5 0.963 0.5201 
491.66 0.1232X 10” 0.964 0.5159 
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in this case also, it may be concluded that the governing rate law for the 

process of non-isothermal densification is the Cinstling-Brounshtem equa- 
tion, which, in mathematical form, is 

g(a) = (1 -+Y) - (1 -Ly)2’3 (3) 
Taking eqn. (3) as the functional form of g( cu), the results of analysing the 

TABLE 3 

Results of analyas of denslfxatlon kmetic data for 36 compacts (. P. Table 1) according to the 
integral method. The Ginstlmg-Brounshtein equation is used as governing kmetlc law 

Compact fl E A Correlation Variance 
No. (K mm-‘) (kJ mole-‘) 0-w coefficient 

I/l 

I/2 
I/3 
I/4 
I/5 
I/6 
I/7 
I/8 
I/9 
II/l 
II/2 
II/3 
II/4 
II/5 
II/6 
II/7 
II/8 
II/9 
III/ 1 
III/2 
III/3 
III/4 
III/S 
III/6 
III/7 
HI/8 
III/9 

Iv/l 
IV/2 
Iv/3 
IV/4 
IV/5 

w/6 
IV/7 
Iv/8 
I-V/9 

10 
10 
10 
5 
5 
5 
2 
2 
2 

10 
10 
10 
5 
5 
5 
2 
2 
2 

10 
10 
10 
5 
5 
5 
2 
2 
2 

10 
10 
10 
5 
5 
5 
2 
2 
2 

3 12.96 0.3326 X IO’ 0 993 0 0406 
307.14 0.5371 x 10’ 0 935 0 5509 
345.54 0.1154x IO9 0 967 0.2329 
301.36 0.1186X 10’ 0.987 0 0929 
289.68 0.3189X IO6 0991 0 0613 
319.70 06055X 10’ 0981 0 1464 
354.12 0 6682X 10s 0 987 0 1186 
336.24 0.1810X 10” 0.99 I 00810 
333.35 08561X10’ 0.986 0 1208 
363.46 0.8867 X lo9 0.988 0.1280 
367.64 0.9162X IO9 0.693 0.360 1 
361.82 0 6445X lo9 0 988 0.1205 
320 16 03288X10’ 0 966 0 3236 
387.9 1 0.1624X 10” 0 989 0.1394- 
391 63 0.3078 X 10” 0.988 0 1524 
280 85 0.5190x 105 0 965 0.2553 
256.90 07381X104 0991 0.0540 
253.38 0.1927x IO4 0.983 0 0968 
789.67 0.5000x lo25 0 979 0 2294 
684 71 0.4667 X 102’ 0.968 0 1548 
694 41 0 1012x 10Z2 0961 0.1969 
421.11 0.5420X 10” 0.977 0.2670 
315.31 0.4086 x 10’ 0.996 0.0327 
282.78 0.2800 x lo6 0.982 0 1227 
253 43 0 8663 X lo4 0 996 0.027 1 
245.43 0.2537X IO4 0.991 0 0557 
253.22 0.3960X IO4 0.991 0 0578 
904.77 0.1574x lo30 0.935 0 7024 
804.62 0 1809X 102” 0 959 0.3377 
782 51 0.2629X 102’ 0.958 0 3325 
672 27 0.1077x 102’ 0 940 0.5842 
658.83 0 8122X 10” 0 923 0.7206 
656.66 0.7598X lozo 0.923 0.5962 
230.94 0.2199x IO3 0.954 3.2719 
356.5 1 0.8044X lo* 0 973 0 1987 
361.15 0.6548X 10” 0.974 0.1988 
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non-isothermal densification data of all 36 specimens were calculated 
according to the previously mentioned methods and are shown in Table7 
(Coats and Redfems method), Table 8 (integral method) and Table9 (dif- 
ferential method). In all of these cases, the calculated values of E and those 
and A are logically acceptable and the values of correlation coefficients and 
those of the variances are quite satisfactory. 

TABLE 9 

Results of analysis of den&cation kinetic data for 36 compacts (cf. Table 1) according to the 

differential method. The Ginstling-Brounshtein equation is used as governing kinetic law 

Compact p E A Correlation Vanance 
no. (K min-‘) (kJ mole-‘) (W coefficient 

111 
I,‘2 
I/‘3 

I/‘4 
I/5 
I/‘6 

I/7 
I/S 
I,/9 

II/I 
II/2 
II, 3 
I I ,*/4 

I:/5 

II/S 
II/7 

II/S 
II/9 
III/l 

III/2 
III/3 
III/4 
III/S 
III/6 

III/7 
III/S 
III/9 
IV/I 
IV/2 

IV/3 
IV/4 
IV/5 

IV/6 
IV/7 
IV/S 
IV/9 

10 
10 

10 
5 
5 
5 

2 
2 
2 

10 

10 
10 

5 
5 

5 
2 
2 

2 

10 

10 
10 
5 
5 

5 
2 
2 
2 

10 

10 
10 
5 
5 
5 
2 
2 
2 

351.21 0.9728 X IO6 0.957 0.352 1 
224.70 0 2157X 10J 0.964 0.1555 
287.05 0.4428 x 106 0.977 0.1991 
284.97 0.2379 x IO6 0.985 0.0935 
283.78 0.1646X lo6 0 984 0.1062 
314.71 0.3166X 10’ 0.974 0.1928 
364.55 0.1683x IO9 0.991 0.0557 
273.6 1 0.5247X IO5 0.996 0.022 1 
272.45 0.1271 X IO6 0.992 0.0475 
292.13 0.1131x107 0.994 0.042 1 
33 1.20 0.2617 < lo8 0.97 1 0.2296 
300.9s 0 2154:< 10’ 0.992 0.0563 
428.5 1 0.7599 X IO” 0.983 0.1020 
467 24 0.2266 x lOI3 0.954 0.542 1 
424. I 1 0.6140X 10” 0.990 0.0970 

342 83 0 1601X10* 0.994 0.0342 
324.94 0.3784 X IO’ 0.983 0.1001 
339 19 0.5225 X 10’ 0 988 0.0709 
635.50 0.4426 X lOi 0.986 0.1030 
463.80 0.9626 X 10” 0.972 0.062 1 
456.92 0.5318X lOI 0.964 0.0771 
340.93 0 2945x IO8 0.984 0 1154 
293 46 0.5117x IO6 0.993 0.0456 
267 94 0 6556X lo5 0.984 0.093 1 
272.34 0.4961 x IO5 0.996 0.0293 
3 10.85 0.1041 x 10’ 0.972 0 1930 
293.6 1 0.1644X IO6 0.987 0.1064 
652.32 0.2072x 1020 0.954 0.2529 
635.72 0.4397 x lOI 0.968 0.1659 
600.46 0.1977x lo’* 0.968 0.1453 
436.11 0.5353 x 10” 0.958 0.1655 
412.67 0.1419x IO” 0.938 0.223 1 
393.47 0.1080X 10’0 0.935 0.2022 
326.08 0.1531 x 107 0.986 0.0913 

308.3 1 0.8479X IO6 0.979 0.1142 
308.2’7 0.4465 x lo6 0.979 0.1186 
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The concept of the so-called ‘kinetic compensation effect’, commonly 
observed 14.51 in many non-isothtrmal processes, is also seen ta be valid 
here. It is claimed that for a particular process, the values of E bear a linear 
relationship with ln A as given below 

1nA =aE+b (4) 

where a and b are constants. 
The slope (a) of the straight line is related to the so-called ‘mean 

temperature (T,)’ according to the following relationship 

1 
“=xy 
or 

(5) 

(W 

where R = universal gas constant. 
The values of E and A, as shown in Table7, follow just such a linear 

relationship, 2s obtained by a linear least-squares fitting. Similarly the values 
of E and A. as shown in Tables S and 9 are also seen to follow such a linear 
compensating relationship. The results of linear least-squares fitting are 
shown in Table 10. In each of the three cases, the value of T, was calculated, 
and it is seen that the value of T, falls within the experimental temperature 
range ( 1173- 1373 K). So, the kinetic compensation effect holds good for the 
non-isothermal densifrcation process and it is not affected by the variations 
in heating rates and particle sizes of the compacts. 

CONCLUSIONS 

The analysis of the non-isothermal kinetic data obtained for hearnatite 
powder compacts indicates that though the value of the ‘derived activation 
energy (E)’ can be obtained by the method of Ingraham, no idea of the 
‘derived frequezy factor (A)’ and the controlling mechanism for the process 
can be obtined. 

Wrth the assumption of a three-dimensional diffusion-controlled mecha- 
nism, described by the Gmstling-Brounshtein equation (which appears to be 
logical), it is observed that the values of E and A vary considerably with 
variations in the particle size of the compact as also with variations in the 
heating rates. Further, it has been demonstrated clearly that even for the 
same operative mechanism, the values of E and A, as calculated by the 
proposed integral and differential methods, lie intermediate between those 
obtained by the other two methods of analysis (i.e. Coats and Redferns 
method and Ingraham’s method). This clearly establishes the fact that for 
such heterogeneous systems, the values of E and A are not only influenced 
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by operating variables (like heating rate, particle size o; the compact) but are 
also affected by the method of analysis. It would, therefore, be erroneous to 
assign a particular magnitude of E and that of A to a particular Imechanism 
of the process, a procedure practised by many. A similar observation has 
been made by Sest&k [6] to the effect that a good mathematical fit should not 
be the only criterion for establishing a particular mechanism of a kinetic 
process. The physical picture of the process is also equally, if not more, 
important. 

Perhaps the establishment of the kinetic compensation effect by the 
non-isothermal kinetic data i: an indirect proof of the correctness of the 
methods of mathematical analysis employed to a set of non-isothermal 
kinetic data. In the present case, it has been amply demonstrated that the 
well-known method of Coats and Redfem and the combined integral and 
differential method proposed by the authors [?I apply equally well to the 
establishment of the kinetic compensation effect. This would confirm that, 
irrespective of variations in the heating rates and particle sizes of the 
compacts, the densification process is controlled by a three-dimensional 
diffusion process (the most probable rate law is given by the Ginstling- 
Brounshtein equation) in the early stages of non-isothermal sintering of 
heamatite powder compacts. 
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