CRYOSCOPIC STUDIES IN MOLTEN SALTS. DISSOCIATION STATE OF SOME ALKALI ISOPOLYMOLYBDATES AND SOME RELATED MOLYBDENUM(VI) COMPOUNDS IN MOLTEN $K_2Cr_2O_7$ AND KNO₃

M. HASSANEIN and N.S. YOUSSEF

Department of Incrganic Chemistry, National Research Centre, Dokki, Cairo (Egypt) **(Received 26 January 1982)**

ABSTRACT

The dissociation state of the solutes M_2Mo_{-4} , $M_2Mo_{3}O_{10}$, $M_2Mo_{4}O_{13}$, $M_2Mo_{5}O_{16}$ (M=Rb or Cs), $\text{Na}_2\text{CrO}_4 \cdot \text{MoO}_3$, $\text{K}_2\text{CrO}_4 \cdot 2 \text{ MoO}_3$, $\text{Cr}_2\text{Mo}_3\text{O}_{12}$ and V_2MoO_8 was studied cryoscopically in molten $K_2Cr_2O_7$ and KNO_3 solvents. The freezing point depression, ΔT , of the **solvents was obtamed by measuring the coohng curves of the binary salt mixtures over a** limited range of solute concentration. The number of foreign ions obtained ν , showed that the solutes were either simply dissociated in the melt into the probable stable species (MoO_4)²⁻, $(Mo₃O₁₀)²$, $(Mo₄O₁₃)²$ and $(Mo₅O₁₆)²$ or, in some cases after reactions and rearrangements, into $(\text{CrMo}_2\text{O}_{10})^2$ heteropolyions The solute $V_2\text{MoO}_8$, on the other hand, was **found to dissolve without any apparent dissociation. An agreement between the experimental** and calculated values of activity, a, based on the Temkin and Random Mixing models and that of Van't Hoff's equation support the proposed simple dissociation scheme for $K_2Cr_2O_7$ -**Cs, MOO, system.**

INTRODUCTION

It is a well known fact that the freezing point of a pure solvent is lowered provided the foreign ions or species, ν , present are different from those of the dissociation products of that solvent. The factor, ν , gives only the number of such foreign species formed, rather than the effects of the forces they exert, i.e., it expresses a molecular property of the solute. The evaluation of ν is performed by measuring the freezing point depression, ΔT , of solvents induced by solutes, in very dilute solutions, where Raoult-Van 't Hoff's law of freezing point depression $\Delta T = T_1 - T = \nu x_2 [RT_1^2/L_1]$ is obeyed. T_1 and T are the crystallization temperatures in K of the pure solvent and the mixture, respectively. $L₁$ is the melt enthalpy of the solvent in cal mole⁻¹, x_2 is the mole fraction of the solute and R is the ideal gas constant (1.986 cal deg⁻¹ mole⁻¹). The value of $\left[\frac{RT_1^2}{L_1}\right]$ is the molar depression of freezing point or cryoscopic constant, K_0 , of the pure solvent $(K_0 = 101.1$ and 318 for $K_2Cr_2O_7$ and KNO₃, respectively).

MATERIALS AND METHODS

The experimental technique used was the same as described earlier [I]. The working temperature was 450 and 350°C for K,Cr,O, and KNO, solvents, respectively. The solutes employed in the present investigation were prepared and identified as reported $[2-4]$, while the solvents $K_2Cr_2O_7$ (p.a.) and KNO, (purest) were obtained from Merck.

RESULTS AND DISCUSSION

I. The number of foreign ions produced by the solutes, $M_2MoO₄$, $M_2Mo_3O_{10}$, $M_2Mo_4O_{13}$ and $M_2Mo_5O_{16}$ (M = Rb or Cs) in the two solvents turned out to be three, i.e., $\nu = 3$ as shown in Figs. 1 and 2. This showed that **a simple dissociation scheme is followed in these melts. Accordingly, a general reaction may be given as**

$$
K_2Cr_2O_7 + M_2Mo_xO_y \to 2 K^+ + (Cr_2O_7)^{2-} + 2 M^+ + (Mo_xO_y)^{2-}
$$

\n
$$
KNO_3 + M_2Mo_xO_y \to K^+ + (NO_3)^- + 2 M^+ + (Mo_xO_y)^{2-}
$$

where $M = Rb$ or Cs and $x/y = 1/4$, $3/10$, $4/13$ and $5/16$.

The present results for Rb and Cs orthomolybdates are analogous with those of Na and K orthomolybdates both in the same solvents [S]. However,

Fig. 1. Depression of the freezing point of molten $K_2Cr_2O_7$ by (a) \div , Rb_2 MoO₄; \otimes , $Rb_2Mo_3O_{10}; \triangle, Rb_2Mo_4O_{13}, \times, Rb_2Mo_5O_{16};$ (b) **A**, $Cs_2Mo_{4};$ O, $Cs_2Mo_3O_{10}; \times$ $Cs_2Mo_4O_{13}$; \square , $Cs_2Mo_5O_{16}$.

Fig. 2. Depressi in of the freezing point of molten KNO_3 by (a) \times , Rb_2Mo_2 ; Θ , $Rb_2Mo_2O_7$; $-$, Rb₂Mo₃O₁₀, (., Rb₂Mo₄O₁₃; ∇ , Rb₂Mo₃O₁₆; (b) \square , Cs₂MoO₄; **A**, Cs₂Mo₂O₇; O₁ $\text{Cs}_2\text{Mo}_3\text{O}_{10}; \circ$, $\text{Cs}_2\text{Mo}_4\text{O}_{13}; \cdot$), $\text{Cs}_2\text{Mo}_5\text{O}_{16}.$

neither $(M_0O_4)^{2}$ nor $(M_0O_{10})^{2}$, $(M_0O_{13})^{2}$ and $(M_0O_{16})^{2}$ isopolymolybdate ions seem to undergo any reaction with those of the $(Cr_2O_7)^{2-}$ or $(NO₃)$ ⁻ ions presumably because of their stability in the melt under the present experimental conditions. The formation and stability of one of the isopolymolybdate ions $(Mo₃O₁₀)²$ in molten KNO₃ reported earlier [6] is

TABLE 1

328

Fig. 3 (a) Depression of the freezing point of molten $K_2Cr_2O_7$ by \times , $Na_2CrO_4 \cdot MoO_3$; O, K_2 CrO₄ 2 MoO₃, \div , Cr₂Mo₁O₁₂; \equiv , V₂MoO₈; (b) Depression of the freezing point of **molten KNO₃ by @, Na₂CrO₄.MoO₃, @, K₂CrO₄.2 MoO₃: 1, Cr₂Mo₃O₁₂;** \Box **, V₂MoO₈;** \triangle , Cr_2O_3 .

based on a different method. The $Cs₂MoO₄$ -rich (1.5 mole%) mixture of $K_2Cr_2O_7$ was chosen, as an example of this group of solutes, to calculate its activity using Temkin [7] and Random Mixing [8] models as well as Van 't Hoff's equation. The experimental and calculated activities, *a,* are given in Table 1.

Table 1 demonstrates an excellent agreement between the values of a_{exp} and a_{calc} thus supporting the proposed dissociation scheme. However, the choice of a specific model is not possible, since such an agreement depends on the same idealiry criteria used rather than the model chosen [S].

II-1. Although the solutes $K_2CrO_4 \tcdot 2 \text{ MoO}_3$ and V_2MoO_8 gave the same number of foreign ions, $\nu = 1$, in both the solvents (Fig. 3), they showed an obviously different behaviour in the melt. The solute $K_2CrO_4 \cdot 2\text{MoO}_3$ appears to be dissociated, while V_2MoO_8 presumably dissolves without dissociation. The corresponding reactions may consequently be represented **ZtS**

$$
K_2Cr_2O_7 + K_2CrO_4 \cdot 2 \text{ MoO}_3 \rightarrow 4 \text{ K}^+ + (Cr_2O_7)^{2-} + (CrMo_2O_{10})^{2-}
$$

\n
$$
KNO_3 + K_2CrO_4 \cdot 2 \text{ MoO}_3 \rightarrow 3 \text{ K}^+ + (\text{NO}_3)^- + (\text{CrMo}_2O_{10})^{2-}
$$

\n
$$
K_2Cr_2O_7 + V_2MoO_8 \rightarrow 2 \text{ K}^+ + (\text{Cr}_2O_7)^{2-} + V_2MoO_8
$$

\n
$$
KNO_3 + V_2MoO_8 \rightarrow K^+ + (\text{NO}_3)^- + V_2MoO_8
$$

The above scheme for the dissociation of $K_2CrO_4 \cdot 2 \text{ MoO}_3$ and that for the dissolution of $\rm V_2MoO_8$ is, however, supported by the fact that the value obtained of $\nu = 1$, is smaller than that required for their constituents: K_2CrO_4 , MoO₃ and V₂O₅ studied separately in the same solvents as reported earlier [**1,5,9].**

II-2. The dissociation of $Na_2CrO_4 \cdot MoO_3$ gave $\nu = 3$ in both the molten solvents (Fig. 3), suggesting that the reactions take place through dissociation and simultaneous rearrangement of ions as shown.

 $K_2Cr_2O_7 + 2 Na_2CrO_4 \cdot MoO_3 \rightarrow 2 K^+ + 4 Na^+ + 2 (CrMoO_7)^2 + (Cr_2O_7)^2$ $2(CrMoO₂)²⁻ \rightarrow (CrMo₂O₁₀)²⁻ + (CrO₄)²⁻$

 $K_2Cr_2O_7 + 2 Na_2CrO_4 \cdot MoO_3 \rightarrow 2 K^+ + 4 Na^+ + (CrMo_2O_{10})^2 + (CrO_4)^2 + (Cr_2O_7)^2$ Similarly

$$
KNO3 + 2 Na2CrO4 · MoO3 \rightarrow K+ + (NO3)- + 4 Na+ + (CrMo2O10)2- + (CrO4)2-
$$

It can be seen that the number of foreign ions, $\nu = 3$, does not change after rearrangement of the heteroions $2(CrMoO₇)²$. However, such a rearrangement seems to be probable because the continuence of $(CrMoO₇)²$ ions as such in the melt will lead to a lower and a higher value of ν in the cases of molten $K_2Cr_2O_7$ and KNO_3 solvents, respectively. This assumption can be explained by considering the heteroions $2(CrMoO₇)²⁻$ as a mixed crystal of $(Cr_2O_7)^{2-}-(Mo_2O_7)^{2-}$, then the $(Mo_2O_7)^{2-}$ group has the tendency to form an isomorphous substitution within the $K_2Cr_2O_7$ -lattice [5], thus leading to $\nu < 3$, and also the same heteroions may dissociate in KNO₃-solvent giving $2(CrO₄)²⁻$ and $2(MoO₄)²⁻$ groups, leading to $\nu > 3$, which is not the case here. The hehaviour of dimolybdate anion $(Mo₂O₇)²$ of Rb and Cs salts was, therefore, studied in molten KNO_3 ($\nu = 4$, Fig. 2). The resulting species were found to be unstable givmg rise to two basic monomolybdate anions analogous to the reactions of $K_2Cr_2O_7$ and $K_2Mo_2O_7$ in molten KNO, **151. These solutes were found to behave as Lux-acids and took their oxide-icns from the nitrate base electrolyte, leading to the forma**tion of the more basic $CrO₄²⁻$ and $MoO₄²⁻$ ions, respectively. Accordingly, the reaction may be written as

2 KNO₃ + M₂Mo₂O₇
$$
\rightarrow
$$
 2 M⁺ + 2 K⁺ + 2(MoO₄)²⁻ + 2 NO₂ + $\frac{1}{2}$ O₂
(M = Rb or Cs)

The results obtained by investigating the ions, $(Cr_2O_7)^{2-}$ and $(Mo_2O_7)^{2-}$ separately in the two solvents support the above mechanism for the heteroions rearrangement process.

H-3. The mechanism of dissociation of $Cr_2Mo_3O_1$, in the two solvents seems to be obviously different, though the same number of foreign ions, $\nu = 3$, has been found (Fig. 3) as in the above cases of II-1 and II-2. Consequently, the proposed mechanism for the dissociation of $Cr_2Mo_3O_{12}$ in molten $K_2Cr_2O_7$ may be given as follows

(a)
$$
Cr_2Mo_3O_{12} \rightarrow Cr_2O_3 + Mo_3O_9
$$
\n(b) $K_2Cr_2O_7 + Mo_3O_9 \rightarrow 2 K^+ + (Mo_3O_{10})^{2-} + 2 CrO_3$ \n(c) $2 K_2Cr_2O_7 + 2 CrO_3 \rightarrow 4 K^+ + 2(Cr_3O_{10})^{2-}$ \n3 $K_2Cr_2O_7 + Cr_2Mo_3O_{12} \rightarrow 6 K^+ + Cr_2O_3 + (Mo_3O_{10})^{2-} + 2(Cr_3O_{10})^{2-}$

The mechanism of these reactions can be understood by supposing that Cr, Mo₁O₁, is first dissociated into [step (a)] two oxides, Cr_2O_3 and Mo_3O_9 , without undergoing further disscciation of the latter oxide. It has already been pointed out that the first dissociation product, Cr_2O_3 , is stable and insoluble in molten $K_2Cr_2O_7$ [5], and hence it does not contribute to the freezing point depression. The second dissociation product may then react with the solvent [step (b)] by taking its oxide-ion from the $(Cr_2O_7)^{2}$ group, to form the trimolybdate anion $(Mo₃O₁₀)²⁻$ and the 2 CrO₃ molecules. The stability of $(Mo_3O_{10})^{2-}$ ion in molten $K_2Cr_2O_7$ has already been demonstrated in the present work (Fig. 1). Finally, a reaction may occur between the [step (c)] CrO, molecules and the $(Cr, O₇)²⁻$ group to form the well-known stable $(Cr₃O₁₀)^{2–}$ ion in such a solvent [5].

In the case of the KNO₃ melt, one of the dissociation products of $Cr_2Mo_3O_{12}$, namely, Mo_3O_9 may also give rise to the relatively more basic ion $(Mo₃O₁₀²⁻$, by taking its oxide-ion from the nitrate melt. Such an ion $(Mo₃O₁₀)²$ has already been prepared in the solid phase, studied in molten $KNO₃$, and has been found to be stable (Fig. 2). The other dissociation product, Cr_2O_3 , seemed to react with the nitrate melt to give $2(CrO_4)^{2-}$ ions, probably via the formation of $(\text{Cr}_2\text{O}_7)^{2}$ ions. The resulting three foreign ions, $\nu = 3$, may consequently be identified as $2(CrO₄)²$ and $(Mo₃O₁₀)³$ [Fig. 3(b)].

In addition to the above studies, the behaviour of Cr_2O_3 oxide has also been investigated in molten KNO₃ to support the formation of the chromate ion. Thus the experimentally determined [Fig. 3(b)] value of ν as 2 may suggest the following sequence of reactions

(a) 2 KNO₃ + Cr₂O₃ → 2 K⁺ + (Cr₂O₇)²⁻ + 2 NO
(b) 4 KNO₃ + (Cr₂O₇)²⁻ → 4 K⁺ + 2(CrO₄)²⁻ + 4 NO₂ +
$$
\frac{3}{2}
$$
 O₂

Moreover, the yellow solution obtained as a result of the reaction of Cr_2O_3 as well as that of $Cr_2Mo_3O_{12}$ in molten KNO_3 showed an absorption maximum at 27100 cm⁻¹, thus confirming the formation of $(CrO₄)²$ ions.

Similar results were also obtained for the reaction of Cr_2D_3 in molten Iithium-potassium nitrate eutectic [10].

REFERENCES

- 1 M. Hassanein and N.S. Youssef, 2. Anorg. Allg. Chem., 422 (1978) 216.
- 2 R. Salmon and P. Caillet, Bull. Soc. Chim. Fr., 5 (1969) 1569.
- 3 W.P. Doyle, G. McGurre and C.M. Clark, J. Inorg. Nucl. Chem., 28 (1966) 1185.
- 4 M.V. Mokhosoev, E.I. Getman, V L. Butukhanov, V.G. Pitsuga and I.F., Kokot, Zh Neorg. Khim., 18 (1973) 1011.
- 5 M Hassanein and E. Kordes, 2. Anorg. Allg. Chem , 387 (1972) 1.
- 6 A.M. Shams el Din and A.A. el Hosary. J. Electroanal. Chem., 9 (1965) 349.
- 7 M. Temkin, Acta Physikochim. U.R.S.S.. 20 (1945) 411.
- 8 C. Smrstn, J. Chem. Edw_, 48 (1971) 753.
- 9 M. Hassanem, **Z.** Anorg '2llg. Chem , 399 (1973) 125.
- 10 B.J. Brough, D.H. Kerrrdge and S.A. Tariq, Inorg Chum Acta, 1 (1967) 267.