CRYOSCOPIC STUDIES IN MOLTEN SALTS. DISSOCIATION STATE OF SOME ALKALI ISOPOLYMOLYBDATES AND SOME RELATED MOLYBDENUM(VI) COMPOUNDS IN MOLTEN K₂Cr₂O₇ AND KNO₃

M. HASSANEIN and N.S. YOUSSEF

Department of Incrganic Chemistry, National Research Centre, Dokki, Cairo (Egypt) (Received 26 January 1982)

ABSTRACT

The dissociation state of the solutes M_2MoO_4 , $M_2Mo_3O_{10}$, $M_2Mo_4O_{13}$, $M_2Mo_5O_{16}$ (M=Rb or Cs), $Na_2CrO_4 \cdot MoO_3$, $K_2CrO_4 \cdot 2 MoO_3$, $Cr_2Mo_3O_{12}$ and V_2MoO_8 was studied cryoscopically in molten $K_2Cr_2O_7$ and KNO₃ solvents. The freezing point depression, ΔT , of the solvents was obtained by measuring the cooling curves of the binary salt mixtures over a limited range of solute concentration. The number of foreign ions obtained ν , showed that the solutes were either simply dissociated in the melt into the probable stable species $(MoO_4)^{2-}$, $(Mo_3O_{10})^{2-}$, $(Mo_4O_{13})^{2-}$ and $(Mo_5O_{16})^{2-}$ or, in some cases after reactions and rearrangements, into $(CrMo_2O_{10})^{2-}$ heteropolyions The solute V_2MoO_8 , on the other hand, was found to dissolve without any apparent dissociation. An agreement between the experimental and calculated values of activity, *a*, based on the Temkin and Random Mixing models and that of Van't Hoff's equation support the proposed simple dissociation scheme for $K_2Cr_2O_7$ - Cs_2MoO_4 system.

INTRODUCTION

It is a well known fact that the freezing point of a pure solvent is lowered provided the foreign ions or species, ν , present are different from those of the dissociation products of that solvent. The factor, ν , gives only the number of such foreign species formed, rather than the effects of the forces they exert, i.e., it expresses a molecular property of the solute. The evaluation of ν is performed by measuring the freezing point depression, ΔT , of solvents induced by solutes, in very dilute solutions, where Raoult-Van 't Hoff's law of freezing point depression $\Delta T = T_1 - T = \nu x_2[RT_1^2/L_1]$ is obeyed. T_1 and T are the crystallization temperatures in K of the pure solvent and the mixture, respectively. L_1 is the melt enthalpy of the solvent in cal mole⁻¹, x_2 is the mole fraction of the solute and R is the ideal gas constant (1.986 cal deg⁻¹ mole⁻¹). The value of $[RT_1^2/L_1]$ is the molar depression of freezing point or cryoscopic constant, K_0 , of the pure solvent ($K_0 = 101.1$ and 318 for $K_2Cr_2O_7$ and KNO₃, respectively).

MATERIALS AND METHODS

The experimental technique used was the same as described earlier [1]. The working temperature was 450 and 350°C for $K_2Cr_2O_7$ and KNO_3 solvents, respectively. The solutes employed in the present investigation were prepared and identified as reported [2–4]. while the solvents $K_2Cr_2O_7$ (p.a.) and KNO_3 (purest) were obtained from Merck.

RESULTS AND DISCUSSION

I. The number of foreign ions produced by the solutes, M_2MOO_4 , $M_2MO_3O_{10}$, $M_2MO_4O_{13}$ and $M_2MO_5O_{16}$ (M = Rb or Cs) in the two solvents turned out to be three, i.e., $\nu = 3$ as shown in Figs. 1 and 2. This showed that a simple dissociation scheme is followed in these melts. Accordingly, a general reaction may be given as

$$K_2Cr_2O_7 + M_2Mo_xO_y \rightarrow 2 K^+ + (Cr_2O_7)^{2^-} + 2 M^+ + (Mo_xO_y)^{2^-}$$

 $KNO_3 + M_2Mo_xO_y \rightarrow K^+ + (NO_3)^- + 2 M^+ + (Mo_xO_y)^{2^-}$

where M = Rb or Cs and x/y = 1/4, 3/10, 4/13 and 5/16.

The present results for Rb and Cs orthomolybdates are analogous with those of Na and K orthomolybdates both in the same solvents [5]. However,

Fig. 1. Depression of the freezing point of molten $K_2Cr_2O_7$ by (a) $\dot{-}$, Rb_2 MoO₄; Θ , $Rb_2Mo_3O_{10}$; \triangle , $Rb_2Mo_4O_{13}$, \times , $Rb_2Mo_5O_{16}$; (b) \blacktriangle , Cs_2MoO_4 ; \bigcirc , $Cs_2Mo_3O_{10}$; $\underline{\times}$, $Cs_2Mo_4O_{13}$; \Box , $Cs_2Mo_5O_{16}$.

Fig. 2. Depression of the freezing point of molten KNO_3 by (a) \times , Rb_2MoO_4 ; \bigcirc , $Rb_2Mo_2O_7$; \div , $Rb_2Mo_3O_{10}$ (\cdot , $Rb_2Mo_4O_{13}$; \bigtriangledown , $Rb_2Mo_5O_{16}$; (b) \Box , Cs_2MoO_4 ; \blacktriangle , $Cs_2Mo_2O_7$; \bigcirc , $Cs_2Mo_3O_{10}$; \circ , $Cs_2Mo_4O_{13}$; \cdot), $Cs_2Mo_5O_{16}$.

neither $(MoO_4)^{2-}$ nor $(Mo_3O_{10})^{2-}$, $(Mo_4O_{13})^{2-}$ and $(Mo_5O_{16})^{2-}$ isopolymolybdate ions seem to undergo any reaction with those of the $(Cr_2O_7)^{2-}$ or $(NO_3)^-$ ions presumably because of their stability in the melt under the present experimental conditions. The formation and stability of one of the isopolymolybdate ions $(Mo_3O_{10})^{2-}$ in molten KNO₃ reported earlier [6] is

TABLE 1

Experimental and a	calculated va	lues of a
--------------------	---------------	-----------

<i>x</i> ₁	v _{exp}	$a_{1 \exp} = x_{1}^{p \exp}$	Temkin $a_1 = x_1^3$	Random Mixing $a_1 = x_1^2 (\frac{2}{2+x_2})^2$	Van't Hoff's equation $\ln a_1 = \frac{L_1}{R} (\frac{1}{T_1} - \frac{1}{T})$
0.9975	3.6	0.9826	0.9925	0.9925	0.9917
0.995	3.2	0.9831	0.9851	0.9851	0.9840
0.9925	3.2	0.9759	0.9777	0.9777	0.9780
0.9900	2.9	0.9709	0.9703	0.9704	0.9740
0.9875	3.0	0.9630	0.9630	0.9631	0.9623
0.985	2.9	0.9568	0.9557	0.9559	0.9570

Fig. 3 (a) Depression of the freezing point of molten $K_2Cr_2O_7$ by \times , $Na_2CrO_4 \cdot MoO_3$; \bigcirc , K_2CrO_4 2 MoO_3, \doteq , $Cr_2Mo_3O_{12}$; =, V_2MoO_8 ; (b) Depression of the freezing point of molten KNO₃ by **(a)**, $Na_2CrO_4 \cdot MoO_3$, **(a)**, $K_2CrO_4 \cdot 2$ MoO₃; \uparrow , $Cr_2Mo_3O_{12}$; \Box , V_2MoO_8 ; \triangle , Cr_2O_3 .

based on a different method. The Cs_2MoO_4 -rich (1.5 mole%) mixture of $K_2Cr_2O_7$ was chosen, as an example of this group of solutes, to calculate its activity using Temkin [7] and Random Mixing [8] models as well as Van 't Hoff's equation. The experimental and calculated activities, *a*, are given in Table 1.

Table 1 demonstrates an excellent agreement between the values of a_{exp} and a_{cale} thus supporting the proposed dissociation scheme. However, the choice of a specific model is not possible, since such an agreement depends on the same ideality criteria used rather than the model chosen [8].

II-1. Although the solutes $K_2CrO_4 \cdot 2 \text{ MoO}_3$ and V_2MoO_8 gave the same number of foreign ions, $\nu = 1$, in both the solvents (Fig. 3), they showed an obviously different behaviour in the melt. The solute $K_2CrO_4 \cdot 2 \text{ MoO}_3$ appears to be dissociated, while V_2MoO_8 presumably dissolves without dissociation. The corresponding reactions may consequently be represented as

$$K_{2}Cr_{2}O_{7} + K_{2}CrO_{4} \cdot 2 \operatorname{MoO}_{3} \rightarrow 4 \operatorname{K}^{+} + (Cr_{2}O_{7})^{2^{-}} + (CrMo_{2}O_{10})^{2^{-}}$$

$$KNO_{3} + K_{2}CrO_{4} \cdot 2 \operatorname{MoO}_{3} \rightarrow 3 \operatorname{K}^{+} + (NO_{3})^{-} + (CrMo_{2}O_{10})^{2^{-}}$$

$$K_{2}Cr_{2}O_{7} + V_{2}MoO_{8} \rightarrow 2 \operatorname{K}^{+} + (Cr_{2}O_{7})^{2^{-}} + V_{2}MoO_{8}$$

$$KNO_{3} + V_{2}MoO_{8} \rightarrow \operatorname{K}^{+} + (NO_{3})^{-} + V_{2}MoO_{8}$$

The above scheme for the dissociation of $K_2CrO_4 \cdot 2 \ MoO_3$ and that for the dissolution of V_2MoO_8 is, however, supported by the fact that the value obtained of $\nu = 1$, is smaller than that required for their constituents: K_2CrO_4 , MoO_3 and V_2O_5 studied separately in the same solvents as reported earlier [1,5,9].

II-2. The dissociation of $Na_2CrO_4 \cdot MoO_3$ gave $\nu = 3$ in both the molten solvents (Fig. 3), suggesting that the reactions take place through dissociation and simultaneous rearrangement of ions as shown.

 $K_2Cr_2O_7 + 2 Na_2CrO_4 \cdot MoO_3 \rightarrow 2 K^+ + 4 Na^+ + 2 (CrMoO_7)^{2^-} + (Cr_2O_7)^{2^-}$ 2(CrMoO₇)^{2⁻} → (CrMo₂O₁₀)^{2⁻} + (CrO₄)^{2⁻}

 $K_2Cr_2O_7 + 2 Na_2CrO_4 \cdot MoO_3 \rightarrow 2 K^+ + 4 Na^+ + (CrMo_2O_{10})^{2-} + (CrO_4)^{2-} + (Cr_2O_7)^{2-}$ Similarly

It can be seen that the number of foreign ions, $\nu = 3$, does not change after rearrangement of the heteroions $2(CrMoO_7)^{2-}$. However, such a rearrangement seems to be probable because the continuence of $(CrMoO_7)^{2-1}$ ions as such in the melt will lead to a lower and a higher value of ν in the cases of molten K₂Cr₂O₇ and KNO₃ solvents, respectively. This assumption can be explained by considering the heteroions $2(CrMoO_7)^{2-}$ as a mixed crystal of $(Cr_2O_7)^{2^-} - (Mo_2O_7)^{2^-}$, then the $(Mo_2O_7)^{2^-}$ group has the tendency to form an isomorphous substitution within the K₂Cr₂O₇-lattice [5], thus leading to $\nu < 3$, and also the same heteroions may dissociate in KNO₃-solvent giving $2(CrO_4)^{2-}$ and $2(MoO_4)^{2-}$ groups, leading to $\nu > 3$, which is not the case here. The behaviour of dimolybdate anion $(Mo_2O_7)^{2-1}$ of Rb and Cs salts was, therefore, studied in molten KNO_3 ($\nu = 4$, Fig. 2). The resulting species were found to be unstable giving rise to two basic monomolybdate anions analogous to the reactions of $K_2Cr_2O_7$ and $K_2Mo_2O_7$ in molten KNO₃ [5]. These solutes were found to behave as Lux-acids and took their oxide-ions from the nitrate base electrolyte, leading to the formation of the more basic CrO_4^{2-} and MoO_4^{2-} ions, respectively. Accordingly, the reaction may be written as

2 KNO₃ + M₂Mo₂O₇
$$\rightarrow$$
 2 M⁺ + 2 K⁺ + 2(MoO₄)²⁻ + 2 NO₂ + $\frac{1}{2}$ O₂
(M = Rb or Cs)

The results obtained by investigating the ions, $(Cr_2O_7)^{2-}$ and $(Mo_2O_7)^{2-}$ separately in the two solvents support the above mechanism for the heteroions rearrangement process. II-3. The mechanism of dissociation of $Cr_2Mo_3O_{12}$ in the two solvents seems to be obviously different, though the same number of foreign ions, $\nu = 3$, has been found (Fig. 3) as in the above cases of II-1 and II-2. Consequently, the proposed mechanism for the dissociation of $Cr_2Mo_3O_{12}$ in molten $K_2Cr_2O_7$ may be given as follows

(a)
$$Cr_2 Mo_3 O_{12} \rightarrow Cr_2 O_3 + Mo_3 O_9$$

(b) $K_2 Cr_2 O_7 + Mo_3 O_9 \rightarrow 2 K^+ + (Mo_3 O_{10})^{2^-} + 2 CrO_3$
(c) $2 K_2 Cr_2 O_7 + 2 CrO_3 \rightarrow 4 K^+ + 2(Cr_3 O_{10})^{2^-}$
 $3 K_2 Cr_2 O_7 + Cr_2 Mo_3 O_{12} \rightarrow 6 K^+ + Cr_2 O_3 + (Mo_3 O_{10})^{2^-} + 2(Cr_3 O_{10})^{2^-}$

The mechanism of these reactions can be understood by supposing that $Cr_2Mo_3O_{12}$ is first dissociated into [step (a)] two oxides, Cr_2O_3 and Mo_3O_9 , without undergoing further dissociation of the latter oxide. It has already been pointed out that the first dissociation product, Cr_2O_3 , is stable and insoluble in molten $K_2Cr_2O_7$ [5], and hence it does not contribute to the freezing point depression. The second dissociation product may then react with the solvent [step (b)] by taking its oxide-ion from the $(Cr_2O_7)^{2-}$ group, to form the trimolybdate anion $(Mo_3O_{10})^{2-}$ and the 2 CrO_3 molecules. The stability of $(Mo_3O_{10})^{2-}$ ion in molten $K_2Cr_2O_7$ has already been demonstrated in the present work (Fig. 1). Finally, a reaction may occur between the [step (c)] CrO_3 molecules and the $(Cr_2O_7)^{2-}$ group to form the well-known stable $(Cr_3O_{10})^{2-}$ ion in such a solvent [5].

In the case of the KNO₃ melt, one of the dissociation products of $Cr_2 Mo_3O_{12}$, namely, Mo_3O_9 may also give rise to the relatively more basic ion $(Mo_3O_{10})^{2^-}$, by taking its oxide-ion from the nitrate melt. Such an ion $(Mo_3O_{10})^{2^-}$ has already been prepared in the solid phase, studied in molten KNO₃, and has been found to be stable (Fig. 2). The other dissociation product, Cr_2O_3 , seemed to react with the nitrate melt to give $2(CrO_4)^{2^-}$ ions, probably via the formation of $(Cr_2O_7)^{2^-}$ ions. The resulting three foreign ions, $\nu = 3$, may consequently be identified as $2(CrO_4)^{2^-}$ and $(Mo_3O_{10})^{2^-}$ [Fig. 3(b)].

In addition to the above studies, the behaviour of Cr_2O_3 oxide has also been investigated in molten KNO₃ to support the formation of the chromate ion. Thus the experimentally determined [Fig. 3(b)] value of ν as 2 may suggest the following sequence of reactions

(a) 2 KNO₃ + Cr₂O₃
$$\rightarrow$$
 2 K⁺ + (Cr₂O₇)²⁻ + 2 NO
(b) 4 KNO₃ + (Cr₂O₇)²⁻ \rightarrow 4 K⁺ + 2(CrO₄)²⁻ + 4 NO₂ + $\frac{3}{2}$ O₂

Moreover, the yellow solution obtained as a result of the reaction of Cr_2O_3 as well as that of $Cr_2MO_3O_{12}$ in molten KNO₃ showed an absorption maximum at 27100 cm⁻¹, thus confirming the formation of $(CrO_4)^{2^-}$ ions.

Similar results were also obtained for the reaction of Cr_2D_3 in molten lithium-potassium nitrate eutectic [10].

REFERENCES

- 1 M. Hassanein and N.S. Youssef, Z. Anorg. Allg. Chem., 422 (1978) 216.
- 2 R. Salmon and P. Caillet, Bull. Soc. Chim. Fr., 5 (1969) 1569.
- 3 W.P. Doyle, G. McGuire and C.M. Clark, J. Inorg. Nucl. Chem., 28 (1966) 1185.
- 4 M.V. Mokhosoev, E.I. Getman, V L. Butukhanov, V.G. Pitsuga and I.F., Kokot, Zh Neorg. Khim., 18 (1973) 1011.
- 5 M Hassanein and E. Kordes, Z. Anorg. Allg. Chem, 387 (1972) 1.
- 6 A.M. Shams el Din and A.A. el Hosary, J. Electroanal. Chem., 9 (1965) 349.
- 7 M. Temkin, Acta Physikochim. U.R.S.S., 20 (1945) 411.
- 8 C. Sinistri, J. Chem. Educ, 48 (1971) 753.
 9 M. Hassanein, Z. Anorg *Sillg. Chem*, 399 (1973) 125.
- 10 B.J. Brough, D.H. Kerridge and S.A. Tariq, Inorg Chim Acta, 1 (1967) 267.