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ABSTRACT 

Estimation of the kinetic parameters is examined when a linear temperature program is 
assumed in the calculations while, due to experimental shortcomings, the actual temperature 
inside the sample is a slightly curved function of the time. The factors responsible for the 
change of the kinetic parameters are pointed out and the signs of the errors are discussed. 

NOTATION 

: 

c, c’ 

E 

: 
t 
T 
x 

0 

heating rate 
pre-exponential factor 
constants 
activation energy (molar) 
formal reaction order 
gas constant 
time 
temperature 
reacted (or converted) mole fraction 
indicates average 

Subscripted symbols 

T act 7 TIeas Tprog the actual, measured and prescribed temperature of the 
sample 

x,,, t,, Tp data belonging to the maximum of dx/dt 

Functions 

f(x) 
g(x) 

describes the dependence of dx/dt on x 
the integral of 1 /f(x) 
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q(E/RT) a function approximately equal to (E/RT + l)/( E/RT + 3) 

INTRODUCTION 

In thermal analysis, at least three different quantities should ‘be dis- 
tinguished in connection with the temperature of the sample: the actual 
temperature inside the sample Tact, which may vary from point to point; the 
measured temperature, T,,,; and the prescribed temperature, Tprog. Unfor- 
tunately, these temperatures are not always equivalent. A typical example: in 
the case of inappropriate experimental conditions (sample size, heating rate, 
etc.), the thermal effects of the studied reactions may cause a deviation 
between the measured and the actual temperature. The magnitude of this 
deviation is roughly proportional, among others, to the reaction rate. In this 
way, slightly curved actual temperature-time functions can develop. Since 
the reaction rate-time function is convex in the central part of the thermo- 
analytical curves (where the reaction rate has higher values), it can be 
supposed that the really significant part of the Tact - T,,, difference is a 
convex function of the time at exothermal reactions and ‘a concave one at 
endothermal reactions. Thus it may be interesting to study how convex and 
concave curvatures influence the kinetic evaluation. In this paper, the 
direction of the changes of the kinetic parameters will be discussed and the 
factors responsible for the errors will be pointed out. Though special 
emphasis will be given to the concave and convex T,,(t) functions, the 
outlined considerations may also be useful in other cases. The magnitude of 
the errors of the kinetic parameters will be discussed in a subsequent paper 
[ 11, where upper limits will be deduced for the errors caused by the alteration 
of the actual temperature from the linear. 

ESTIMATION OF THE ACTIVATION ENERGY 

Let x be the reacted (or converted) mole fraction and let us suppose that 
the kinetics of the examined process can be described by 

dx/dt = AeeEIRTf(X) (1) 
where f(x) is a continuous positive function in the domain 0 -C x -C 1. In this 
section, the estimation of E will be discussed when the function f(x) is 
known and does not contain unknown parameters. As pointed out earlier [2], 
two types of errors may arise here in connection with the imperfect tempera- 
ture programming: 

(i) the temperature data introduced into the equations are not equal to the 
actual temperature inside the sample; 
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(ii) the equations themselves contain some systematic errors if their 
deduction involves the- integration of eqn. (1) at linear temperature-time 
functions. Errors of type (i) have already been discussed [2,3], thus only the 
second type of errors will be treated here. 

At increasing T(t) functions, rearrangement and integration of eqn. (2) 
give 

g(x) =Aje- E/RTdt = A 
J 

e-E/RT(dT/dt)-‘dT (2) 

Thus the equations used in the kinetic evaluations, e.g. the theoretical x(T) 
or (dx/dt)(T) functions, should be derived from eqn. (2). In practice, 
however, equations deduced for linear heating programs are usually applied, 
which means that eqn. (2) is formally replaced by 

g(x) = Aapparue’ 
J 

e-Eappar/RTdT (3) 

where Aappar and Eappar are apparent values of A and E respectively, and a is 
the nominal heating rate. Equation (3) is obviously exact at linear T(t) 
functions when dT/dt = a. It is interesting to note that eqn. (3) gives an 
exact description of the examined processes in every case when 

dT/dt = ceC’jT (4) 

where c and c’ are constants describing the dependence of the heating rate 
on temperature. If eqn. (4) is valid or approximates formally the change of 
the heating rate during the reaction, then a comparison of eqns. (2) and (3) 
gives 

E appar = E + c’/R (5) 

and 

A appar = Aah (6) 
Note that the linear temperature program is a special case of eqn. (4) (then 
c’ = 0 and c = a). Since eqn. (3) is valid if, and only if, eqn. (4) is valid, the 
application of eqn. (3) at a non-linear T(t) is equivalent to the formal 
approximation of the actual heating rate by eqn. (4). If eqn. (4) cannot give a 
good approximation for the actual heating rate, then probably eqn. (3) will 
give only a poor description of the experimental data. 

Now let us examine briefly the meaning of the coefficient c’ when the 
actual heating rate is formally approximated by eqn. (4). Developing ec’lT 
into a Taylor series, it can immediately be seen that c’ is correlated with the 
slope of the dT/d t vs. l/T plot. If l/T is also expanded into a Taylor series, 
it can be seen that c’ is roughly proportional to the negative of the slope of 
function dT(t)/dt. [Note that only increasing T(t) functions are treated 
here.] At concave T(t) functions, when d2T/dt2 > 0, dT/dt is an increasing 
function of t and c’ is negative. In a similar way, c’ is positive at convex T(t) 
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functions. Thus a concave curvature of T(t) decreases the apparent value of 
E while a convex curvature increases it. 

THE ASYMMETRY OF CURVES x(t) AND dx( t)/dt 

As is well known [4-91, the asymmetry of curves x(t) or dx(t)/dt is 
strongly correlated with the formal reaction order, n. If f(x) has a form other 
than (1 - x)“, the asymmetry can obviously be correlated with other adjusta- 
ble parameters of f(x) [3]. In this section we shall examine how the curvature 
of the actual T(t) function changes the asymmetry of curves x(t) or 
dx(t)/dt. In other words, we shall compare the asymmetry at linear and 
non-linear temperature programs. At linear temperature programs, the asym- 
metry slightly depends on the value of E/RT,, where Tp is the temperature 
of the peak maximum. For this reason, we have to suppose that the values of 
T’r are approximately equal at the compared curves. (Note that a difference 
of + 10% in TP does not change the degree of asymmetry significantly [3], 
thus the term “approximately equal” here may also include differences of 
50-100 K.) 

The characterization of the asymmetry will be based on the value of the 
reacted mole fraction at the peak maximum, xP (at symmetrical curves, 
x,, = 0.5). Of course, there is an endless number of ways to characterize the 
degree of asymmetry. The only reason for choosing xP is the relative 
simplicity of the corresponding mathematical deductions [3,5- lo]. 

Let us start the deductions by writing the condition of the maximum of 
dx/dt. Differentiatng eqn. (1) and rendering it equal to zero gives 

f(x,)~(tp)E/RT;+~(x,)~(t,) =0 (7) 

where subscript p refers to the maximum of dx/dt. The equation has been 
divided by Ae- E’RTp which appeared in both terms. 

As in the previous section, the integral of eqn. (1) will be written in the 
form 

g(X,) =AJf.e-E/RTdt =A~=~pe-“RT(dt/dT)dT 
0 0 

(8) 

where To is the starting point of the given temperature,program. To obtain a 
formal relationship between the right-hand side and the integrals arising at 
linear heating programs,let us define a weighted average of dt/dT by 

(dt/dT) =/ Tpe-E/RT(dt/dT)dT//Tpe-E/RTdT (9) 
r, G 

In this average, emEiRT is a weight function. The numerator is the integral of 
the right-hand side of eqn. (8). Using this definition, eqn. (8) can formally be 
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written as 

g(x,) =A(dt/dT)/r’e-E/RTdT 
0 

As is well known, the integral of e -E’RT by T can be written in the form 

J 
Tpe-E/RTdT-ITpe-E/RTdT= 

To 0 

= E-‘RTp2e-E’RTp9( E/RT ) 
Q (11) 

where q( E/RT,) is a slowly changing (nearly constant) function [4,11,12]. 
(For a critical review on function q and its approximations see, for example, 
ref. 12.) 

Using eqns. (l), (10) and (11) dx( t,)/dt can be expressed in the form 

dxQ)f(xQ) 

RT,Z (dt/dT)‘dE/RT,) (12) 

Introducing this expression into eqn. (7), a relationship is obtained between 
xQ and the characteristics of the temperature program 

- $(xQ)p(x,) = 4(E/RTQ)(dr/dT)~(‘,) (13) 
Equation (13) will now be examined. Let us start the analysis at the 

right-hand side. According to the mean value theorem of the integral 
calculus [13], there is a t’ point in the interval 0 -C t’ -C t, where (dt/dT) is 
equal to d t( t’)/d T. Thus 

(dt/dT) $ ( tQ) > 1 if dT/dt is increasing 
1 

(dt/dT) gtQ = 1 if dT/dt is constant 

and 

(dt/dT) z( tQ) < 1 if dT/dt is decreasing 
I 

(14) 

in the interval 0 -C t < t, 

Regarding function q( E/RT,), note that its values fall between 0.90 and 
0.96, provided that E/RT, is in the usual interval between 20 and 50. Thus 
at linear T(t) the right-hand side of eqn. (13) is a nearly constant quantity 
between 0.90 and 0.96. It is interesting to note, that the right-hand side of 
eqn. (13) is exactly equal to one at hyperbolic T(t) functions [lo]. 

Let us consider how the equality is reached in eqn. (13) at a hyperbolic 
T(t). Function -df(x)/dxg(x), arising on the left-hand side of eqn. (13), is 
zero at x = 0 since g(0) = 0. It may have a minimum if df(x)/dx has a 
positive section and, finally, it has to rise until one in order to reach the 
equality of the two sides. This means that in the vicinity of xQ, 
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- df( x)/dxg( x) has to be an increasing function. (If it fails to increase until 
the value of the right-hand side, dx/dt will not have maximum in the 
interval 0 < x < 1.) 

The situation is similar at linear T(t) functions though, from a purely 
mathematical point of view, one can imagine such f(x) functions at which 
the left-hand side stops increasing before xi, and the equality is reached by 
the very slow decrease of function q( E/RT) on the right-hand side. How- 
ever, this type of situation can be excluded if the treatment is restricted to 
such f(x) functions at which 

(i) there is one, and only one, maximum of the calculated (dx/dt)( t) 

curves at any positive heating rate and at any physically meaningful value of 
E; and 

(ii) the temperature of the peak maximum, Tp, changes continuously with 
the heating rate. 
It is easy to show that these conditions can only be fulfilled if 
-df(x)/dxg(x) is an increasing function of x around xP. Note that 
- df( x)/dxg( x) is an increasing function in the whole domain of 0 -C x < 1 
if f(x)=(l -x)” and n>O. 

These considerations lead to the following interpretation of relations (14). 
If a linear T( t ) is changed to a concave T( t ), the maximum of dx/d t is 
shifted to a higher value of xP. If a linear T( t ) is changed to a convex T( t ), 
the maximum of dx/dt is shifted to a lower xr. The extent of the shift is 
determined by the alteration of (dt/dT)dT(t,)/dt from unity. Of course, 
these statements are valid only for small changes of T(t). Here the meaning 
of the term “small” depends on the type of function f(x). If f(x) = (1 - x)“, 
and n > 0, then -df( x)/dxg( x) is an increasing function in the whole 
domain of 0 <x < 1, thus the only limiting factor lies in the fact that a very 
high change of T( t ) may result in a shift of Tp by more than 50- 100 K, and 
in this way the change of q( E/RT,) may partially compensate the change of 
(dt/dT)dT( t,)/dt. 

Regarding the definition of (dt/dT) by eqn. (9), we can immediately see 
that 

(i) the shift of xi, depends on the deviation of (dT/dt)-’ at the peak 
maximum from an average value of (dT/dt )- ’ ; 

(ii) the values of (dT/dt)-’ around the peak maximum play a far more 
important role than the values in the previous part of the domain. Note that 
the increase of the weight function in eqn. (9) can roughly be estimated by 
the old empirical rule which states that a 10 K rise of T roughly doubles 
e-E/RT. 

(iii) if T(t) contains convex and concave sections, too, the convex and 
concave sections partially compensate each other in the formation of 
(dt/dT). 
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ESTIMATION OF THE ACTIVATION ENERGY AND THE FORMAL REACTION 

ORDER 

Let us suppose that parameters E, n and A are evaluated through 
equations deduced for linear temperature programs. At f(x) = (1 - x)~, eqn. 
(13) can easily be solved for xr. (The solution is a simple modification of the 
formulae deduced in refs. 3, 7 and 9.) In this way it can be shown that a 
concave curvature of T(t) decreases n while a convex curvature increases it. 
The errors of n also influence the determination of E [3]. It is interesting to 
note that the error of E arising from the error of n has the same sign as the 
error arising from the application of eqn. (3) at a concave or convex T(t). In 
other words, the two types of error treated in this paper cumulate in the 
evaluation of E. 

Finally we should like to emphasize that the errors treated in the paper 
arise at any evaluation methods provided that 

(i) its deduction involves the integration of eqn. (1) at a linear r(t); 
(ii) it uses explicitly or implicitly the information contained by such 

fundamental properties of the experimental curves as the reacted mole 
fraction at the peak maximum or the average width of plots x vs. l/7’. 
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