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ABSTRACT 

The shape of the liquidus lines in phase diagrams of binary systems with CT interaction 
formed by 2,4,7-trinitrofluoren-9-one (TNF) with six aromatic and heteroaromatic com- 
pounds has been calculated by a procedure based on the Van Laar equation. To fit the 
simulated curve to experimental results two alternative models of the melt have been 
employed, viz., that of a regular solution of components of a completely dissociated CT 
complex, and that of a perfect solution of a partially dissociated CT complex in equilibrium 
with its components, the values of heat of mixing (AH”) or dissociation constant (K), 

respectively, being used as adjustable parameters. Both procedures are proved to be nearly 
equally adequate to represent the experimental liquidus lines, the values of the parameters 
A HM and K being - 0.5 to - 6 kJ mole-’ and 0.2 to 1, respectively. 

INTRODUCTION 

In Part I of this work [l] phase diagrams of six binary systems with CT 
interaction formed by 2,4,7-trinitrofluoren-9-one with naphthalene (N), 
anthracene (AN), pyrene (P), fluorene (F), dibenzothiophene (BDT), and 
carbazole (C) were determined by differential scanning calorimetry and 
hot-stage microscopy. Apart from congruently melting 1: 1 CT complexes 
existing in each system, the formation of incongruently melting AN(TNF),, 
P(TNF),, and C(TNF), complexes has been established. There is no misci- 
bility within solid phases; appropriate components form simple eutectics 
with 1: 1 or 1: 2 complexes, respectively. In the present work a thermody- 
namic discussion of solid-liquid equilibria in the systems is given. 
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EQUILIBRIUM BETWEEN THE PURE SOLID COMPONENT AND THE BINARY 
MELT 

From the general phase-equilibrium condition 

py’ + RT ln( xtyl) = ppS + RT ln( xsyf) 

and by simple thermodynamic relations, one gets 

(1) 

(2) 

where xf and x/ are the mole fractions of a given component at temperature 
T in equilibriated solid and liquid phases, respectively; yS and yj are the 
appropriate activity coefficients; and AHti is the molar heat of fusion of 
pure component i. Assuming that AHti is independent of temperature and 
the solid phase contains only one component (xSyp = l), and integrating 
between the melting temperature of the pure component ( To,i) and that of a 
sample of a given composition (T), the well-known Van Laar relation is 
obtained 

ln(xtyl) = - “2yi (T-1 _ T&r) 

This relation is used for the evaluation of activity coefficients, yl, by 
cryoscopic method. For binary systems where components (1) and (2) form a 
solid addition compound (12), however, the problem of the actual composi- 
tion of the melt should be considered. 

(9 noI and no2 denote the mole numbers of the components used in the 
preparation of the sample, and n,, n 2, and n12 are the mole numbers of the 
components and of the 1: 1 addition compound in the melted sample. For 
simplicity, let us assume no, + no2 E 1. Then 

n, = no, - n12, n2 = no2 - n12 (4 

x1 = no1 - n12 no2-n12 

4 = 1 -n,2 ’ 
n12 

1 l-n,, ’ 
x1 -- 

I2 - 1 -n,, 

On the other hand, by the law of mass action, the mole number of 
undissociated compound in a perfect solution is 

(K+ 1) - /(K+ 1)2 -4(K+ l)n,,n,, 
n12= 2(IC+ 1) 

where K is the dissociation constant 
(perfect) melt at a given temperature 

1 I 
XIX2 K=- 

I 
x12 

of the addition compound in the 

(7) 
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Estimating experimentally the values of A H~i and the melting temperature of 
the sample of a given composition (nOI,n02), i.e., knowing AHFi and the 
position of the liquidus line in the phase diagram, and assuming the melt to 
be a perfect solution ( y: = l), the dissociation constant of the addition 
compound at a given temperature is evaluated by using relations (3), (5), and 
(6). However, this is a rather arduous and not very successful procedure due 
to the large scatter of K values caused by experimental errors. Thus it is 
more convenient to draw a pencil of lines T( noi) for different K values and 
to fit one of them to the experimental points *. 

(ii) If it is assumed that the addition compound dissociates completely in 
the melted state (thus if xf ~n,,~), it is possible to evaluate the activity 
coefficient of the component in the melt of a given composition and at a 
given temperature (melting temperature of the sample) using eqn. (3). Here it 
is also more convenient to introduce a suitable general relation J# = f(x/, T) 
and to draw a set of “theoretical” T(xf) lines. It seems reasonable to assume 
the melt to be regular solution for which [2] 

Then, as in case (i), we have a pencil of lines (with the value of molar heat of 
mixing AHM as a parameter) which could be fitted to the experimental 
results **. 

EQUILIBRIUM BETWEEN THE SOLID ADDITION COMPOUND AND THE BINARY 
MELT 

Applying eqn. (2) and noting that xS2yf2 3 1, for the case studied here 

d ln(x~,y,‘,) = - s dT 

The mole fraction of the addition compound in the melt is related to the 
mole fractions of the components by the law of mass action 

K,= 
xtv: - x:v: 

1 I 
X12Y12 

(74 

* The limited accuracy of measurements did not allow us to ascertain the temperature 
dependence of the dissociation constant. 
** To evaluate yi for a given xf by eqn. (8) the melting temperature of the sample must be 
known-a quantity being determined. The problem can be solved by combining (8) with (3) 
which gives a simple relation XI =f(T) with AH”, AHti and 7& as known parameters. 
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thus eqn. (2a) is equivalent to 

A472 
dln(xiy:-xiyi)-dln K,= -L 

RT2 
dT (9) 

Integrating between the melting temperature of the pure addition compound 
(where n 0, = no2 = 0.5) and that of the sample of a given composition 

(4X7 no2) and taking into account the van’t Hoff isobar 

ln Km = 

K&2) 

‘Tss (T-1 _ T,-,:) 

gives 

In _ +(T+ - T,-,,:) (11) 

where 

AH& = AH&, + AH& (12) 

is the effective heat of fusion of the addition compound *. 
As in the preceding paragraph two limiting cases will be considered. 
(iii) Partially dissociated addition compound forming a perfect solution 

with the components. 
Since yl= 1 here, we get 

(13) 

Similarly as in case (i), the mole fractions of the components are related to 
the (known) values of no, by relations (5) and (6); nevertheless eqn. ( 13) 
cannot be solved for K unless additional assumptions are made. With AH&, 
T o,,2, and T known, there is only one equation and two unknowns: the values 
of K corresponding to To,,, and T. Thus it was decided to neglect the 

temperature dependence of the dissociation constant and adopt the same 
procedure used previously: to fit one of the T( noi) lines calculated from (13), 
(5), and (6) for different K values to experimental results. 

(iv) Addition compound dissociates completely, molten components form 
a regular solution. 

* If the addition compound dissociates completely upon melting, AH& is equal to the 
experimentally measured molar heat of fusion AH&. If the degree of dissociation (at 

noi =0.5) is OL AH& = AH&, +(l - cy) AH&. The difference is neglected as a more crude 
approximation, K # f( T) has to be made (see below). 
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Now xi = n,; and ( 11) reduces to 

I I ( Lo+,* nolno2YlY2 

In (0.25 * Y:Y:)n,,,=n,,*=0.5 

= _ !!$+I _ p) (134 

Assuming as in (ii) a suitable general expression for yi as a function of noi 
and T, the procedure described there can be followed, and the theoretical 
plot n,,(T) can be compared with the actual one. For regular solutions 
yi( xi, T) is given by (8). One should bear in mind, however, that in (8) the 
ideal state of reference is the pure liquid component i ( yi + 1 when xi -+ l), 
whereas in (7a) and thus in (13a) it is an infinitely diluted solution (K, -+ K 
when xi + 0). The problem of an analytical expression for yi of the solute in 
a regular solution is dealt with in the Appendix where instead of eqn. (8) we 
have found the relation 

4 AHM 
Yizexp - RT 

[ 
~Xi(2 -Xi) 1 

Applying (14) to (13a) and taking AH& = AH&, and To,,2 from experimental 
results, we have simulated T(n,,) lines for different AHM values as a 
parameter and compared them to the liquidus line found experimentally. 

RESULTS 

Detailed results of the TNF-naphthalene system are given as an example. 
Figure 1 shows the plot of calculated T(n,.,,) lines together with experi- 
mental points. An equally good fit was attained in both procedures (i) and 
(ii), the values of the parameters being K= 1 and AHM = -0.55 kJ mole-‘, 
respectively. For the sake of comparison, liquidus lines calculated for AHM 
= 0 (i.e. for a perfect binary solution) and for AHM = - 1 kJ mole-’ are 
also shown. In Fig. 2, the equilibrium between the solid TNF-N complex 
and the molten phase is reviewed. Melting temperatures of both naph- 
thalene-rich and TNF-rich samples fit the same liquidus line (i.e. the liquidus 
line is symmetrical with respect to no, = 0.5). Here again the melting curve 
can be equally well reproduced by schemes (iii) or (iv); in the latter case, 
however, a value of AHM = - 1 kJ mole- ‘, different from that found 
previously, has to be used. The discrepancy is beyond experimental error 
(note the line for AHM = - 1 kJ mole-’ in Fig. 1 and that for AHM = -0.55 
kJ mole-’ in Fig. 2), thus we are inclined to regard the model of incomplete 
dissociation of the CT complex in the molten state as more adequate. 

In Fig. 3 the complete phase diagram of the TNF-naphthalene system as 
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420 - AIM=-lkJmole-‘,K=co 

Fig. 1. Equilibrium temperature in the system solid TNF-liquid TNF+naphthalene. x, 
Experimental values; 0, calculated for AHM = -0.55 kJ mole-‘, K = co; 0, calculated for 
AH”=O,K=l. 

calculated within the latter model with K = 1 is shown together with experi- 
mental results. Liquidus lines calculated for the limiting case AHM = 0, 
K = 00 are also drawn. Similar results have been found for TNF-dibenzo- 

TABLE 1 

Parameters of two alternative thermodynamic descriptions of the systems 

System Perfect solution 
incomplete dissociation 

Regular solution, 
complete dissociation 
AHM (kJ mole-‘) 

TNF-N 1 (-0.5 to - 1) 

TNF-AN 0.25 (-2.5 to -3.5) 

TNF-P (0.2-0.3) - 4.25 

TNF-F (‘1) -0.75 

TNF-DBT 0.3 to 0.4 -2.25 

TNF-C (0.2) (-6.25) 

The values in parentheses are regarded as less reliable. 
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Fig. 2. Equilibrium temperature in the system solid TNF-N complex-binary melt. -. -, 
Experimental values for TNF-rich melts; x, experimental values for naphthalene-rich melts; 
0, calculated for AHM = - 1 kJ mole-‘, K = 00; 0, calculated for A HM =O, K = 1. 

thiophene and TNF-anthracene systems (beyond the existence region of 
AN(TNF), complex). 

In the TNF-carbazole system the melting curve of the 1: 1 complex can 
be satisfactorily reproduced by the model of incomplete dissociation; the 
melting curve of carbazole, however, cannot be described by any of the two 
models. 

For the TNF-fluorene and TNF-pyrene systems a better fit was attained 
in the framework of the regular solution model. However, it is possible that 

it is the oversimplified assumption of. the temperature-independent dissocia- 
tion constant which accounts for the inadequacy of the alternative model in 
this case. The results of calculations are briefly summarized in Table 1. 
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Fig. 3. Liquidus lines in the TNF-naphthalene system. x, Experimental results; 0. calculated 
for AH”=O, K=l; ---, calculated for AH”=O, K=co. 

DISCUSSION 

Two alternative treatments proposed in the present work for solid-liquid 
equilibria in binary systems with CT interactions are proved to be of similar 
usefulnes. As a matter of fact, in spite of the different formalism used in 
each of the methods, they account for the same chemical .reality: the 
occurrence of attractive interactions between donor and acceptor molecules 
in the melt expressed by the negative value of the enthalpy of mixing or by 
the existence of the undissociated CT complex in the molten state. Thus the 
clear distinction between the two models proposed here seems neither 
necessary nor possible. Nevertheless, the concept presented allows some 
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qualitative conclusions to be drawn. The low dissociation constant values 
found here (K = 0.2- 1) suggest that even for rather weak CT complexes (as 
those of TNF with aromatic donors) about 50% of complex molecules still 
do not decompose into their components after melting. It would be interest- 
ing to check this estimation by an independent experiment, e.g. spectroscopi- 
cally. 

A paper has recently been published by M. Radomska and R. Radomski 
[3] concerning this problem. The authors discussed phase equilibria of CT 
complexes of trinitrobenzene with aromatic compounds along similar lines 
based on the Van Laar equation. Although we agree with the general 
conclusions of the authors concerning incomplete dissociation of the com- 
plex in the molten state and even with the concept of a positive contribution 
to the heat of mixing, we differ in the discussion of the thermodynamic 
condition of equilibrium between the solid 1: 1 complex and the melt [eqns. 
(2) and (4) in ref. 3 or eqns. (1 l), (13), and (13a) in the present work]. A 
comparison of these equations shows that the authors have tacitly assumed 
complete dissociation of the complex in the stoichiometric melt, which is 
inconsistent with their results. 

APPENDIX 

Activity coefficient of the solute in a regular binary solution 

By definition of activity coefficient [4] 

RT ln yi = pyl - P!,~ (15) 

where py’ is the chemical potential of component i in the real solution, and 
pi” is that in the ideal reference state, for a regular solution with 

In yi = $(l -Xi)’ 

M 

pyg - pp = RT In xi + w 06) 

where py is the standard chemical potential which is identical for both the 
real solution and the ideal reference state. 

Figure 4 shows a schematic plot of (&” - pp) vs. In Xi together with two 
straight lines representing ( pid - E.L~) vs. In xi plots for two ideal reference 
states, viz., that of pure liquid i (which is the state of reference assumed in 
@)-upper line) and that of an infinitely diluted solution (lower line). The 
vertical distance between the actual pf” - &’ line and a given straight line 
( pfieg - &) - (pi: - &) = prg - pi” is, according to eqn. (15) equal to RTln yi 
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for a given choice of the reference state; the vertical distance between two 

straight lines is equal to -4 AH”. 
For clarity we shall denote the activity coefficient for the “pure liquid”, 

Fig. 4. The relationship between the activity coefficients of a component of a binary regular 
solution for two different ideal reference states. 

and that for the “infinitely diluted solution” state of reference by yi and y’, 
respectively. From Fig. 4 

RT(lny:--lnyi)= -4AHM 

and introducing (8) 

RTlnyl= -4AH”+4AHM(l -xi)‘= -4AH”xi(2-xi) 

Thus 

(14) 

ItistobenotedthatforAH”<O,yi<l andy:>l,whereasforAH”>O, 
y,>l andylcl. 
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