Note

COMPUTER-DETERMINED KINETIC PARAMETERS FROM TG CURVES. PART VI

LEO REICH and S.S. STIVALA

Department of Chemistty and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (U.S.A.)

(Received 14 April 1982)

It was previously indicated [l] that

$$
g(\alpha) = [(A/RH)] \int_0^T \exp(-x) dT
$$
 (1)

where $g(\alpha) = \int_0^{\alpha} d\alpha/f(\alpha)$, RH = constant heating rate, A = frequency factor, *T* = temperature (K), α = conversion, and $x = E/RT$.

For two TG curves obtained at different RHs, we may write from eqn. (1) (for $T = constant$)

$$
\frac{(RH)_2}{(RH)_1} = \frac{g(\alpha_1)}{g(\alpha_2)}\tag{2}
$$

where $g(\alpha)=-\ln(1-\alpha)$ for $n=1$, and $\left[1-(1-\alpha)^{1-n}\right]/(1-n)$ for $n \neq 1$. This applies to an 'n-order' type reaction. By means of a computer, eqn. (2) can be employed to readily calculate values of reaction order, n , for various pairs of alpha values at any particular value of *T* [e.g. α_1 and α_2 from the (RH) ₁ and (RH) ₂ traces, respectively] using straightforward iteration. Thus, for instance, an initial value of n , say 0.10001, is chosen and from a pair of alpha values, the right-hand side (R.H.S.) of eqn. (2) is calculated [the left-hand side (L.H.S.) of eqn. (2) is known and is constant throughout the iteration]. Values of n are incremented until the R.H.S. becomes greater than the L.H.S. At this point, say $n = V_1$, if the absolute difference between the L.H.S. and the R.H.S. is less than the absolute difference between the L.H.S. and the immediately preceding value of the R.H.S., say at $n = V_2$, then $n = V_1$; otherwise, $n = V_2$. This iterative procedure is continued for the various pairs of α values and an average *n* value (\bar{n}) is calculated. The procedure may now be repeated using a smaller increment for n , say 0.01, and another initial value of n, say $n - 0.2$, in order to obtain a more refined \bar{n} value.

From eqn. (2), it can be seen that for a constant value of $(RH)_{2}/(RH)_{1}$,

the value of n is independent of temperature and only depends on the values of α_1 and α_2 . In Fig. 1 is depicted a plot of values of α_1 and α_2 for various n values at a constant heating ratio of two. Values of α_2 ranged from 0.3 to 0.65 and corresponding values of α_1 ranged from 0.5 to 1. At lower values of α_2 , the various curves become convergent. Thus, from eqn. (2), the slopes of the various curves in the figure can be written as

Slope =
$$
\frac{(RH)_2}{(RH)_1} \left[\frac{(1-\alpha_1)}{(1-\alpha_2)} \right]^n
$$
 (2a)

As the values of $\alpha \rightarrow 0$, the slope $\rightarrow (RH)_{2}/(RH)_{1}$, so that at relatively low α values it becomes very difficult to estimate *n*. The upper limit for α_2 is determined by the value of *n*. Thus, when $n = 1/3$, at $\alpha_2 = 0.628$, the value of $\alpha_1 = 0.994$. The utilization of Fig. 1 allows for a rapid estimation of n.

After the value of n has been determined, any one of the TG curves can be employed for the estimation of E . Thus, from eqn. (1)

$$
\frac{g(\alpha_1)}{g(\alpha_2)} \frac{T_2}{T_1} = \frac{Z_1}{Z_2}
$$
 (3)

Fig. 1. Values of α_1 **and** α_2 **at various TG isotherms for** $(RH)_2/(RH)_1 = 2$ **.** \oplus , $n = 1/6$; \Box , $n = 1/3$; \triangle , $n = 1/2$; \boxtimes , $n = 2/3$; \triangledown , $n = 4/5$; \bigcirc , $n = 1$; \triangle , $n = 5/4$; \diamondsuit , $n = 3/2$.

384

where $Z = [\exp(-x)/x] [1 - (2/x) + (6/x^2)]$ and $x = E/RT$ [2,3]. Since values of *E can* vary over a wide range, a procedure previously described [2] was utilized whereby an approximate initial value of *E* can be estimated. At low values of α

$$
E \sim [2T_1T_2/(T_1 - T_2)] \ln(\alpha_1/\alpha_2) \tag{4}
$$

Thus, two values of *E* can be initially calculated using low values of α corresponding to the initial three pairs of α -T values from one of the TG curves. An average *E* value was then determined and this value was rounded to the nearest kcal mole⁻¹ (EA). The range of E values to be investigated was established as $EA - 2$ to $EA + 5$ in increments of 0.1 kcal mole⁻¹. When the L.H.S. of eqn. (3) became greater than the R.H.S., a procedure similar to that described in the preceding was used to estimate the value of *E* for any pair of α -*T* values. This procedure was continued for the various α -*T* pairs and then an average *E* value (E) was calculated.

TESTING THE METHOD

The preceding computer method for the estimatidn of n and *E* was tested using two sets of theoretical data. The first set was generated as described previously [1]. Using $n = 1$, $E = 30$ kcal mole⁻¹, $(RH)_1 = 1$, $(RH)_2 = 2$, $A = 3.30 \times 10^6$ min⁻¹, the following values of *T* and the corresponding values of α_1 and α_2 [from (RH), and (RH),, respectively] are given in order: 720, 0.0892995, 0.0456937; 726, 0.106759, 0.0548859; 732, 0.127036, 0.0656746; 738, 0.150427, 0.078277 1; 744, 0.177215, 0.0929252; 750, 0.207653, 0.109861; 756, 0.241938, 0.129332; 762, 0.280188, 0.151583; 768, 0.322415, 0.176845; 774, 0.368489, 0.205323; 780, 0.418108, 0.237182; 786, 0.470777, 0.272523; 792, 0.525786, 0.3 11368; 798, 0.582210, 0.353634; 804, 0.638930, 0.399109; 810, 0.694677, 0.447439; 816, 0.748103, 0.498107; 822, 0.797885, 0.550428; 828, 0.842837, 0.603562; 834, 0.882027, 0.656528; 840, 0.914884, 0.708254; 846, 0.941257, 0.757631; 852, 0.961424, 0.803592. In the following are given in order the average n value followed by its mean deviation, \overline{E} followed by its mean deviation, and the number of significant figures (s.f.) used for α : 1.0000, 0, 30.0, 0, 6; 1.0004, 0.0017, 30.0, 0.02, 4; 1.004, 0.017, 30.05, 0.21, 3; 0.93, 0.18, 28.7, 2.4, 2.

From the preceding, it can be seen, as anticipated, that as the number of s.f. for α decreases, the mean deviation values increase and the deviations of *E* and n from their respective theoretical values also increase. For 2 s.f., the values of *n* ranged from ca. 0 to 1.4 (these limits correspond to the two lowest values of the $\alpha_1 - \alpha_2$ pairs); similarly, the values of E (under these conditions) ranged from 24.4 to 33.5 kcal mole^{-1}. Thus, it is strongly recommended that at least 3 s.f. for α be employed for the iterative procedure or when using Fig. 1. Of course, the accuracy of the temperature values has been implicitly assumed.

The second set of data was generated [4] using a contracting volume model $[n = 2/3, E = 23.9, A = 1.8832 \times 10^{15} \text{ min}^{-1}$, (RH)₁ = 0.257, (RH)₂ = 11. For this model, the preceding computer procedure is still applicable for the estimation of *E* and n. However, the data for the lowest three temperatures and the corresponding low values of $\alpha_1-\alpha_2$ pairs ($\alpha_2 = 0.008-0.015$ and $\alpha_1 = 0.03$ -0.056) were not utilized (no value of *n* could be ascertained up to $n = 2$). Also, these low α values only possessed 1 and 2 s.f. Remaining values (2 and 3 s.f. for α) afforded the following values of *E* and *n*, respectively: 24.2 ± 0.2 kcal mole⁻¹, 0.68 ± 0.05 .

This computer method was also applied to data for sodium bicarbonate (SB) at heating rates of 8.3 and 16.7 deg min⁻¹ [5]. Values of α ₂ used ranged from 0.36 to 0.65. By employing Fig. 1, $n = 0.72 \pm 0.05$; the computer procedure afforded $n = 0.70 \pm 0.05$ and $E = 21 \pm 3$ kcal mole⁻¹ (these values are lower than those previously reported for SB (0.79-0.83 and 22-25) [2]). The present authors also subjected powdered SB (USP) to thermal analysis using TG. Similar values of n and *E* were obtained using the preceding computer method. However, since values of α were restricted to 0.3-0.65, eqn. (4) yielded very low EA values. Hence, values of *E* were tested from EA to an arbitrary $EA + 20$ kcal mole⁻¹ (not as previously indicated for the theoretical data).

The preceding method has several severe limitations: at low α values it becomes very difficult to estimate n, as previously noted, due to convergence effects; values of α to be used are restricted to a relatively narrow range; and derived values are sensitive to small changes in α . Nevertheless, values of n can be rapidly estimated, irrespective of temperature (cf. Fig. 1).

ACKNOWLEDGEMENT

Gratitude is expressed to Victor Tan for aid with the experimental work.

REFERENCES

- **1 L. Reich and S.S. Stivala, Thermochim. Acta, 55 (1982) 385.**
- **2 L. Reich and S.S. Stivala, Thermochim. Acta, 52 (1982) 337.**
- **3 L. Reich and S.S. Stivala, Thermochim. Acta, 53 (1982) 121.**
- **4 M.E. Brown and C.A.R. Phillpotts, J. Chem. Educ., 55 (1978) 556.**
- **5 P.V. Ravindran, Thermochim. Acta, 39 (1980) 135.**