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ABSTRACT 

We present an equation of state that can represent within experimental error most 
individual sets of published PVT data for most fluids, whether in the range of vapor at 
moderate pressures, or compressed liquids, or gases at very high temperatures and densities, 
any region in fact except the vicinity of the critical point. In terms of pressure the equation is 

P=DRT[l+(D,‘T) (~,T+~,D-~),‘(~,+c,T”~+c~D+c~D~)] 

where D = l/V, the density in mole 1 - ‘. The coefficients are readily determined by a least 
squares fit of the data. An additional term is sometimes needed if the D range is very wide, 
say several times DC. Different fluids can be simultaneously represented over a limited range, 
such as the compressed liquid region, by a single reduced form of the equation in which all 
but three of the constants are the same for all, and these three (a reducing T, l/c,, a reducing 

D, l/c,, and a dimensionless parameter) are characteristic of each individual fluid. The 

equation can also simultaneously represent many data sets for a single fluid from many labs 
and covering various T and D ranges. From this, a consistent representation 

namic properties can be derived. 
of its thermody- 

An equation of state is presented for use in all temperature, 
density regions of gases and liquids except the critical region. 
has the form 

D(c,T+c,D- l)=(Z- 1)TW 

pressure, and 
The equation 

(1) 

where Z = P/( DRT), P is pressure, T is temperature, D is density, and 

W=c +c T”‘+c D+c D2 3 4 5 6 (2) 

Equation (1) is linear in the six coefficients, and to determine them from 
experimental data by simple least squares, any one of the variables, e.g. T, or 
D, or DT, etc., could be taken as the dependent variable. In practice it has 
been convenient to take the constant unity as the dependent quantity 

1 = c,T+ c,D - (Z- l)(T/D)W (3) 
Once the coefficients are determined, the equation can be used to calcu- 

late P explicitly 

P=DRT[l +D(c,T+c,D- l)/(TW)] (4 
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To find D from P and T, or T from P and D, the simplest procedure is 
iteration. 

The quantity W appears to vary with the l/2 power of T over wide 
temperature ranges, but if the range is narrow, then any power between l/2 
and 1 will do. If the density range is very wide, e.g., two or three times O,, 
then another density term, c,D3, is sometimes needed in IV. The equation 
has been applied successfully to literature data over most of the accessible 
experimental region, ranging in pressure from 0 to 22 kbar, in temperature 
from the triple point to ten times critical, and in density from zero to over 
four times critical. 

In this report we will: 
(1) demonstrate its suitability for representing individual experimental 

PVT data sets within experimental error in various regions of the variables; 
(2) show how it can represent simultaneously several sets of data for a 

given substance as measured by different investigators in different PVT 
regions; 

(3) show how it can be used in reduced form in a limited region, e.g., the 
compressed liquid region, to represent data for many different substances by 
the same equation with only three characteristic parameters needed to 
distinguish each substance; 

(4) indicate how it can be used to determine virial coefficients, to evaluate 
the parameters of any three-constant intermolecular potential, and to corre- 
late various thermodynamic properties in reduced form. 

INDIVIDUAL DATA SETS 

Region I: supercritical gases (T above TC, low to moderate D) 

As an example of data in this region we take the measurements by 
Michels et al. [I] for carbon monoxide. These range in temperature from 0°C 
to 150°C, which is about 2 T, to 3 T, on isotherms at 25’ intervals. The 
pressure is from 0 to 3000 atm, and the density is from 0 to about 27 mole 
l-i, which is over two and a half times 0,. With the O3 term included, eqn. 
(1) fits these data with an average absolute deviation in density of two parts 
in 10000. This accuracy is a measure of the quality both of the data and the 
equation. The original authors represented their data by isothermal virial 
expansions to the seventh power in D, thus requiring 49 constants to 
represent the seven isotherms, which are good of course only at these seven 
temperatures and not in between. Many other examples of data in this range 
have been tested, with the goodness of fit usually agreeing with the reported 
experimental error. 

The measurements of Michels et al. [2] for neon are especially well 
represented by eqn. (1) with just six constants even though the density range 
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extends from 0 to about 2.3 0,. The T range is from about six to 10 times T,. 
The average density deviation is only seven parts per 100000. 

The equation holds just as well for mixtures as it does for pure gases. 
Examples include the CH,-CF, mixtures investigated by Douslin et al. [3]. 

Unfortunately, as the experimental temperature approaches T,, even to 
below about 1.3 c, the fit worsens. The rapid change of density with 
pressure is less and less accurately represented. Therefore near T,, the 
density region between about 0.5 0, and 2 0, must be excluded. 

Region II: compressed liquids (T below T,, D above 2 D,) 

In this region, the power of Tin W is not crucial, as noted above, and the 
term c,D3 is not needed. Liquid data often have an error of one or two parts 
per 1000 in density, although frequently the self-consistency of any one data 
set is much better than this. Any experimental density points below about 2 
DC will be for T near T, and should be excluded. Otherwise the equation 
usually matches the consistency of the data. 

A good example of data in this region is provided by Streett and Staveley 
for liquid krypton [4]. The temperature range is from 120 to 220 K, roughly 
from i’J2 to q. The pressure ranges from the vapor pressure to over 3500 
atm. Excluding a few points below 2 DC, the density ranges from 2 DC to 3 
DC, which is up to about 33 mole l- ‘. The original authors represented the 
data with an average density deviation of three parts in 10000 using the 
16-constant Strobridge equation. Equation (1) fits with the same accuracy. 

Many other liquids can also be fitted within the experimental error. These 
include other noble gas liquids, nitrogen, oxygen, and ammonia. The data of 
Benson and Winnick [5] for liquid octane fit with an average density 
deviation of 3.5 in 10000. The temperatures ranges from - 15 to 85°C and 
the pressure goes up to near freezing at each T, to over 7000 atm at 85°C. 

PVT data for molten KC1 as a typical example of an ionic melt are 
presented by Goldmann and Todheide [6]. They represent the data, which 
ranges in T from 770 to 1050°C and in P up to 6 kbar, by a Tait equation 
with T-dependent parameters and obtain a standard deviation of 0.04% in 
density. Equation (1) fits their reported values (smoothed by the Tait 
equation) with an average density deviation of less than 0.02%. 

Other relatively incompressible liquids also fit extremely well. Glycerol, 
for example [7], in the T range from -50 to 80°C, and for pressures up to 
2800 kg cm-* exhibits an average deviation of 1.6 in 104. The most notable 
example so far encountered is mercury. In this case the unrounded experi- 
mental values of Davis and Gordon [8], given by MacDonald [9], are 
reproduced with an average deviation of only a few parts per million. 
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Region III: high density, high temperature (T above Tc, D above about 2 D,) 

Robertson and Babb [lo] have reported results in this region for a number 
of fluids. Their measurements of nitrogen, for example, range in temperature 
from 35 to 4OO”C, which is about 2.5 T, to 5.5 q, in pressure from 1.5 to 10 
kbar and in density from about 2 0, to 3.5 0,. With six coefficients (a 
seventh does not help) the average density deviation. is 4.7 parts per 10000, 
well within the reported uncertainty of the measurements. 

The highest pressures and densities encountered thus far are for measure- 
ments on nitrogen by Mills et al. [ 11 J which extend from 3 to 22 kbar, and 
from about 2.5 0, to 4.2 O,, reaching the freezing line even though the 
temperatures are above 2 T,; The fit of eqn. (1) to their smoothed molar 
volumes shows an average deviation of less than two parts per 10000. 

Although this data region is fairly extensive, still the coefficients of eqn. 
(1) are not determined uniquely by data in this region alone. For example, 
variations in c, and c2 of. several percent can still produce good agreement. 
This will be discussed further later. 

We also note that in this region, and in the others as well, eqn. (1) can 
apparently adapt itself to small systematic errors. In this sense it is perhaps 
too pliable and accomodating, especially for data of limited extent. 

We should also point out that the discussion of data in these three 
arbitrary regions is not intended to exclude its application to data which do 
not fit exactly into one of them or to low density vapors. 

TWO OR MORE REGIONS COMBINED 

In this section we discuss the simultaneous fitting of PVT data for a single 
fluid from several sources and covering more than one of the above regions. 
When we do this we must be prepared in most cases to accept somewhat 
greater average deviations than before. This is because apparently good data 
sets from different investigators, even in the same data region, sometimes 
disagree by a few tenths of a percent. And eqn. (1) usually cannot follow 
small systematic errors in two data sets simultaneously. 

Even so, fits having average density deviations of less than one part per 
1000 are obtained in some cases. A good example is the combination of data 
from Regions I and III, that is, data covering all densities at supercritical 
temperatures. The Region I data for argon by Michels et al. [ 121 and the 
Region III data for argon by Robertson et al. [ 131 fit together with an 
average density deviation of seven in 10000. The same is true of nitrogen 
data by these same investigators. Data from Regions II and III also combine 
well. This includes all temperatures, and all densities above about 2 0,. The 
Region II (liquid) data of Streett and Staveley [14] for argon fit simulta- 
neously with Robertson et al.‘s [ 131 higher T data for argon with an average 
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deviation of seven in 10000. The same is true for the nitrogen data of these 
investigators. 

When we attempt a combined fit of data from all three regions or just 
from Regions I and II, the average deviation goes up to several parts per 
1000. While this is within the claimed accuracy of some of the data, and 
good enough for some purposes, still the deviations are grossly systematic 
and indicative of a fundamental problem. 

To understand the problem and its solution, we need to take a moment to 
examine one of the features of eqn. (l), namely the unit compressibility line 
(UCL). The compressibility factor, 2, equals unity when D is zero, and also 
whenever c,T+ c,D - 1 = 0. Thus, in the latter case, T and D are linearly 
related for those states of the fluid for which the ideal gas condition, 
P = DRT, holds [ 15- 181. Defining a temperature To as l/c,, and a density 
Do as l/c,, we have that 

T/T, + D/D,, = I (5) 

for 2 = 1, and we see that To is the zero density intercept, and Do the zero 
temperature intercept, of the T vs. D UCL. Most sets of data for compressed 
liquids (Region II) include a section of the UCl, and with a few exceptions 
like H, and H,O, the line is remarkably straight, well within experimental 
error. Many data sets in Region I also include a section of the UCl, and 
again in most cases it is amazingly straight, within the experimental error. 
The constants ci and c1 (and thus To and Do) are then of course determined 
without very much leeway. Region III at high temperatures and densities 
does not include the UCL at all, and it is for this reason that the coefficients 
are determined with less precision here. 

Now we note an unfortunate fact, which is the source of our difficulty. 
The values of T, and Do determined in the gaseous region (high T, low D) 

for a given fluid usually disagree by a few percent with those found in the 
liquid region (low T, high D). The lines seem perfectly straight in both 
regions, but they are slightly different straight lines. For example, To values 
as found for liquid and gas are about 416 and 408 K for argon, and about 
338 and 326 K for nitrogen. As was mentioned, Region III data allow some 
tolerance in To and Do, and so this region can be fitted simultaneously with 
either Region I or Region II. But Regions I and II, for high accuracy fits, 
demand their own values. 

If we assume that the differences between the coefficients for these two 
regions, and the consequent relatively poor combined fit to eqn. (l), are due 
to real differences and not simply to experimental discrepancies, then we are 
assuming that the UCL is not exactly straight over its entire course from 
high T, low D gas to low T, high D liquid. This assumption is reinforced by 
the obvious experimental curvature of the UCL for some fluids such as H, 
and H,O. This in turn then requires a modification of eqn. (l), whose UCL 
is straight. The simplest modification is an added term in the parentheses on 
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the left of eqn. (I), allowing a small curvature in the UCL. When this is 
included, the overall combined fit of the three regions is improved. The best 
form for the added term is still being investigated, but for nitrogen a D’.5 
term permits the Region I data of Michels et al., the liquid data of Streett 
and Staveley, and the Region III data of Robertson and Babb, to be fitted 
simultaneously with an average deviation of nine in 10000. Similar results 
are obtained for argon. 

EQUATION (1) IN REDUCED FORM 

If we return to data sets covering only a limited region, such as one of the 
three (I, II or III), then we can return to the unmodified form of eqn. (1) and 
to a straight UCL. Then we can discuss the simultaneous fitting of data for 
many different fluids in a given region to a single reduced form of eqn. (1). 
For this purpose we take T, as a reducing temperature and D,, as a reducing 
density, and define 

8 = T/T, and 8 = D/D, (6) 

as the reduced temperature and the reduced density. If we define a third 
(dimensionless) reducing parameter, K,, as 

K, = cI/cz( cg + c&‘*) = Do/&( c3 + c4T;‘*) (7) 

we can write eqn. (1) as 

~o~(e+6-1)=(Z-i)~(a,+a,fP~2+a,8+a,~2) (8) 

in which a, + a2 = 1. From previous work [ 191, it is to be expected that many 
liquids can be fitted to the same reduced equation, that is, eqn. (8) with the 
same a, coefficients, requiring only the three characteristic parameters (To, 
Do, K,) to distinguish one from another. Provisional results confirm this 
expectation. For example, with a, = 0.84, a3 = - 1.572, and a4 = 0.765, eqn. 
(8) represents the liquid (Region II) data for mercury [8,9], ammonia [21], 
and xenon [22] with the respective average density deviations of 1.2, 8, and 4 
parts per 10000. 

Earlier work with another equation [20] for gases up to D = D, demon- 
strated that a large number of substances can be represented in this region 
also by a single reduced equation, requiring only the same three parameters, 
but now evaluated at low densities (Region I). 

VIRIAL COEFFICIENTS, INTERMOLECULAR POTENTIALS, AND REDUCED 
THERMODYNAMIC PROPERTIES 

The equation of state in the virial form may be written as 

Z=l+BD+CD*+... (9) 
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in which B and C are the second and third virial coefficients. Equation (1) 

fitted to data in the region of low to moderate densities, serves to determine 
these early virial coefficients as functions of temperature. Thus, from B = ZI, 
and C = Zt/2, where ZA and Zt are the first and second partial derivatives 

of Z with respect to D at constant T and zero D, we find that 

B = (c,T - l)/TW,, and C = ( c2 - c,TB)/TW, (10) 

where W, = cj + c,T’/*. 
We also find that the three parameters, To, Do, and K,, when evaluated 

from Region I data, have the following physical identities: To is the Boyle 
temperature, TB, at which B is zero; K,/D, is the Boyle volume, V,, defined 
as TdB/dT at TB; and K,/Di = V,/D,, is C,, the value of C at T,. 

It has also been shown previously [23] that these three parameters (To, Do, 
K,) uniquely specify any given three parameter intermolecular potential. 
Such potentials are described by a potential energy well depth, E, which can 
be evaluated from TB, a molecular volume, which can be evaluated from Do 
or V, and a third, dimensionless, parameter, which can be evaluated from 

KO. 
To correlate thermodynamic properties in reduced form, we define corre- 

sponding fluids as those that obey eqn. (8) with the same values of the a, 
coefficients in a given region such as the compressed liquid region. And we 
define a corresponding reduced property as one that has the same value for 
all corresponding fluids at any given 6 and 6 [24]. It can be seen from the 
relation Z = 1 + K,Y, where Y is a function of 8 and 6, that Z is not a 
corresponding property, but has different values for different fluids at a 
given 8 and 6, depending on K,. Reduced pressure, defined as r = 
P/( D,RT,), also does not correspond because it equals Z8S. But of course, 
(Z- 1)/K,= Y(8,6) is a corresponding property for corresponding fluids. 
And so are the so-called residual properties, such as residual energy, en- 
thalpy, and entropy, when properly reduced [25]. Some properties, such as 
the zero density reduced Joule-Thompson coefficient, are functions of 8 
only. This is also true of the reduced virial coefficients, p = B/V, and 
y = C/C,. Thus 

p= (e- 1)/e IQ, and y = (1 - ~~~p)/~~, (11) 

where w, = a, + a,i?‘/* with a, + a2 = 1. 
If a corresponding property is set at a constant value, this yields a 

universal 8 vs. S curve. For example, a family of such curves results from 
setting (Z - 1)/K,, at a series of constant values. If the value is set at the 
ideal gas value, the resulting curve is called an ideal curve [ 171. Such ideal 
curves are produced by setting any of the following equal to zero: (Z - 1); 
the Joule-Thompson coefficient; the slope of Z on an isochore (giving Z 
maximum); the slope of Z on an isotherm (giving Z minimum); (a *~/a6 2)e, 
giving the locus of inflection points on isotherms of TT, and the 8 vs. 6 curve 
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on which the critical point must lie; and ( 32~/M2)6 giving the universal B 
vs. 6 locus of Cv maxima. 

And finally, once the ai are known, then evaluation of the three parame- 
ters, TO, DO, and K,, for any corresponding 
calculation of all the properties of the fluid 
equation of state. 

REFERENCES 

fluid in the region allows the 
that can be derived from the 

1 A. Michels, G. Lupton, T. Wassenaar and W. DeGraaf, Physica, 18 (1952) 121. 
2 A. Michels, T. Wassenaar and P. Louwerse, Physica, 26 (1960) 539. 
3 0. Douslin, R. Harrison and R. Moore, J. Phys. Chem., 71 (1967) 3477. 
4 W. Streett and L. Staveley, J. Chem. Phys., 55 (1971) 2495. 
5 M. Benson and J. Winnick, J. Chem. Eng. Data, 16 (1971) 154. 
6 G. Goldmann and K. Todheide, Z. Naturforsch., Teil A, 31 (1976) 656. 
7 G. McDuffie, J. Forber, W. Madigosky and J. Von Bretzel, J. Chem. Eng. Data, 14 (1969) 

176. 
8 L. Davis and R. Gordon, J. Chem. Phys., 46 (1967) 2650. 
9 J. MacDonald, Rev. Mod, Phys., 41 (1969) 316. 

10 S. Robertson and S. Babb, J. Chem. Phys., 50 (1969) 4560. 
11 R. Mills, D. Liebenberg and J. Bronson, J. Chem. Phys., 63 (1975) 1198. 

12 A. Michels, H. Wijker and H. Wijker, Physica, 15 (1949) 627. 
13 S. Robertson, S. Babb and G. Scott, J. Chem. Phys., 50 (1969) 2160. 
14 W. Streett and L. Staveley, J. Chem. Phys., 50 (1969) 2302. 

15 A. Batschinski, Ann. Phys., 19 (1906) 307. 
16 E. Amagat, Ann. Chim. Phys., VI (1893) 29. 
17 T. Morsy, Dissertation, Tech. Hoch Karlsruhe, 1963. 
18 E. Holleran, J. Chem. Phys., 47 (1967) 5318. 

19 E. Holleran, Cryogenics, 11 (1971) 19. 
20 E. Holleran and J. Hammes, Cryogenics, 15 (1975) 95. 
21 A. Kumagat and T. Toriumi, J. Chem. Eng. Data, 16 (1971) 293. 
22 W. Streett, L. Sagan and L. Staveley, J. Chem. Thermodyn., 5 (1973) 633. 
23 E. Holleran, J. Phys. Chem., 73 (1969) 167. 
24 E. Holleran, Cryogenics, 15 (1975) 137. 
25 E. Holleran and G. Gerardi, J. Phys. Chem., 72 (1968) 3559. 


