Note

SOLUBILITY AND THERMODYNAMIC DATA OF MAGNESIUM HYDROGEN PHOSPHATE IN AQUEOUS MEDIA

N.S. CHICKERUR *, G.H. NAYAK, R.C. LENKA and P.P. MAHAPATRA

Post-Graduate Department of Chemistry, Khallikote College, Berhampur 760 001 (India)

(Received 17 March 1982)

Studies on the solubility of magnesium hydrogen phosphate (MgHPO₄·H₂O) are considered relevant in explaining the role of Mg²⁺ in the inhibition [1,2] of dicalcium phosphate, CaHPO₄ · 2 H₂O (DCPD) and octacalcium phosphate, Ca₈H₂(PO₄)₆ · 5 H₂O (OCP), the precursors in the formation of crystalline calcium hydroxyapatite, Ca₁₀(PO₄)₆(OH)₂ (HAP), the model inorganic component of human skeletal system [3]. The solubility product (K_{sp}) and related thermodynamic parameters, ΔG^0 , ΔH^0 , ΔS^0 and ΔC_p^0 of MgHPO₄ · H₂O in aqueous media at pH 7.2 under a constant ionic environment of 0.165 M NaNO₃ between temperatures of 30 and 50°C have been calculated and reported.

EXPERIMENTAL

MgHPO₄ · H₂O was precipitated at room temperature (30°C) by the dropwise addition of a 20% solution of MgSO₄ · 7 H₂O to a 9% solution of Na₃(PO₄) · 12 H₂O as required for stoichiometric precipitation for a yield of 5.0 g. Mixing of the reagents was completed within about 1.5 h. The precipitate was filtered, washed repeatedly with water, alcohol and ether. The sample was dried in vacuo for 24 h before subjecting it to chemical analysis. Percentage loss of weight of the sample on heating at 100°C at 6 h showed that the sample was a monohydrate. The experimental weight percents [4] of Mg = 17.30 and P = 23.10 were found to be close to the theoretical values of Mg = 17.40 and P = 22.90. Solubility of the sample was determined at 30, 37.5, 40, and 50°C and pH 7.2 maintained by a borax-boric acid buffer by the method of equilibration used earlier [5].

^{*} To whom correspondence should be addressed.

^{0040-6031/82/0000-0000/\$02.75 © 1982} Elsevier Scientific Publishing Company

RESULTS AND DISCUSSION

Calculation of solubility product and thermodynamic data

The solubility product (K_{sp}) of the sample was calculated from the experimentally determined magnesium, phosphorus and the final pH of the medium. The changes in pH before and after equilibration were within ± 0.1 . The total phosphorus content (P_T) in the filtrate was divided into HPO_4^{2-} and PO_4^{3-} species by using the following relationships

$$P_{T} = C_{PO_{4}^{3}} \left[\frac{(H^{+})^{3}}{K_{1}K_{2}K_{3}} + \frac{(H^{+})^{2}}{K_{2}K_{3}} + \frac{(H^{+})}{K_{3}} + 1 \right]$$
(1)

$$K_{3} = \frac{C_{PO_{4}^{3}} \times (H^{+})}{[HPO_{4}^{2^{-}}]}$$
(2)

assuming unitary values for the respective activity coefficients and K_1 , K_2 , K_3 being the dissociation constants of orthophosphoric acid. The presence of $H_2PO_4^-$ was not considered since the existence of this species is negligible at the pH under investigation. The ionic strength of the medium was then calculated by using the equation

$$\mu = \frac{1}{2} \sum C_i Z_i^2 \tag{3}$$

where the terms have their usual significance. Activity coefficients were calculated by using the Davis equation

$$\log f_{(\text{ion})} = A_{\text{ion}} Z_{\text{ion}}^2 \sqrt{\mu}$$
(4)

where A is the standard temperature dependent constant, the value of μ was refined by the method of iteration until a constant value of μ was obtained.

TABLE 1

Temp. Total P. Activity Activity coefficient (°C) g-ions per litre (Mg^{2+}) (HPO_{4}^{2-}) (PO_4^{3-}) $f_{Mg^{2+}}$ fpo: fHPO2 - $\times 10^{3}$) $\times 10^{3}$ $\times 10^{3}$ $\times 10^{8}$ 4.00 30 1.3431 0.2509 0.0278 0.1599 0.1599 0.0161 37.5 2.64 0.3898 0.1772 0.0206 0.1695 0.1695 0.0184 40 2.78 0.4989 0.0211 0.1663 0.1815 0.1663 0.0176 50 2.32 0.4743 0.0325 0.4379 0.1581 0.1581 0.0157

Activity and activity coefficients of different ionic species present in saturated solutions of $MgHPO_4 \cdot H_2O$ at various temperatures

The calculated values of activity coefficients for all the species are given in Table 1.

It is clear from the table that the contribution of PO_4^{3-} ions to the process of dissolution is negligible as compared with the concentrations of HPO_4^{2-} in the medium. The solubility product K_{sp} for MgHPO₄ · H₂O was then obtained by the equation

$$K_{\rm sp} = [{\rm Mg}^{2+}] f_{{\rm Mg}^{2+}} \times ({\rm HPO}_4^{2-})$$

where (HPO_4^{2-}) is the activity of HPO_4^{2-} ion. The values of K_{sp} at various temperatures were fitted by the method of least squares to an equation

$$-\log K_{\rm sp} = \frac{A_{\rm m}}{T} + B_{\rm m} + C_{\rm m}T \tag{5}$$

The values of the constants A, B and C in eqn. (5) were found to be: 8b-67363.612, 427.978 and -0.65839, respectively. Standard thermodynamic quantities ΔG^0 , ΔH^0 , ΔS^0 and ΔC_p^0 of the dissolution process have been calculated by using the values of A, B and C from the following equations

$$\Delta G^{0} = -2.303 R (A_{\rm m} + B_{\rm m} T + C_{\rm m} T^{2})$$
(6)

$$\Delta H^{0} = 2.303 R \left(A_{\rm m} - C_{\rm m} T^{2} \right) \tag{7}$$

$$\Delta S^{0} = -2.303 R(B + 2 C_{\rm m}T) \tag{8}$$

$$\Delta C_{p}^{0} = -2.303 R(2 C_{m}T)$$
⁽⁹⁾

where R is the gas constant. For MgHPO₄ · H₂O, m = 1, since the function refers to the simple dissolution of MgHPO₄ as follows

$$MgHPO_{4(s)} \Rightarrow Mg^{2+}_{(aq)} + HPO^{2-}_{4(aq)}$$
(10)

The results of the standard thermodynamic parameters and the values of pK_{sp} at different temperatures are given in Table 2. It is observed that both the values of ΔG^0 and the negative value of ΔH^0 increased and the negative value of ΔS^0 decreased with increase of temperature. These observations lend support to the view that MgHPO₄ · H₂O exhibits retrograde solubility behaviour.

Since the values of $pK_{sp}(-\log K_{sp})$ of MgHPO₄ \cdot H₂O given in Table 2 are of comparable order and magnitude to those of DCPD [6,7], precipitation of the former, during hydrolysis of DCPD or OCP in the presence of Mg²⁺ in aqueous media cannot be ruled out. The reported inhibitory effect of Mg²⁺ on hydrolysis of DCPD or OCP, the possible precursors for HAP, may be due to association of the additional phase of MgHPO₄ \cdot H₂O formed during hydrolysis.

Temp.	pK _{sp} values	es	$\Delta G^0 imes 10^{-4}$ (1 mole $^{-1}$ deg $^{-1}$) e	$(-)\Delta H^0 \times 10^{-6}$	$(-)\Delta S^0 \times 10^{-2}$ (1 mole of def = 1	$\Delta C_{p}^{0} \times 10^{-3}$
5	Exptl.	Calc.				(and and)
30	6.3718	6.1620	3.5743	2.4467	5.5498	7.6381
37.5	6.7815	6.5734	3.9010	2.5008	3.7852	7.8146
4	6.7515	6.0810	4.0032	2.5244	3.0289	7.8902
50	6.8283	6.7602	4.1801	2.6045	0.5081	8.1045

TABLE 2

ACKNOWLEDGEMENT

N.S.C. and P.P.M. thank the University Grants Commission, New Delhi, for financial support.

REFERENCES

- 1 M.S. Tung, N.S. Chickerur and W.E. Brown, J. Dent. Res., 58 (1979) 369; Abstr. No. 1112.
- 2 N.S. Chickerur, G.H. Nayak, R.C. Lenka and P.P. Mahapatra, Polyhedron, in press.
- 3 W.E. Brow, P.R. Patel and L.C. Chow, J. Dent. Res., 54 (1975) 475.
- 4 R. Pribil, Analytical Applications of EDTA and Related Compounds, Pergamon Press, New York, 1st edn., 1972.
- 5 P.P. Mahapatra, H. Mishra and N.S. Chickerur, Thermochim. Acta., 52 (1982) 333.
- 6 R.P. Patel, T.M. Gregory and W.E. Brown, J. Res. Natl. Bur. Stand. Sect. A, 78 (1976) 675.
- 7 P.P. Mahapatra, H. Mishra and N.S. Chickerur, Thermochim. Acta, 54 (1982) 1.