ETUDES DES EQUILIBRES SOLIDE-LIQUIDE DU SYSTEME BINAIRE AgPO₃-LaP₃O₉

DALILA BEN HASSEN, NAJIA KBIR-ARIGUIB et MELIKA TRABELSI

Laboratoire de Physico-Chimie Minérale, Ecole Normale Supérieure, Tunis (Tunisia) (Reçu le 23 novembre 1982)

ABSTRACT

The AgPO₃-LaP₃O₉ system was investigated for the first time by DTA. X-ray diffraction, and IR spectroscopy. The only definite compound observed in the system was AgLa (PO₃)₄, which melted incongruently at 800°C. The method of preparation, powder diagram and crystallographic data of AgLa(PO₃)₄ are given. AgLa(PO₃)₄ crystallises in the monoclinic system P_{21/C} with a unit cell: a = 12.38(2) Å; b = 12.88(2) Å; c = 7.33(1) Å; $\beta = 127°91(6)$ z = 4. Its IR absorption spectrum is typical of a chain phosphate.

RESUME

Le diagramme d'équilibre solide-liquide du système AgPO₃-LaP₃O₉, établi par microanalyse thermique différentielle, montre l'existence d'un seul composé défini AgLa(PO₃)₄ à fusion non congruente à 800°C. Deux méthodes de préparations et les principales caractéristiques cristallines de ce sel sont décrites. Sa maille cristalline est monoclinique: a = 12,38(2)Å; b = 12,88(2) Å; c = 7,33(1) Å; $\beta = 127°91(6)$ z = 4, groupe spatial P_{21/C}. Son spectre d'absorption IR suggère une structure en chaîne.

INTRODUCTION

L'étude des phosphates condensés connait un essor considérable depuis la découverte en 1972 des propriètés luminescentes de l'ultraphosphate de néodyme NdP₅O₁₄ [1] et des travaux de Bril et al. [2] qui montrent que certaines substances au Ce³⁺ peuvent constituer de bons scintillateurs rapides. Ces propriétés sont également observées pour les polyphosphates mixtes de néodyme et de métaux monovalents [3–5]. Pour mettre en évidence les composés de ce type, nous avons entrepris une étude générale des systèmes M(I)PO₃-M(III)P₃O₉, avec M(I) = Li [6], Na [7], K [8], Rb, Cs [9], Tl [10], Ag et M(II) = La. Dans ce travail, nous présentons les résultats de l'étude du diagramme d'équilibre solide-liquide du système AgPO₃-LaP₃O₉ qui n'a fait l'objet d'aucune étude antérieure.

TECHNIQUES EXPERIMENTALES

Le diagramme d'équilibre a été établi par micro-ATD en montée de témpérature, suivant la méthode de Mazières [11], à l'aide d'un microanalyseur Setaram M5. Nous avons été dans l'obligation d'opérer seulement en montée de température. En effet, la fusion de nos mélanges, suivie d'un refroidissement, entraîne la formation de verre dans lesquels les accidents thermiques sont trés atténués et ne peuvent pratiquement pas être détectés avec précision. La vitesse de chauffe est 10°C min⁻¹.

Les échantillons, préparés dans des creusets en silice, à partir de AgPO₃ et LaP₃O₉, 3 H₂O dans différentes proportions (la composition est exprimée en moles de LaP₃O₉ variant de 0 à 100%), sont finement broyés, homogénéisés, puis précalcinés durant plusieurs jours à 400°C pour les pourcentages molaires en LaP₃O₉ inférieurs à 50, et à 700°C pour les pourcentages molaires en LaP₃O₉ supérieurs à 50. Les échantillons sont placés dans des creusets en Pt pour la détermination des courbes d'analyse thermique différentielle. Al₂O₃(α) est choisi comme référence. Pour détecter les accidents thermiques à des températures inférieures à 1000°C, nous avons utilisé un thermocouple Pt/platinel, étalonné par rapport à la température de fusion connue avec certitude, de corps purs (KI, NaI, NaCl, K₂CO₃); à des températures supérieures à 1000°C nous avons utilisé un thermocouple Pt/Pt-Rh.

La diffraction des rayons-X, méthode des poudres, a été utilisée pour identifier les éspèces solides nouvelles ou déjà connues et les phases solides en équilibre dans les domaines où elles existent. Le spectre de diffraction des rayons-X du composé nouveau est relevé à vitesse lente $(1/8^{\circ}\theta \text{ min}^{-1})$ sur un diffractomètre Philips-Norelco utilisant la longueur d'onde du cuivre $K_{\alpha,\alpha,\cdot}$.

Pour la vérification des paramètres de la maille de $AgLa(PO_3)_4$, nous avons utilisé une chambre de weissenberg de marque Enraf Nonius. Les spectres d'absorption IR sont enregistrés à l'aide d'un spectro-photomètre Perkin-Elmer IR 377 sur des échantillons en pastille dans KBr.

PRODUITS UTILISES

L'étude du binaire $AgPO_3 - LaP_3O_9$ a nécessité la préparation de ces deux phosphates, ainsi que celle du trimétaphosphate de sodium constituant de base pour la préparation de AgPO₃ et LaP₃O₉ 3 H₂O.

La préparation [12] du trimétaphosphate de sodium $Na_3P_3O_9$ est connue depuis longtemps: le dihydrogénophosphate de sodium (produit Prolabo pour analyse) est mis à 550°C pendant 7 h, le produit obtenu est dissous dans l'eau. Aprés filtration, la liqueur est évaporée à sec dans une étuve. Le résidu est calciné à 300°C. La préparation [13] de $Ag_3P_3O_9$ H_2O se fait par précipitation à partir d'une solution aqueuse de trimétaphosphate de sodium et de nitrate d'argent, selon le schéma réactionnel suivant

$$Na_{3}P_{3}O_{9} + 3 AgNO_{3} \xrightarrow{H_{2}O} Ag_{3}P_{3}O_{9} H_{2}O + 3 NaNO_{3}$$

Le produit AgPO₃ est obtenu par déshydratation et calcination à 300°C du composé Ag₃P₃O₉ H₂O.

 LaP_3O_9 3 H₂O est préparé selon la méthode de Serra et Giesbrecht [14]. Une solution N/10 en trimétaphosphate de sodium est mélangée avec une solution N/10 en La Cl₃ (produit Prolabo pour analyse). La précipitation du métaphosphate de lanthane s'observe aprés quelques minutes d'agitation. Aprés filtration et lavage, le précipité est séché au dessiccateur.

La pureté des produits $Na_3P_3O_9$; $Ag_3P_3O_9$ H_2O et LaP_3O_9 H_2O est vérifiée à partir de leurs spectres de diffraction des rayons-X ainsi que par leurs thermogrammes obtenus par micro-ATD.

Certains auteurs ont signalé une décomposition de LaP_3O_9 à haute température [15–17] selon la réaction

$LaP_3O_9 \rightleftharpoons LaPO_4 + P_2O_5$

pour cela, une étude par diffraction des rayons-X, absorption IR et ATD-ATG couplées a été faite. Elle montre que LaP_3O_9 est pratiquement stable jusqu'a 1250°C. En effet, la calcination à 900°C du produit ne modifie en rien les spectres de rayons-X ou d'absorption IR. En outre, un diagramme d'ATD-ATG couplées, effectué sur un thermoanalyseur GDTD24 Setaram montre qu'il y a seulement une légère perte de masse à 1250°C au moment où un pic de fusion apparait sur la courbe d'ATD.

RESULTATS EXPERIMENTAUX

Les résultats expérimentaux de cette étude sont groupés dans le Tableau 1. La précision des températures est 5°C jusqu'a 1000°C et 10°C pour les

TABLEAU 1

Principales caractéristiques thermiques du diagramme AgPO₃-LaP₃O₉

	% Molaire AgPO ₃	% Molaire LaP ₃ O ₉	Temp. (°C)
Fusion de AgPO ₃	100	0	488
Palier eutectique			488
Début de palier péritectique	82,5	17,5	800
Décomposition de AgLa(PO ₃) ₄	50	50	800
Fusion de LaP ₃ O ₉	0	100	1250

températures supérieures. Sur la Fig. 1 nous donnons la représentation graphique du diagramme d'équilibre $AgPO_3-LaP_3O_9$. Il n'existe dans ce système qu'un seul composé défini à fusion non congruente $AgLa(PO_3)_4$ qui se décompose suivant la réaction péritectique

$AgLa(PO)_3 \rightleftharpoons LaP_3O_9 + liquide à 800°C$

L'eutectique dégénèré fond à 488°C. Les phases solides en équilibre dans les domaines IV et V (Fig. 1) ont été identifiées par le diagramme de poudre de mélanges pris dans ces domaines.

Fig. 1. Représentation graphique du diagramme d'équilibre du système $AgPO_3 - LaP_3O_9$. I, Liquide; II, $LaP_3O_9 + liquide$; III, $AgLa(PO_3)_4 + liquide$; IV, $AgPO_3 + AgLa(PO_3)_4$; V, $AgLa(PO_3)_4 + LaP_3O_9$.

TABLEAU 2

Dépouillement du diagramme de poudre de AgLa(PO₃)₄ effectué sur un diffractomètre Philips-Norelco utilisant la longueur d'onde du cuivre $K_{\alpha_1\alpha_2}$

hkl	d _{calcd.} (Å)	$d_{\rm obsd.}({\rm \AA})$	<i>I</i> / <i>I</i> ₀	
110	7,78	7,76	15	
020	6,44	6,43	82	
111	6,37	,		
211	5,39			
ī20	5,37			
011	5,27	5,27	10	
200	4.88	,		
ī21	4,83			
2 10	4,56			
221	4,37			
021	4,30	4,31	10	
130	3,93	3,94	100	
311	3.92	-)-		
220	3.89	3.88	15	
111	3.83	- ,		
131	3.70			
2 02	3.66			
$\frac{202}{212}$	3 52			
231	3 48			
321	3,40	3,48	36	
021	3,47			
101	3,44			,
212	3,40			
512 112	3,34	3.78	77	
112 230	3,20	3,20	21	
2.50	3,224	3,215	12	
040 500	3,219	2.196	10	
222	3,164	3,100	10	
310	3,137	3,155	60	
140 500	3,058	2.040	10	
322	3,049	3,049	12	
122 221	3,005	3,025	18	
331	2,972	3,003	12	
402	2,971			
141	2,947	2,947	33	
131	2,931	2,930	30	
411	2,929			
320	2,906	2,908	33	
412	2,895			
002	2,891			
211	2,870	a 0.0 ±		
241	2,831	2,834	11	
012	2,821			×
041 202	2,813			
232	2,786	A = A^		
421	2,725	2,729	48	

hkl	$d_{\text{calcd.}}(\text{\AA})$	d _{obsd.} (Å)	<i>I/I</i> 0	
4 22	2,698			
332	2,695			
2 40	2,688			
221	2,678	2,680	30	
ī32	2,664	2,664	18	
022	2,637			
330	2,594			
3 41	2,536	2,535	15	
141	2,511			
ī50	2,490	2,488	15	
4 31	2,463			
231	2,428			
512	2,425	2,425	24	
2 42	2,418		,	
<u>2</u> 13	2,315	2,310	10	
522	2,305		12	
511	2,299	2,301	12	
351	2,184	0.100	12	
4 42	2,183	2,180	12	
513	2,178			
060	2,146	2,145	10	
532	2,140			
ī13	2,130	2,129	10	
523	2,090			
433	2,085	2,085	15	
352	2,066			
2 33	2,063	2,063	15	

TABLEAU 2 (continué)

PREPARATION DE AgLa(PO3)4

Ce composé peut être préparé à l'état pulvérulent de deux façons. Un mélange stoechiomètrique de carbonate d'argent, de phosphate diammonique et d'oxyde de lanthane, mis au four à 400°C, la montée en température se faisant lentement et graduellement, puis calciné à 700°C pendant plusieurs jours, aprés un broyage d'homogénéisation, permet d'obtenir une poudre de AgLa(PO₃)₄. Ce dernier peut également être obtenu à partir d'un mélange à 50% (en moles) de AgPO₃ et LaP₃O₉ recuit plusieurs jours à 700°C.

Des monocristaux de ce composé sont préparés en calcinant à 180° C pendant 1 jour puis à 320° C pendant 3 semaines, un mélange de H₃PO₄ (85%), Ag₂CO₃ et La₂O₃ purs dans les proportions molaires La/Ag/P: 1/20/150. Ces monocristaux en forme de plaquette sont récoltés du mélange réactionnel aprés un lavage à l'eau chaude.

ETUDE RADIOCRISTALLOGRAPHIQUE DE AgLa(PO3)4

L'étude des diagrammes de diffraction de rayons-X des cristaux obtenus montre que le composé $AgLa(PO_3)_4$ est isotype de $NaLa(PO_3)_4$ [7] qui cristallise dans le système monoclinique. Un affinement par moindres carrés des données angulaires du diagramme de poudre de $AgLa(PO_3)_4$ conduit aux valeurs suivantes des paramètres de réseau: a = 12,38(2) Å; b = 12,88(2) Å; c = 7,33(1) Å; $\beta = 127^{\circ}91(6)$ z = 4, le groupe spatial $P_{2_1/C}$. Le Tableau 2 donne le dépouillement d'un diffractogramme de poudre de $AgLa(PO_3)_4$.

SPECTRE IR

Les spectres d'absorption (Fig. 2) en lumière IR des composés $AgLa(PO_3)_4$ et $NaLa(PO_3)_4$ confirment l'isotypie de ces deux composés et laissent

Fig. 2. Représentation graphique des spectres d'absorption IR des composés (a) $AgLa(PO_3)_4$ et (b) $NaLa(PO_3)_4$.

supposer une structure à chaînes infinies de tétraèdres PO_4 reliés par des ponts oxygène. En effet, ceci est confirmé par la présence d'une large bande d'absorption à 920 cm⁻¹ correspondant à v_{as} POP, le multiplet v_s POP entre 680 et 810 cm⁻¹ et le dédoublement des vibrations de déformation des tétraèdres PO₄ entre 450 et 600 cm⁻¹ [18,19].

BIBLIOGRAPHIE

- 1 H.G. Daniel Meyer et H.P. Weber, J. Quantum Electron., 8 (1972) 805.
- 2 A. Bril, G. Blasse, A.H. Gomes De Mesquita et J.A. De Poorter, Philips Tech. Rev., 32 (1971) 125.
- 3 T. Yamada, K. Otsuka et J. Nakano, J. Appl. Phys., 45 (1974) 5096.
- 4 K. Otsuka, J. Nakano et T. Yamada, J. Appl. Phys., 47 (1975) 2749.
- 5 S.I. Maksimova, K.K. Palkina, V.B. Loshchenov et V.G. Kuznetsov, Zh. Neorg. Khim., 23 (1978) 2959.
- 6 F. Moktar, M. Trabelsi et N.K. Ariguib. J. Solid State Chem., 38 (1981) 130.
- 7 D. Ben Hassen, N.K. Ariguib, M. Dabbabi et M. Trabelsi, C.R. Acad. Sci. Paris, 294 (1982) 375.
- 8 A paraître.
- 9 A paraître.
- 10 A paraître.
- 11 Ch. Mazières, Ann. Chim., 6 (1961) 575.
- 12 R.N. Bell, Inorg. Synth., 3 (1950) 103.
- 13 J.C. Grenier, Bull. Soc. Fr. Mineral. Cristallogr., 96 (1973) 171.
- 14 A. Serra et Giesbrecht, J. Inorg. Chem., 30 (1968) 793.
- 15 A. Durif, Bull. Soc. Fr. Mineral. Cristallogr., 94 (1971) 314.
- 16 J. Nakano et T. Yamada. J. Am. Ceram. Soc., 59 (3-4) (1976) 172.
- 17 J. Nakano, T. Yamada et S. Miyazawa J. Am. Ceram. Soc., 62 (9-10) (1979) 465.
- 18 M. Rzaigui, M. Dabbabi et N.K. Ariguib, J. Chim. Phys., 78 (6) (1981) 563.
- 19 M. Rzaigui et N.K. Ariguib, J. Solid State Chem., 39 (1981) 309.