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ABSTRACT 

The difference between the actual and the measured temperature of the sample examined 
distorts the estimated values of the kinetic parameters. This distortion has been analysed in 
the instances of simple parameter estimation methods. The results obtained can help to judge 
the correctness of the kinetic evaluation of the non-isothermal measurements. 

NOTATION 

A 
c, C and C’ 
E 

f(x) 
g(x) 
G(x,Jz) 
h, h’ and h” 

W4l42) 
R 

t 
T 

X 

6 

E 

pre-exponential factor 
constants in approximate equations 
activation energy 
function expressing the dependence of dx/dt on x 
integral of l/f(x) from 0 to x 
integral of l/f(x) from x, to x2 
constants defining the highest deviation between the 
known and the true temperatures of the sample 

~ntdWg(-4 
gas constant 
time 
temperature 
reacted mole fraction 
indicates the error of a given quantity 
error term in an approximate equation 

Superscripted symbols 

TO 

x0(t) 

the known (measured) temperature of the sample 
the solution of the kinetic differential equation when 
T- To(t) 
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6’E and Son errors caused by the use of To instead of the true 
temperature in the evaluation 

Subscripted symbols 

E low and ELI, lower and upper bounds of E 
1, (i = 1,2,...) arbitrarily chosen points of time 
T,‘, xp and x, T”( t,), x0( t,) and x( t,), respectively 

TPL To at the half-life of the sample 

INTRODUCTION 

The importance of good temperature control in thermal analysis has been 
judged rather divergently in the literature. Numerous kinetic studies have 
been based on equipment with poor temperature regulation or sample sizes 
which were obviously too high for reliable temperature control inside the 
sample. On the other hand, Arnold et al. claim [l-4] that the kinetic 
equations are very sensitive to measurement errors and even extremely small 
errors may make mathematically impossible the calculation of two or three 
kinetic parameters from a non-isothermal curve. In our opinion, the reality is 
somewhere between these two extremes. 

In a former paper [S] we have formally examined the sensitivity of the 
kinetic parameters to the experimental errors without discussing the effects 
of the various sorts of experimental errors. The aim of the present work 
(which has been published in three parts) is to study a concrete type of 
experimental error, namely how the difference between the known and the 
true sample temperature influences the kinetic evaluation. In Part 1 a 
mathematically simple example has been shown [6]. In Part 2 qualitative 
results have been deduced [7]. In the present paper, upper and lower bounds 
will be deduced for the errors in the activation energy and formal reaction 
order. 

Simple estimators based on a few experimental points will be discussed in 
the paper. Strictly speaking, the results will be error bounds only for these 
simple estimators. There may be other evaluation methods which are less 
sensitive to the experimental errors. Great improvements, however, do not 
seem probable since the estimators treated in the paper are directly con- 
nected with the fundamental geometric characteristics of the thermoanalyti- 
cal curves and any correct evaluation method has to provide some fit 
between the theoretical and the experimental curves. 

A really thorough modelling of the problem would probably lead to a 
system of partial differential equations which were not suitable for an easy 
mathematical analysis. To avoid this, simplifying assumptions have been 
applied. These assumptions, which will be outlined in the next section, are 
inevitable to keep the complexity of the deductions within reasonable limits. 
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GENERAL CONSIDERATIONS 

Let To stand for the known (experimental) values of the temperature. In 
thermal analysis, the prescribed temperature program is usually linear. 
Hence, To is usually close to a linear function of time. This approximate 
linearity will be assumed everywhere in the paper. The To(t) functions to be 
treated are those for which either the Coats-Redfern type of approximations 

are applicable [8- lo] or the In 
J 

emEIRTo dt vs. l/To plots are approxi- 

mately linear [l 1, 121. [It can be shown that these approximations are always 
applicable when (dTO/dt ) - ’ can be approximated by a low order poly- 
nomial of To or l/To in the given temperature domain.] Note that the 

non-linearity of ‘To(t) itself does not lead to errors at a mathematically 
correct evaluation. Here the term “correct” refers, among others, to the 
integration of the kinetic differential equation along the actual T’(t). Thus 
the systematic errors of the usual approximations at a non-linear To(t) will 
not be analysed in the present paper. The treatment will be restricted to the 
errors arising from the difference of the actual and the known temperatures. 

The actual temperature in the sample will be assumed to be close to To 
within a certain error bound. Since the rate constants are simpler functions 
of T- ’ than of T, it is worth expressing the closeness of To and the actual 
temperature through the closeness of their reciprocals. 

1 1 --- 
T’(t) T(t) Ih 

Here h stands for a constant error bound and T(t) may be the temperature 
of any point in the sample. From a physical point of view, a more natural 
way seems to be the restriction of either the absolute or the relative error of 
To by 

IT(t) - T”( t)l I h' (2) 
or 

IT(t) - To(t)l I h,, 

T(t) (3) 

where h’ and h” are constant error bounds. These relations will also be 
applied in the paper. It can be shown however, that (l)-(3) are practically 
equivalent as far as the kinetic evaluation of a single thermoanalytical curve 
is concerned. Let us consider that the kinetic evaluation is limited to the 
temperature domain of the significant reaction rates. On a given non-isother- 
mal thermoanalytical curve, the significant reaction rates belong to a rela- 
tively narrow temperature domain where (l)-(3) can mutually be approxi- 
mated by each other. Denoting the middle point of this temperature domain 
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by T, and developing (1) into a Taylor series around T, we get 

h 
h’ h” 

=- 
2 

and h=T 
m 

In the numerical examples, T, has been defined as the mean of the 
temperatures of x = 0.1 and x = 0.9. (Here x stands for the reacted mole 
fraction.) In a few instances the temperature of x = 0.5 has been used in 
place of T,. 

Note, that (1) permits smaller temperature errors at lower values of T. 
Usually this fact does not cause difficulties since the heat effects of the 
reaction studied are negligible below the domain of the significant reaction 
rates and in this way the temperature errors are also smaller there. Neverthe- 
less, the temperature domain will be divided into partial intervals during the 
deductions and in these partial intervals different h values can be applied. 
This possibility may be used, among others, to obtain a better approxima- 
tion of (2) or (3) by (1). 

Significantly sharper bounds can be obtained for the errors of the kinetic 
parameters by taking into account that different sorts of temperature errors 
have different importance in the estimation of the kinetic parameters. As has 
been mentioned already, the deviation of To(t) from linearity does not lead 
to errors if correct evaluation methods are used. The effects of random errors 
in temperature measurement can largely be diminished by proper measuring, 
data collecting and data processing techniques. The systematic errors of the 
applied thermometers (i.e. the so-called calibration errors) are usually slowly 
changing functions of the temperature in the domain of a given reaction. 
Their constant part does not change the width and the asymmetry of the x 
vs. T or dx/dt vs. T curves, hence it has only negligible effects on the 
estimation of E and n [5]. The linear component of the calibration 
error-temperature function does not change the asymmetry of the curves, 
thus it does not disturb the evaluation of n and only slightly influences the 
evaluation of E. 

For the majority of thermoanalytical equipment, the most troublesome 
contributors to temperature errors seem to be the thermal lag, caused by the 
non-zero heat capacity of the sample, and the effect of the heat of reaction. 
If the reaction is endothermic, these errors have the same sign, hence (l)-(3) 
may be modified to permit only negative T - To differences. If the reaction 
is exothermic and the heat of reaction is much greater than the heat 
necessary for the non-isothermal heating of the sample, an approximate 
model can be obtained by assuming T >, To. These questions will be treated 
in the section entitled “Sharper Error Bounds”. 

Now let us regard the mathematical model of the physical or chemical 
process under study. Following the usual practice of kinetic studies in 
thermal analysis, an equation of type 

dx 
dt = A e-E/RTf( x) 
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will be assumed, where x is the reacted mole fraction and f(x) is a 
continuous positive function in the domain 0 I x 5 1. A few considerations 
in the present paper are valid at any f(x) at which eqn. (5) has a solution. In 
the other deductions f(x) = (1 - x)~ will be assumed, where n will be called 
the formal reaction order, regardless of its possible physical meaning. 

The validity of eqn. (5) is obviously limited to the simplest type of 
processes under carefully chosen experimental conditions. For the time 
being, however, no other simple mathematical model is available to study the 
effects of the experimental errors in the thermal analysis. It may be worth 
underlining that x is an overall characteristic of the propagation of the 
reaction and in this way eqn. (5) is not suitable for the study of the effects of 
an inhomogeneous temperature distribution. For inhomogeneous distribu- 
tions, at least two equations would be necessary: one for the change of a 
local quantity and another for calculation of x from this local quantity. To 
avoid these complications, we shall look for the most unfavourable homoge- 
neous temperature-time function. This means that the maximum tempera- 
ture errors permitted by (1) will be assumed to be uniform in the whole 
sample and only the sign of this error will be changed as a function of time. 
The procedure applied has a simple physical interpretation if the nature of 
the given chemical or physical process permits the definition of a local 
quantity analogous to x. This local quantity will be denoted by xloC. In the 
case of a first order reaction, for example, xloC is the concentration in a given 
point of the sample. At the thermal decomposition or phase transition of a 
powder, x 10C may be the reacted mole fraction of the individual grains. At 
the various points of the sample various xl,,(t) functions arise and the 
overall x(t) is some average of the x,,,(t) functions. To obtain upper 
bounds for the errors of the parameters, we shall choose the worst of the 
possible x,,,(t) functions and suppose that this worst xloC( t) applies every- 
where in the sample. Here the term “worst” means: which has the highest 
contribution to the errors of the parameters. 

ESTIMATION OF THE ACTIVATION ENERGY 

In this section we shall examine the estimation of the activation energy in 
those cases when function f(x) in eqn. (5) does not contain unknown 
parameters. 

Let us substitute the function To(t) in eqn. (5) and integrate eqn. (5) in 
the usual way [5-161. 

g( x0) = ie-E/RTDdr 

Here x0 is the reacted mole fraction which would arise if the temperature of 
the sample were exactly To(t) and g( x0) is the integral of l/f( x0). 
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Let us choose two points of time, t, and t,, somewhere at the beginning 
and at the end of the reaction, respectively, and let us denote the correspond- 
ing To and x0 values by subscripts 1 and 2. Eliminating A from eqn. (6) we 
obtain an equation in which only E is unknown. 

(7) 

The problem examined in this section is what the error of E would be if we 
substituted the values of the “worst” x(t) for xp and xi in the left-hand side. 
To obtain a bound for this type of error, we have to find the extrema of 
g(x*)/g(xr) under the validity of (1). Let us write eqn. (7) for a T(t) 
satisfying (1) and let us rearrange its right-hand side by separating the 
numerator into the sum of integrals from 0 to t, and t, to t,. In this way we 

get 

To maximize g( xZ)/g(x,), T(t) must be increased in the numerator and 
decreased in the denominator. Regarding (l), we obtain 

1 1 -=-- 
TW TO(t) 

h if t, -c t 4 t, 

and 

1 1 -= ---+h 
T(t) TO(t) 

if 0 4 t < t, 

Note, that the maximum on the right-hand side of eqn. (8) does not define 
the value of T at point t,. This fact does not affect the treatment. 

Substituting function (9) into eqn. (8) we get 

&4 
J 

‘2ehE/R e-E/RT”dt 

maxg(x,) = ’ + j”e-hE,Re-E,RT& 

0 

(10) 

[Here “max” refers to the maximum of g(x2)/g(x,) by T(t).] Taking the 
constant ehE’R out of the integrals and considering that e2hE’R > 1 we obtain 

I I t2e-E/RTQdt 

d-4 

max dx*> 

< e2hE/R 1 + ti 

\ 
j 

‘le-E/RT& 

= eZhE,R ;ixi; ’ 

XI 

(11) 
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In a similar way, the T(t) function minimizing g( x*)/g( x,) is 

1 1 -=- 
T(t) TO(t) 

+h if t, < t < t, 

and 

1 
’ h -=-- 

W) TO(t) 
ifOIt<t, 

For the minimum of g(x*)/g(x,) we obtain 

(14 

(13) 

Inequalities (11) and (13) give bounds to the error of eqn. (7). Now the error 
of E can be deduced from these relations. If To(t) is linear, the (x0, To) 
data can be described, among others, by the Coats-Redfern approximation 

[8,9,101 

lng(x’)=const--+ + 2 In To (14 

and E can be estimated by the equation 

lng(xi)-lng(xp)=s(-$-+)+2ln[$] 
1 2 

(15) 

In practice To(t) may alter from linearity. In a very correct evaluation, this 
alteration can be taken into account by the numerical integration of eqn. (5) 
along T’(t). Since the study of the numerical integration does not lead to 
concise results, we shall indicate only formally the error arising from the 

non-linearity of To(t) by E. 

lng(x9)lng(x:)=~(~-~)+21n~~~+& 
1 

(16) 

If xp and xi are replaced by x1 and x2, respectively, an additional error term, 

E’, will appear. 

lng(x,)-lng(x,)=x F-F +21n - +e+&O 
“i’, I! KY 

Subtracting eqn. (16) from eqn. (17), we get 

(17) 

(18) 

Comparing the logarithms of relations (11) and (13) with eqn. (18) we obtain 

<E”<Y (19) 



When E is calculated from eqn. (17), E’ results in an error of E 

SOE= ‘OR 
l/T; - l/T; 

From (19) and (20) we obtain the bound for the relative error of E as given 

bY 

POEI 2h < 
E l/T; - l/T; 

(21) 

This relation is the result we have been looking for. The denominator on the 
right-hand side can be interpreted as a measure of the width of the 
experimental x vs. l/To curves. Note, that t, and t, have been assumed to be 
somewhere at the beginning and end of the thermoanalytical curve, respec- 
tively. In this way the right-hand side can be interpreted as the relative 
precision of the width of the x vs. l/To curves. 

NUMERICAL EXAMPLES 

To elucidate the meaning of inequality (21), a few numerical examples will 
be given. In these examples h values have been assumed at which the 
uncertainty of the sample temperature is about + 1 K. The values of xp and 
xi have been chosen to be 0.1 and 0.9, respectivel-y. The corresponding T,” 

and T,’ data have been calculated from eqn. (15) at f(x) = ( 1 - x)~, 0 I n < 2. 
The values of E had to be chosen in such a way that the E/RT ratios should 
have physically meaningful values in the temperature domain of the sup- 
posed reaction. (Note that E is correlated with the temperatures at which the 

TABLE 1 

Estimation of the relative error of E by inequality (21) 
Temperatures given in degrees Kelvin. 

TP,2 h 

n = 2; E/RT&, = 20 

500 3.9 x 10-6 454.4 k 0.80 555.2 f 1.20 + 1.95% 
1000 9.1 x 10-7 908.8 f 0.80 1110.4 f 1.20 + 0.97% 
1500 4.3 x 10-7 1363.3 + 0.80 1665.5 * 1.20 + 0.65% 

II = 0; E/RT$, = 40 
500 4.1 x 10-6 481.5 f 0.95 507.1 * 1.05 *7.81% 

1000 1.0x 10-6 963.1 + 0.95 1014.2 f 1.05 +3.91% 
I500 4.5 x 10-7 1444.6 f 0.95 1521.3 f 1.05 f 2.60% 
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given reaction takes place.) This restriction has been taken into account by 

E 
20 I - 

RT& 
I 40 (22) 

where T&, which may be called the temperature at the half-life, belongs to 
x0 = 0.5. From these conditions the values of Tf, Tzo and the right-hand side 
of (21) have been calculated by a computer. The results are shown in 
Table 1. Besides the To data, the uncertainties of the corresponding To 
values are also indicated. [These uncertainties, denoted by ST: and ST,‘, are 
the highest values of To(t) - T(t) permitted by eqn. (l).] It can easily be 
shown, that a difference l/T: - l/T;, which is characteristic of the width 
of the given thermoanalytical curve, is an increasing function of n and a 
decreasing function of E. Hence Table 1 shows the extrema of the error 
bounds of E in the domain of the conditions outlined. 

It may be worth observing, that the values of T/ and Tp are exactly twice 
as high in the second row and three times higher in the third row than in the 
first row. This fact is the direct consequence of the invariance of the kinetic 
differential equation under the simultaneous multiplication of the tempera- 
ture and the activation energy by the same constant. For a similar reason, 
the upper bounds listed in the last columns are inversely proportional to the 
T& values. If the restrictions on the differences To(t) - T(t) were also 
chosen proportionally to T&, the upper bounds obtained would be indepen- 
dent of the To data. For example, an assumption of + 2 K at T& = 1000 K 
and + 3 K at T& = 1500 K would result in the same upper bounds as an - 
assumption of + 1 K at Tf,, = 500 K. 

ANOTHER APPROACH 

The results of the previous sections can also be obtained if the errors in 
the temperature are restricted by eqn. (2) instead of eqn. (1). Outlining this 
deduction may be useful to get an overview of the problem. 

Let us choose two points of time, t, and t,, in the same way as in the 
previous sections and let us look for the extrema of the corresponding xi and 
x2 values under the validity of (2). The T( t ) giving the highest xi and x2 
under the validity of (2) is T’(t) = To(t) + h’. The lowest xi and x2 can be 
obtained at T”(t) = To(t) - h’. Denoting the solutions of the kinetic dif- 
ferential equation at T’(t) and T”(t) by x’(t) and x”(t), respectively, we can 
write 

max x1 = x’( t,) max x2 = x’( tz) (23) 

min x, = x”( t,) min x2 = x”( t2) 

If To(t) is approximately linear, T’(t) and T”(t) will also be approximately 
linear and we can apply the same approximate equation for the description 
of data (CC’, To), (x’, T’) and (x”, T”). The simplest approximative equation 
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has been proposed by Doyle [ 111 and is given by 

lng(x”)-C-3 

where C and c are constants. 
From eqn. (24) 

Es&-’ ln g(4) - ln g(xP> 
l/T; - l/T; 

(24) 

(25) 

Applying eqn. (24) for data (x’, T’) and (x”, T”), we can write eqns. (23) in 
the form 

maxlng(x,)nC- 
CE 

R(T;+ h’) 

max In g( x2) z C - 
CE 

R(T;+h’) 

min In g(xr) E C- 
CE 

R( T; - h’) 

min In g(x,) P C - 
CE 

R( T; - h’) 

(26) 

Note that x1 and x2 cannot vary independently in the domain of their 
extrema since the maximum of x2 implies the maximum of x, and the 
minimum of x2 implies the minimum of x,. Nevertheless, if only upper and 
lower bounds are deduced, we can formally introduce these extrema into the 
estimator of E. Denoting the upper and lower bound of E by E,, and E,,,, 

respectively, eqns. (25) and (26) yield 

E 
up, max In g( x2) - mm In g( x,) 

E- ln &z”) -1n g(G) 

-_ l/(T; - h’) - l/(Tp + h’) 

l/T/ - l/T; 

and 

E loW -s tin In &4 - mm ln dx,) 
E ln g( x20) - ln g(4) 

= l/( T; + h’) - I/( T; - h’) 

l/T; - l/T; 

(27) 

(28) 

The right-hand sides of eqns. (27) and (28) can be interpreted in such a way 
that the relative error of E is bounded by the relative error of the distances 
l/T; - l/T:. Hence eqns. (27) and (28) are practically equivalent to 



343 

inequality (21). This approximate equivalence can easily be checked with the 
temperature data of Table 1 at h’ = 1 K. 

As has been mentioned before, eqns. (27) and (28) represent only formal 
bounds. It may be worth noting that deduction of inequality (21) has also 
contained formal steps. The right-hand side of eqn. (10) has been formally 
increased for taking out the e ‘IEjR factor and a similar decrease has been 
carried out in the deduction of inequality (13). These mathematical opera- 
tions have only slight effects on the magnitude of the results if t, and t, are 
chosen somewhere at the beginning and the end of the thermoanalytical 
curves, respectively. If t, and t, were closer to each other, the formal 
increases and decreases would result in worse upper and lower bounds. 

ESTIMATION OF THE FORMAL REtACTION ORDER 

In the previous sections, function f(x) has been assumed to be known. 
However, f(x) may contain unknown parameters and the determination of 
an unknown parameter of f(x) is a frequent task in non-isothermal reaction 
kinetics. The most frequently used f(x) with one unknown parameter is 
f(x) = (1 - x)“. In this section the estimation of n will be discussed. For 
many reaction types, n can be interpreted physically or chemically. This fact 
does not affect the analysis of the reliability of the n values estimated. 

As is well known, there is a definite correlation between the shape of 
thermoanalytical curves and the formal reaction order [ 13-151. It is also 
known that the shape of the differential thermoanalytical curves is far more 
characteristic of n than the shape of the integral curves. From a mathemati- 
cal point of view, however, the differential and the integral curves are 
equivalent. This means, that a significant difference between the actual and 
the known temperature destroys the information content of dx( t)/dt and 
x(t) to the same extent. Hence we can treat the evaluation of n from x(t), 

which, from a mathematical point of view, seems to be an easier problem. 
Let us restrict the treatment to T”(t) functions at which eqn. (6) can be 
approximated by an equation of type 

lng(xO)=C+$ (2% 

Here C and C’ stand for constants depending on A, E and on the tempera- 
ture domain of the given reaction [6,11,12]. Note that C’ is not necessarily 
proportional to E [ 121. At a hyperbolic To(t) eqn. (29) is exact [ 161. At a 
linear T’(t), eqn. (29) is a good approximation [ 11,121 but it is not 
sufficiently good for reliable deduction of such important characteristics as 
the reacted mole fraction at the peak maximum [6,14]. [Deductions involving 
the place of the peak maximum require reliable knowledge of the second 
differential quotient of x and equations of type (29) can hardly provide it.] 
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However, in the present paper no differential quotient will be used and in 
the numerical examples of the next section, eqn. (29) has proved equivalent 
to the more precise Coats-Redfem-type approximations. 

If eqn. (29) is written for three or more (x”,To) data pairs, C and C’ can 
be eliminated and an equation can be obtained for n. Let us choose three 
points of time, t,, t, and t,, and let us denote the corresponding x0 and To 
values by subscripts 1, 2 and 3, respectively. In this way we obtain 

lng(xt)-lng(x,O) -l/&O+ l/T: 

In g(xi) -In g(xp) = -l/T: + l/T/ 
(30) 

The geometric interpretation of this type of equation will be discussed in a 
separate short communication. The numerical solution of this equation gives 
the value of n. If data x0 are replaced by the real x values, an error arises. 
We shall look for the extrema of this error under the validity of (1). 

Let us carry out the integration of the kinetic equation separately in the 
intervals 0 I t I t,, t, I t I t, and t, _< t I t,. For the sake of compactness, 
we shall introduce the notation to = 0, x0 = 0 and we shall speak of intervals 
t,stst;+, and xi I x I xi+, where i may be 0, 1 or 2. Denoting the integral 
of l/f(x) in an interval xp I x s xf+, by G(xp,xp+,) we get 

G( x:,x,0, ,) = (r’+‘e-E/RTOdt (31) 

Now let us regard the extrema of the quantities G(x,,x;+ ,). Under the 
validity of eqn. (1) their maximum can be obtained when l/T(t) = l/T’(t) 
-h in the interval t, 5 t< tr+,, while their minimum belongs to l/T(t) = 

l/T’(t) + h. Hence 

max G(x,,xi+,) = ehE’RG(xf,xf+,) 

min G(x~,x,+,) = e-hE/RG(x,“,xiq,,) 
(32) 

Keeping in mind that g(x,) = G(O,x,), g(xz) = G(O,x,) + G(x,,x,) and 
g(x3) = G(O,x,) + G( x1,x2) + G(x,,x,) we can write 

ln Id%) - ln id%) _ l&(x,vd%)l 

In d4 --In s(xJ = ln[idx,Vg(x,)] 
= ln[l + Gb,~x,)/@@~,) +Ghx,))l - 

ln[l + G(x,~x,)/G(O,x,)] (33) 

It can be seen immediately that the right-hand side of this equation is an 
increasing function of G( x*,x3) and a decreasing function of G(x,,x~). The 
dependence on G(O,x,) is not so obvious, thus the effects of G(O,x,) have 
been studied numerically. [G(O,x,) has been stepped between its minimum 
and maximum by the computer program used for the numerical examples.] 
In all of the cases studied the right-hand side of eqn. (33) has proved to be 
an increasing function of G(O,x,). Hence the‘ T(t) maximizing the right hand 
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side of eqn. (30) is defined by the equations 

1 
’ h -_=-- 

w TO(t) 
if 0 5 t < t, 

1 1 -=- 
w To(t) 

+h if t, -e t < t, 

1 
’ h -=-- 

T(t) TO(t) 
if t, < t I t, 

In a similar way, the minimum has been obtained at 

1 1 -=- 
w TO(t) 

+h ifOIt<t, 

1 1 -=--_- 
T(t) To(t) 

h if t, < t < t, 

1 1 -=--_ 
T(t) TO(t) 

+h if t, < t I t, 

(34) 

(35) 

The considerations outlined readily give expressions for the maximum and 
minimum of the right-hand side of eqn. (30). The corresponding maximal 
and minimal values of n need to be calculated numerically. 

NUMERICAL EXAMPLES 

For the application of eqn. (30) three points need to be chosen on the 
experimental x vs. To curve. Accordingly, in the construction of numerical 
examples we need to choose three x0 values. From a mathematical point of 
view, any choice of xp, xi and x30 is acceptable. Obviously, we want the error 
bounds to be as sharp as possible. Test calculations have shown that this can 
be achieved if X, and xj are chosen at the very beginning and end of the 
thermoanalytical curves and x2 is close to xj. Such a choice, however, looks 
somehow irrelevant to the mode&g of a real evaluation process. Thus, as a 
compromise, the values of xp = 0.1, xi = 0.6 and xi = 0.9 have been chosen. 

The errors of n are obviously dependent on the errors in the temperature. 
In the numerical examples the relative precision of the temperature has been 
assumed to be about 0.1%. At low temperatures this would correspond to a 
rather tight restriction. At room temperature, for example, this would 
correspond to an uncertainty of +0.3 K. However, in the domain studied 
the errors in n are roughly proportional to the errors in To, thus the error 
bounds relating to a precision of 0.2 or 0.3% can readily be obtained by 
multiplying the listed data by 2 or 3, respectively. 

For the choice of E, we have assumed that 20 I E/RT, I 40, where T, is 
the middle point of the temperature domain of the given reaction. Since the 
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TABLE 2 

Error bounds for the estimation of n by eqn. (30) 
[To - T = f T/1000; xp = 0.1; x2” = 0.6; xi = 0.9; E/RT, = 20 (I) and 40 (II).] 

n I II 

0 f 0.07 f0.13 
0.50 f 0.07 +0.14 

1 .oo * 0.07 f0.15 
1.50 f 0.07 *0.15 
2.00 * 0.08 +0.17 

relative precision of To is about hT, [see eqns. (4)], the assumptions on the 
relative precision of To and the values of E can be summarized as 0.02 I 
hE/R I 0.04. Table 2 contains the bounds obtained for n at hE/R = 0.02 
and hE/R = 0.04. These values show that the experimental determination of 
the finer details of the mechanism, e.g. the distinction of a mechanism of 
n = l/2 from a mechanism of n = 2/3, may be problematic if the tempera- 
ture errors are higher than 0.1%. However, the magnitude of the kinetic 
parameters is not destroyed by the assumed errors of T. It may be worth 
emphasizing that the activation energy only slightly inherits the errors of n. 
For example, an error of n = 0.25 causes an error of only 8- 10% in the 
estimation of E [5]. 

ALTERNATIVE EQUATIONS 

The deductions of the previous two sections could also have been carried 
out using Coats-Redfem-type approximations, which have better precision 
[lo]. In the Coats-Redfem type of approximations, ln[g(x)/T2] is expressed 
as a linear function of l/T. Hence eqn. (30) would be replaced by 

ln g( x30) - In g( xi) - 2 ln( &‘o/G”) ~ - l/T: + l/T’ 

ln g( x20) - ln g( xf) - 2 ln( T’/&o) - - l/T,O + l/TP 
(36) 

The right-hand sides of eqns. (30) and (36) are identical. The deviation of 
their left-hand sides depends on the range in which the values of To vary. 
Hence this deviation is higher at low values of E. (Low activation energies 
result in wide thermoanalytical curves,) Table 3 shows the values of the 
left-hand sides of eqns. (30) and (36). The error bounds of n calculated from 
eqn. (36) have proved identical with the data in Table 2. 

Another approach is to use more than three points in the calculation of n. 
Test calculations have been carried out on up to 12 points but the error 
bounds obtained .have not been significantly different from the data in 
Table 2. This is not surprising, since the increase in the number of experi- 
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TABLE 3 

The values of the left-hand sides of eqns. (30) and (36) 
[xp = 0.1; x2" = 0.6; xi= 0.9; 20 I E/RT,,, I 40.1 

n Eqn. (30) Wn. (36) 

0 0.226 0.225-0.226 
0.50 0.315 0.314-0.315 
1.00 0.426 0.423-0.425 

1.50 0.553 0.549-0.552 
2.00 0.688 0.682-0.687 

TABLE 4 

Error bounds for the estimation of n by eqn. (37) 
[TO - T s k T/1000; X? = 0.1; ~2” = 0.3; ~3” = 0.6; ~4” = 0.9; E/RT, = 20 (I) and 40 (II).] 

n I II 

0 + 0.06 f0.12 

0.50 xk 0.06 kO.13 

1 .oo + 0.07 *to.14 

1.50 + 0.07 kO.15 

2.00 + 0.08 -to.17 

mental points can decrease only the random errors while in this paper 
systematic errors have been studied. As an illustration, the results obtained 
at four points will be shown here. If eqn. (29) is written for four (x0, To) 
points, we get 

In g( xq0) - In g( xi) ~ - l/T,’ + l/T: 

In g(xi) - In g(xP) - - l/T: + l/C 
(37) 

This equation is analogous to eqn. (30) and it can be analysed by the same 
mathematical methods. The results at xp = 0.1, xi = 0.3, x30 = 0.7 and x4” = 0.9 
are shown in Table 4. These error bounds are a little bit sharper than the 
data of Table 2. 

SHARPER ERROR BOUNDS 

As has been outlined in the beginning of the paper, the most troublesome 
temperature error seems to be caused by the enthalpy change of the reaction. 
(In our opinion the effects of the other temperature errors on the kinetic 
parameters are usually far smaller.) Thus the treatment may frequently be 
confined to the “self heating” and “self coloing” caused by the positive or 
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negative heat of reaction. For endothermic reactions, the differences l/To - 
l/T, T - To and (T - T’)/T may be restricted to intervals [ - h,O], [ - h’,O], 
and [ -h”,O] while for endothermic reactions these intervals would be [0,/z], 

[0, h’] and [0, h”], respectively. In this way eqn. (21) may be replaced by 

PoEI < h 
E l/T,” - l/T; 

(38) 

For endothermic reactions, eqns. (27) and (28) give 

E up, l/( T; - h’) - l/T,0 

E- l/T; - l/T,0 

and 

E -_!E!z 
l/T,” - l/( T; - h’ 

E l/T; - l/T; 

) 

while for exothermic reactions we get 

E 
“P -= 

l/T: - l/( T; + h’) 

E- l/T; - l/T; 

and 

E low -22 
l/( T; + h’) - l/T: 

E- l/T; - l/T,0 

(39) 

(40) 

(41) 

(42) 

Table 5 contains error bounds for n. These data have been calculated from 
eqn. (37) with the same values of x0 and hE/R as Table 4. 

Equations (38)-(42) and Table 5 show that the exclusion of the positive or 
negative temperature errors diminishes the error bounds of E and n by a 
factor of about 0.5. 

TABLE 5 

Error bounds for the estimation of n by eqn. (37) when To > T 
[max(T'- T) = T/1000; .xp = 0.1; xi = 0.3; xi = 0.6; xi = 0.9; E/RT, = 20 (I) and 40 (II).] 

n I II 

0 + 0.03 f 0.06 
0.50 + 0.03 f 0.06 
1.00 f 0.03 f 0.07 
1.50 * 0.04 f 0.07 
2.00 f 0.04 f 0.08 
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ESTIMATION OF E AND n 

When f(x) = (1 - x)‘], the estimation of E from a single non-isothermal 
measurement requires knowledge of n. If n is determined from experimental 
data, E inherits the errors of n to a certain extent. As eqn. (25) shows, E is 
roughly proportional to quantities of type ln[g(x,)/g(xz)]. To express the 
dependence of E on n explicitly, let us introduce the notation 

L(nJ,J*) = ~n[dx,vdx,)l (43) 

and let us apply the 15th eqn. of ref. 5 in the form 

gL( n,x,,x,) = 0.33 L(n,x,,x,) (44) 

Let n and nabs stand for the true and the experimentally obtained values of 
n, respectively, and let us combine eqn. (44) with a first order Taylor series 

L( @S,X, ,x2 ) = L(n,x,,x,) + (nohs- + 

= L(n,x,,x,)[l + 0.33(n”hs- n,] (45) 

In the section entitled “Another approach”, upper and lower bounds have 
been deduced for E by eqns. (27) and (28). Substituting /I(‘~.* for II in terms 
In[g(x,)/g(x,)] and applying notation (43) and eqn. (45) we get 

E 
“P -_’ 

max L( nDhS,x,,xz) 

E L( n,xp,xg 

= (1 + 0.33jn”h” - nl) 
I/( T; - h’) - I/( T:‘+ h’) 

l/T; - l/T:’ 

and 

= (1 - 0.331n”h” - nl) 
l/( T,” + h’) - I/( T:’ - h’) 

l/T:‘- l/T; 

(46) 

(47) 

Substituting the data of Table 4 for 1~“” - nl, we find that an additional 
error term of about 2-6% is added to the right-hand side of eqns. (27) and 
(28). Regarding the temperature data of Table I, we find that the assumption 
of temperature errors of about & 0.1% leads to relative error bounds of 
between 3 and 10%. It should be noted, however, that substitution of the 
data in Table 4 for Inob’ - nl is only a formal operation which leads to an 
over-estimation of the errors of E. In reality, the T(t) maximizing the errors 
of n does not maximize the errors of E and vice versa. 
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CONCLUSIONS 

The considerations outlined show that the difference between the actual 
and the known temperature of the sample can result in signifcant errors in 
the kinetic parameters. As has been underlined, the non-linearity of the 
heating program itself does not disturb a mathematically correct parameter 
estimation. The really troublesome errors are the non-linear components of 
the difference between the actual and the known temperature-time function. 
These errors can deform the shape of the thermoanalytical curves and in this 
way distort the estimated values of n and E. Their effects cannot be 
eliminated by mathematical means since any good evaluation method has to 
result in a good fit between the observed and the theoretically calculated 
shape of the thermoanalytical curves. The good quality of the up-to-date 
measuring equipment, however, permits the use of sufficiently small samples 
in which the thermal gradient is negligible at low or moderate heating rates. 
Regarding the measurement of temperature, such systematic errors which are 
a quickly changing function of the temperature can probably be avoided 
with some care. [As has been underlined earlier, the slowly changing or 
constant systematic errors of To(t) have only slight effects on the value of n 
and E.] 
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