THERMAL STUDIES OF Zn(II) HYDRAZINE COMPLEXES IN THE SOLID STATE

B. BANERJEE, A. GHOSH and N. RAY CHAUDHURI *

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032 (India)

(Received 27 June 1983)

ABSTRACT

The synthesis and characterization of $ZnL_nX_2 \cdot mH_2O$, where $L = N_2H_4$; n = 3, 2 and 1.5; $X = Cl^-$, Br^- and $\frac{1}{2}SO_4^{2-}$; and m = 0 or 1, have been done and their thermal studies have been carried out using a Shimadzu DT-30 Thermal Analyzer. ZnL_3SO_4 , $ZnL_{2.75}SO_4$, ZnL_2SO_4 , $ZnLCl_2$ and $ZnL_{0.5}Cl_2$ have been synthesized pyrolytically in the solid state from their parent complexes synthesized from solution. Two varieties of ZnL_2Cl_2 synthesized by us are indistinguishable by IR spectroscopy but possess appreciable differences in their thermal profiles. Two forms of ZnL_3SO_4 which are also indistinguishable by IR spectroscopy show noticeable differences in their thermal profiles.

INTRODUCTION

Although the coordination chemistry of hydrazines is widely known [1] the thermal properties of hydrazine complexes have not been extensively investigated [2,3]. Thermal studies of hydrazine complexes of Mn(II), Ni(II), Co(II) and Cd(II) in the solid state have been reported earlier by us [4–7]. In continuation of our investigations on complexes of hydrazine, we report herein complexes of ZnCl₂, ZnBr₂ and ZnSO₄ with hydrazine.

EXPERIMENTAL

Preparation of Zn(II) hydrazine(L) complexes

 ZnL_2Cl_2 (1). Hydrazine hydrate (80%, 2 mmol)[‡] was added to the concentrated aqueous solution of $ZnCl_2$ (1 mmol) with stirring. Then the mixture was kept for 5-6 h. The white shiny crystals were obtained by

^{*} To whom correspondence should be addressed.

[‡] Excess hydrazine does not alter the composition of the complexes.

addition of ethanol. The crystals were filtered, washed thoroughly with water-ethanol (1:9) and finally with ethanol.

 $ZnL_2Cl_2(1^*)$. Hydrazine hydrate (2 mmol) was added dropwise with constant stirring to a concentrated solution of $ZnCl_2$ in pyridine medium. The whole mixture was kept for 5–6 h. The crystals were obtained following the procedure as above.

 ZnL_2Br_2 (2) and ZnL_3SO_4 (3) have been synthesized by the procedure corresponding to the preparation of complex (1).

 $ZnL_{1.5}Br_2$ (2*) and $ZnL_3SO_4 \cdot H_2O$ (3*) have been prepared by applying the procedure adopted for the preparation of complex (1*).

 $ZnLCl_2$, $ZnL_{0.5}Cl_2$, $ZnL_{2.75}SO_4$, ZnL_2SO_4 , ZnL_3SO_4 have been obtained by applying a temperature-arrest technique to their corresponding parent species in nitrogen atmosphere.

Thermal measurements

Thermal analyses were carried out using a thermal analyzer (Shimadzu, Model DT-30, Japan). A constant flow of dry nitrogen (30 ml min⁻¹) was

Fig. 1. Thermal curves of ZnL_2Cl_2 (1) (sample mass, 9.68 mg) and ZnL_2Cl_2 (1*) (sample mass, 12.05 mg).

maintained. Platinum crucibles were used. The heating rate was maintained at 5° C min⁻¹. The particle size of the sample was within 150-200 mesh. Aluminum oxide was used as reference.

Elemental analyses and spectral measurements have been done by using instruments as reported earlier [4].

RESULTS

Thermal curves of ZnL_2Cl_2 (1) are shown in Fig. 1. It starts with decomposition at 208°C and transforms to an isolable $ZnLCl_2$ complex at 260°C in a single step, as evident from its TG curve. The corresponding DTA curve shows two overlapping exotherms. The derived $ZnLCl_2$ on further heating decomposes to $ZnCl_2$ in a single step observed from its TG curve but the corresponding DTA curve shows two exotherms overlapping with each other.

 ZnL_2Cl_2 (1*) starts decomposition at 163°C (Fig. 1) and transforms to an isolable $ZnL_{0.5}Cl_2$ complex at 245°C in a single step, as evident from its TG curve but its DTA curve shows a number of exothermic peaks overlapping with each other. The derived $ZnL_{0.5}Cl_2$ on further heating decomposes to $ZnCl_2$ in a single step, as evident from its TG and DTA curves.

Fig. 2. Thermal curves of ZnL_2Br_2 (2) (sample mass, 8.83 mg) and $ZnL_{1.5}Br_2$ (2*) (sample mass, 15.54 mg).

Figure 2 shows the thermal curves of ZnL_2Br_2 (2). It starts to lose hydrazine at 215°C and transforms to nonisolable $ZnLBr_2$ at 280°C in a single step showing an endothermic peak at 275°C. The derived $ZnLBr_2$ immediately starts decomposition and transforms to the corresponding metal salt at 330°C showing two exothermic peaks overlapping with each other.

The thermal curve of $ZnL_{1.5}Br_2$ (2*) is shown in Fig. 2. It decomposes at 190°C and transforms to $ZnL_{0.5}Br_2$ at 275°C in a single step. The intermediate, $ZnL_{0.5}Br_2$, immediately starts decomposition to $ZnBr_2$ on further heating in a single step, as evident from its TG curve. The corresponding DTA curve shows two exotherms overlapping with each other.

Figure 3 shows the thermal curves of ZnL_3SO_4 (3). It starts to lose hydrazine at 175°C and transforms to an isolable intermediate, $ZnL_{2.75}SO_4$, in a single step showing an endotherm. The derived $ZnL_{2.75}SO_4$ starts decomposition at 255°C and transforms to ZnL_2SO_4 at 320°C in a single step showing an endothermic peak at 290°C. The derived ZnL_2SO_4 on further heating transforms to $ZnSO_4$ at 425°C showing two endotherms and one exotherm overlapping with each other.

Fig. 3. Thermal curves of ZnL_3SO_4 (3) (sample mass, 27.29 mg) and $ZnL_3SO_4 \cdot H_2O$ (3*) (sample mass, 19.65 mg).

 $ZnL_3SO_4 \cdot H_2O$ (3*) starts decomposition at 100°C (Fig. 3) and transforms to an anhydrous species at 145°C in a single step. The anhydrous species starts decomposition at 160°C and transforms to ZnL_2SO_4 at 325°C

TABLE 1

Decomposition reaction	Temperature range (°C)	DTA peak temperature (°C)	
		Exothermic	Endothermic
$\frac{\operatorname{ZnL}_2\operatorname{Cl}_2(1) \to \operatorname{ZnLCl}_2}{\operatorname{ZnLCl}_2 \to \operatorname{ZnCl}_2}$	208–260 275–354	238, 248 310, 335	
$ZnL_2Cl_2(1^*) \rightarrow ZnL_{0.5}Cl_2$ $ZnL_{0.5}Cl_2 \rightarrow ZnCl_2$	163–245 255–320	165, 180, 200, 216, 230 293	
$ZnL_2Br_2(2) \rightarrow ZnLBr_2$ $ZnLBr_2 \rightarrow ZnBr_2$	215–280 280–330	315, 325	275
$ZnL_{1.5}Br_2 (2^*) \rightarrow ZnL_{0.5}Br_2$ $ZnL_{0.5}Br_2 \rightarrow ZnBr_2$	190–275 275–315	293, 310	263
$ZnL_3SO_4 (3) \rightarrow ZnL_{2.75}SO_4$ $ZnL_{2.75}SO_4 \rightarrow ZnL_2SO_4$ $ZnL_2SO_4 \rightarrow ZnSO_4$	175–215 255–320 360–425	415	190 290 407, 420
$ZnL_{3}SO_{4} \cdot H_{2}O(3^{*}) \rightarrow ZnL_{3}SO_{4}$ $ZnL_{3}SO_{4} \rightarrow ZnL_{2}SO_{4}$ $ZnL_{2}SO_{4} \rightarrow ZnLSO_{4}$ $ZnLSO_{4} \rightarrow ZnSO_{4}$	100–145 160–325 325–403 403–418	330, 360	140 170, 200, 285 410, 418

TABLE 2

Analytical (calculated values in parentheses) data of Zn(II) hydrazine complexes

Compounds	Analysis %			
	Metal	Nitrogen	Halogen/sulfur	
$\overline{ZnL_{2}Cl_{2}(1)}$	32.58(32.62)	27.87(27.94)	35.37(35.43)	
$ZnL_{2}Cl_{2}(1^{*})$	32.57(32.62)	27.88(27.94)	35.39(35.43)	
$ZnL_2Br_2(2)$	22.53(22.60)	19.31(19.36)	55.20(55.26)	
$ZnL_{15}Br_{2}(2^{*})$	23.88(23.93)	15.31(15.37)	58.47(58.49)	
$ZnL_3SO_4(3)$	25.37(25.40)	32.58(32.63)	12.37(12.43)	
$ZnL_3SO_4 \cdot H_2O(3^*)$	23.68(23.74)	30.45(30.50)	11.61(11.62)	
ZnLCl ₂ ^a	38.80(38.82)	16.59(16.62)	42.11(42.16)	
ZnL_{0} , Cl_{2} ^b	42.83(42.90)	9.16(9.18)	46.52(46.59)	
$ZnL_{2.75}SO_4^{\circ}$	26.16(26.21)	30.81(30.87)	12.81(12.83)	
$ZnL_2SO_4^{\circ}$	28.70(29.00)	24.76(24.84)	14.16(14.19)	
$ZnL_3SO_4^{d}$	25.36(25.40)	32.57(32.63)	12.39(12.43)	

^a Derived from complex (1).

^b Derived from complex (1*).

^c Derived from complex (3).

^d Derived from complex (3*).

in a single step observed from its TG curve. The corresponding DTA curve shows three distinct endotherms. The derived ZnL_2SO_4 on further heating transforms to $ZnSO_4$ through the formation of nonisolable $ZnLSO_4$. The corresponding DTA curve shows two overlapping exotherms for the formation of $ZnLSO_4$ and two overlapping endotherms for the elimination of residual hydrazine.

Thermoanalytical data are shown in Table 1 and analytical data are shown in Table 2.

DISCUSSION

Complexes derived from $ZnCl_2$ and hydrazine

Treatment of a saturated aqueous solution of ZnCl₂ with hydrazine results in ZnL₂Cl₂ (1) while the treatment of ZnCl₂ in pyridine medium with hydrazine generates ZnL₂Cl₂ (1*). Both complexes are perfectly white in color. The appearance of bands in the IR spectra between 960–980 $\rm cm^{-1}$ $\nu(N-N)$ indicates the bridging bidentate character of hydrazine [8] in both cases. The physicochemical investigations of complex (1) synthesized by us suggest no difference in geometry from the complex reported earlier [9,10]. $Zn(N_2H_4)_2Cl_2$ shows infinite-chain structure with *cis*-bridging hydrazine and trans-Cl ions as evident from its crystal structure determination [10]. We have been able to isolate ZnLCl₂ as an intermediate species. IR spectral data show the bridging character of hydrazine. The monohydrazine species may attain $O_{\rm h}$ geometry where halogens act as bridging bidentate ligands and $T_{\rm d}$ geometry where chloride ion behaves as a monodentate ligand. A tetrahedral arrangement of the ligands around Zn is assumed in this compound since coordination number 4 is more characteristic for Zn^{2+} [11]. The thermal decomposition pattern of ZnL_2Cl_2 (1) shows that one molecule of hydrazine is evolved from one molecule of the complex in the first step. Since one hydrazine molecule is linked by two Zn^{2+} ions, one of the two bridged hydrazines in ZnL_2Cl_2 (1) is evolved when decomposition starts, as shown below.

An interesting feature is that alternation of the preparative procedure yields ZnL_2Cl_2 (1*), which is indistinguishable by IR spectroscopy. A major

difference in the thermal profile is observed between complexes (1) and (1*) (Table 1). The difference in the thermal profile observed between complexes (1) and (1*) also indicates the difference in their geometries. Complex (1) appears more stable in comparison to that of complex (1*). This shows more regular geometry in complex (1) in comparison to complex (1*). We have isolated a hemihydrazine complex as an intermediate from the parent (1*). In the complex $ZnL_{0.5}Cl_2$, the chloride ligands are possibly bridged, considering the composition and the preferential stereochemistry (T_d symmetry) of the Zn^{2+} ion.

Complexes derived from $ZnBr_2$ and hydrazine

Treatment of hydrazine hydrate with the concentrated aqueous solution of $ZnBr_2$ affords ZnL_2Br_2 (2) whilst on treatment of hydrazine hydrate with $ZnBr_2$ in pyridine medium results in $ZnL_{1.5}Br_2$ (2*). Both the species are white in color. IR spectra show the bridging character of hydrazine in both complexes. The geometry of ZnL_2Br_2 appears similar to that of ZnL_2Cl_2 reported earlier. We found similarity in the TG profile of complexes (1) and (2) though their DTA profiles have appreciable differences (Table 1). We could not isolate $ZnLBr_2$ as shown by complex (2) (Table 1). We have failed also to isolate the intermediate $ZnL_{0.5}Br_2$, which appears upon heating of $ZnL_{1.5}Br_2$ (2*) (Fig. 2). The composition of $ZnL_{1.5}Br_2$ (2*) suggests the bridging bidentate character of the bromide ligand existing in it, considering its preferential stereochemistry.

The complexes derived from $ZnSO_4$ and hydrazine

A concentrated aqueous solution of ZnSO₄ reacting with hydrazine hydrate results in ZnL_3SO_4 (3) while on treatment of hydrazine hydrate with $ZnSO_4$ in pyridine medium affords $ZnL_3SO_4 \cdot H_2O$ (3*). The IR spectral data of both complexes show the bridging character of hydrazine. The literature shows that Zn^{2+} ion is coordinated octahedrally by six nitrogen atoms of three N_2H_4 groups in $ZnL_3(NO_3)_2$ reported earlier [3]. We have isolated two intermediates, $ZnL_{275}SO_4$ and ZnL_2SO_4 derived from complex (3). The $ZnL_{2.75}SO_4$ appears very interesting as it is very difficult to suggest how it exists from the bridging bidentate character of hydrazine and noncoordinated character of the SO₄ group, indicated by its IR spectra. The geometry of ZnL_2SO_4 is likely to exist as that of ZnL_2Cl_2 . The interesting thermal behavior of ZnL_2SO_4 is that it does not generate any intermediates, either $ZnLSO_4$ or $ZnL_{0.5}SO_4$, like those of ZnL_2Cl_2 complexes. The alteration of preparative procedure also yields a tris species with one molecule of water. The water present in complex (3^*) is not coordinated to the zinc ion, as evident from its IR spectral data though it requires a comparatively high temperature for its dehydration. The anhydrous tris species derived from the parent complex (3*) shows practically no difference from the IR spectra of ZnL_3SO_4 (3). In complex (3), three NH_2 stretching frequencies at 3260 cm⁻¹, 3220 cm⁻¹ and 3170 cm⁻¹ are observed whereas only one band at 3260 cm⁻¹ is observed in the tris complex derived from the parent (3*). The decomposition pattern of complex (3*) appears simple with respect to that of complex (3) though we could not isolate the intermediates, ZnL_2SO_4 and $ZnLSO_4$, pyrolytically from complex (3*). These observations definitely indicate that the geometry attained by complex (3) is not identical to the geometry attained by the anhydrous species of complex (3*).

The thermal stability of ZnL_2X_2 (X = Cl⁻ or Br⁻ or SO₄²⁻) shows the order Cl \leq Br < SO₄. This order also prevails in monohydrazine complexes. The interesting observation is that we noticed some kind of rearrangement taking place in the freshly prepared hydrazine complexes of Cd²⁺ ion on keeping them in a desiccator for a month [7]. This type of rearrangement does not take place here. Another interesting feature is that zinc hydrazine complexes generate a smaller number of complexes as intermediates in comparison to that of Cd complexes reported by us.

REFERENCES

- 1 F. Bottomley, Q. Rev., Chem. Soc., (1970) 617.
- 2 P. Glavic, J. Slivnik and A. Bole, J. Inorg. Nucl. Chem., 37 (1975) 345.
- 3 K.C. Patil, C. Nesamani and V.R. Pai Verneker, Synth. React. Inorg. Met.-Org. Chem., 12 (1982) 383.
- 4 B. Banerjee, P.K. Biswas and N. Ray Chaudhuri, Thermochim. Acta, 68 (1983) 261.
- 5 B. Banerjee, P.K. Biswas and N. Ray Chaudhuri, Bull. Chem. Soc. Jpn., 56 (1983) in press.
- 6 B. Banerjee, P.K. Biswas and N. Ray Chaudhuri, unpublished results.
- 7 B. Banerjee and N. Ray Chaudhuri, Thermochim. Acta, 71 (1983) 93.
- 8 D. Nicholls and R. Swindells, J. Inorg. Nucl. Chem., 30 (1968) 2211.
- 9 L. Sacconi and A. Sabatini, J. Inorg. Nucl. Chem., 25 (1963) 1389.
- 10 A. Ferrari, A. Braibanti and G. Bigliardi, Acta Crystallogr., 16 (1963) 498.
- 11 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, 1980, p. 590.