THERMAL STUDIES OF Zn(I1) HYDRAZINE COMPLEXES IN THE SOLID STATE

B. BANERJEE, A. GHOSH and N. RAY CHAUDHURI *

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032 (India)

(Received *27* June 1983)

ABSTRACT

The synthesis and characterization of $\text{ZnL}_nX_2 \cdot m\text{H}_2\text{O}$, where $\text{L} = \text{N}_2\text{H}_4$; $n = 3, 2$ and 1.5; $X = CI^{-}$, Br⁻ and $\frac{1}{2}SO_4^{2-}$; and $m = 0$ or 1, have been done and their thermal studies have been carried out using a Shimadzu DT-30 Thermal Analyzer. ZnL_3SO_4 , ZnL_2 , SO_4 , ZnL_2SO_4 , ZnLCl₂ and ZnL_{0.5}Cl₂ have been synthesized pyrolytically in the solid state from their parent complexes synthesized from solution. Two varieties of ZnL_2Cl_2 synthesized by us are indistinguishable by IR spectroscopy but possess appreciable differences in their thermal profiles. Two forms of ZnL_1SO_4 which are also indistinguishable by IR spectroscopy show noticeable differences in their thermal profiles.

INTRODUCTION

Although the coordination chemistry of hydrazines is widely known [l] the thermal properties of hydrazine complexes have not been extensively investigated [2,3]. Thermal studies of hydrazine complexes of Mn(II), Ni(II), Co(H) and Cd(I1) in the solid state have been reported earlier by us [4-71. In continuation of our investigations on complexes of hydrazine, we report herein complexes of $ZnCl_2$, $ZnBr_2$ and $ZnSO_4$ with hydrazine.

EXPERIMENTAL

Preparation of Zn(II) hydrazine(L) complexes

 ZnL_2Cl_2 (1). Hydrazine hydrate (80%, 2 mmol)⁺ was added to the **concentrated aqueous solution of ZnC1, (1 mmol) with stirring. Then the mixture was kept for 5-6 h. The white shiny crystals were obtained by**

^{*} To whom correspondence should be addressed.

 \ddagger Excess hydrazine does not alter the composition of the complexes.

addition of ethanol. The crystals were filtered, washed thoroughly with water-ethanol $(1:9)$ and finally with ethanol.

 ZnL , Cl ₂(1^{*}). Hydrazine hydrate (2 mmol) was added dropwise with constant stirring to a concentrated solution of $ZnCl₂$ in pyridine medium. The whole mixture was kept for 5-6 h. The crystals were obtained following the procedure as above.

 ZnL, Br , (2) and ZnL_3SO_4 (3) have been synthesized by the procedure corresponding to the preparation of complex (1).

 $\text{ZnL}_{1.5}\text{Br}_2(2^*)$ and $\text{ZnL}_3\text{SO}_4\cdot\text{H}_2\text{O}(3^*)$ have been prepared by applying the procedure adopted for the preparation of complex (1^*) .

 $ZnLCl_2$, $ZnL_{0.5}Cl_2$, $ZnL_{2.75}SO_4$, ZnL_2SO_4 , ZnL_3SO_4 have been obtained by applying a temperature-arrest technique to their corresponding parent species in nitrogen atmosphere.

Thermal measurements

Thermal analyses were carried out using a thermal analyzer (Shimadzu, Model DT-30, Japan). A constant flow of dry nitrogen $(30 \text{ ml } \text{min}^{-1})$ was

Fig. 1. Thermal curves of ZnL_2Cl_2 (1) (sample mass, 9.68 mg) and ZnL_2Cl_2 (1^{*}) (sample **mass, 12.05 mg).**

maintained. Platinum crucibles were used. The heating rate was maintained at 5° C min⁻¹. The particle size of the sample was within 150-200 mesh. Aluminum oxide was used as reference.

Elemental analyses and spectral measurements have been done by using instruments as reported earlier [4].

RESULTS

Thermal curves of ZnL_2Cl_2 (1) are shown in Fig. 1. It starts with decomposition at 208 $^{\circ}$ C and transforms to an isolable ZnLCl₂ complex at 260°C in a single step, as evident from its TG curve. The corresponding DTA curve shows two overlapping exotherms. The derived $ZnLCl₂$ on further heating decomposes to ZnCl, in a single step observed from its TG curve but the corresponding DTA curve shows two exotherms overlapping with each other.

 ZnL,Cl , (1^*) starts decomposition at 163^oC (Fig. 1) and transforms to an isolable $\text{ZnL}_{0.5}\text{Cl}_2$ complex at 245°C in a single step, as evident from its TG curve but its DTA curve shows a number of exothermic peaks overlapping with each other. The derived $\text{ZnL}_{0.5}\text{Cl}_2$ on further heating decomposes to ZnCl, in a single step, as evident from its TG and DTA curves.

Fig. 2. Thermal curves of ZnL_2Br_2 (2) (sample mass, 8.83 mg) and $\text{ZnL}_{1.5}\text{Br}_2$ (2*) (sample **mass, 15.54 mg).**

Figure 2 shows the thermal curves of ZnL_2Br_2 (2). It starts to lose hydrazine at 215°C and transforms to nonisolable ZnLBr_2 at 280°C in a single step showing an endothermic peak at 275° C. The derived $ZnLBr₂$ immediately starts decomposition and transforms to the corresponding metal salt at 330°C showing two exothermic peaks overlapping with each other.

The thermal curve of $\text{ZnL}_{1,5}\text{Br}_2(2^*)$ is shown in Fig. 2. It decomposes at 190°C and transforms to $\text{ZnL}_{0.5}\text{Br}_{2}$ at 275°C in a single step. The intermediate, $\text{ZnL}_{0.5}\text{Br}_{2}$, immediately starts decomposition to ZnBr_{2} on further heating in a single step, as evident from its TG curve. The corresponding DTA curve shows two exotherms overlapping with each other.

Figure 3 shows the thermal curves of ZnL_3SO_4 (3). It starts to lose hydrazine at 175°C and transforms to an isolable intermediate, $\text{ZnL}_{2.75}\text{SO}_4$, in a single step showing an endotherm. The derived $\text{ZnL}_{2.75}\text{SO}_4$ starts decomposition at 255°C and transforms to ZnL_2SO_4 at 320°C in a single step showing an endothermic peak at 290°C. The derived ZnL₂SO₄ on further heating transforms to ZnSO₄ at 425°C showing two endotherms and one exotherm overlapping with each other.

Fig. 3. Thermal curves of ZnL_3SO_4 (3) (sample mass, 27.29 mg) and $ZnL_3SO_4 \cdot H_2O$ (3^{*}) **(sample mass, 19.65 mg).**

 $\rm ZnL_3SO_4\cdot H_2O$ (3*) starts decomposition at 100°C (Fig. 3) and transforms to an anhydrous species at 145° C in a single step. The anhydrou species starts decomposition at 160°C and transforms to ZnL_2SO_4 at 325°C

TABLE 1

TABLE 2

Analytical (calculated values in parentheses) data of Zn(II) hydrazine complexes

a Derived from complex (1).

 b Derived from complex (1*).</sup>

' Derived from complex (3).

 d Derived from complex (3^*) .

in a single step observed from its TG curve. The corresponding DTA curve shows three distinct endotherms. The derived ZnL_2SO_4 on further heating transforms to $ZnSO_4$ through the formation of nonisolable $ZnLSO_4$. The corresponding DTA curve shows two overlapping exotherms for the formation of $ZnLSO₄$ and two overlapping endotherms for the elimination of residual hydrazine.

Thermoanalytical data are shown in Table 1 and analytical data are shown in Table 2.

DISCUSSION

Complexes derived from ZnCl, and hydrazine

Treatment of a saturated aqueous solution of ZnCl, with hydrazine results in ZnL_2Cl_2 (1) while the treatment of ZnCl_2 in pyridine medium with hydrazine generates ZnL_2Cl_2 (1*). Both complexes are perfectly white in color. The appearance of bands in the IR spectra between $960-980$ cm⁻¹ $\nu(N-N)$ indicates the bridging bidentate character of hydrazine [8] in both cases. The physicochemical investigations of complex (1) synthesized by us suggest no difference in geometry from the complex reported earlier [9,10]. $Zn(N,H_4)$, Cl₂ shows infinite-chain structure with *cis*-bridging hydrazine and trans-Cl ions as evident from its crystal structure determination [10]. We have been able to isolate ZnLCl₂ as an intermediate species. IR spectral data show the bridging character of hydrazine. The monohydrazine species may attain O_h geometry where halogens act as bridging bidentate ligands and T_d geometry where chloride ion behaves as a monodentate ligand. A tetrahedral arrangement of the ligands around Zn is assumed in this compound since coordination number 4 is more characteristic for Zn^{2+} [11]. The thermal decomposition pattern of ZnL_2Cl_2 (1) shows that one molecule of hydrazine is evolved from one molecule of the complex in the first step. Since one hydrazine molecule is linked by two Zn^{2+} ions, one of the two bridged hydrazines in ZnL_2Cl_2 (1) is evolved when decomposition starts, as shown below.

An interesting feature is that alternation of the preparative procedure yields ZnL_2Cl_2 (1*), which is indistinguishable by IR spectroscopy. A major

difference in the thermal profile is observed between complexes (1) and (1^*) (Table 1). The difference in the thermal profile observed between complexes (1) and (1^*) also indicates the difference in their geometries. Complex (1) appears more stable in comparison to that of complex (1^*) . This shows more regular geometry in complex (1) in comparison to complex (1^*) . We have isolated a hemihydrazine complex as an intermediate from the parent (1^*) . In the complex ZnL_0 , Cl_2 , the chloride ligands are possibly bridged, considering the composition and the preferential stereochemistry (T_d symmetry) of the Zn^{2+} ion.

Complexes derived from ZnBr, and hydrazine

Treatment of hydrazine hydrate with the concentrated aqueous solution of ZnBr_2 affords ZnL_2Br_2 (2) whilst on treatment of hydrazine hydrate with ZnBr₂ in pyridine medium results in ZnL_{1.5}Br₂ (2^{*}). Both the species are white in color. IR spectra show the bridging character of hydrazine in both complexes. The geometry of ZnL , Br , appears similar to that of ZnL , Cl , reported earlier. We found similarity in the TG profile of complexes (1) and (2) though their DTA profiles have appreciable differences (Table 1). We could not isolate ZnLBr, as shown by complex (2) (Table 1). We have failed also to isolate the intermediate $\text{ZnL}_{0.5}\text{Br}_{2}$, which appears upon heating of ZnL_1 , Br₂ (2^{*}) (Fig. 2). The composition of ZnL_1 , Br₂ (2^{*}) suggests the bridging bidentate character of the bromide ligand existing in it, considering its preferential stereochemistry.

The complexes derived from ZnSO, and hydrazine

A concentrated aqueous solution of $ZnSO₄$ reacting with hydrazine hydrate results in ZnL_3SO_4 (3) while on treatment of hydrazine hydrate with $ZnSO₄$ in pyridine medium affords $ZnL₃SO₄ \cdot H₂O$ (3^{*}). The IR spectral data of both complexes show the bridging character of hydrazine. The literature shows that Zn^{2+} ion is coordinated octahedrally by six nitrogen atoms of three N_2H_4 groups in $ZnL_1(NO_1)_2$ reported earlier [3]. We have isolated two intermediates, $ZnL_{2.75}SO_4$ and ZnL_2SO_4 derived from complex (3). The $\text{ZnL}_{2.75}\text{SO}_4$ appears very interesting as it is very difficult to suggest how it exists from the bridging bidentate character of hydrazine and noncoordinated character of the SO_4 group, indicated by its IR spectra. The geometry of ZnL_2SO_4 is likely to exist as that of ZnL_2Cl_2 . The interesting thermal behavior of ZnL_2SO_4 is that it does not generate any intermediates, either $ZnLSO₄$ or $ZnL₀$, $SO₄$, like those of $ZnL₂Cl₂$ complexes. The alteration of preparative procedure also yields a tris species with one molecule of water. The water present in complex (3^*) is not coordinated to the zinc ion, as evident from its IR spectral date though it requires a comparatively high temperature for its dehydration. The anhydrous tris species derived from the

parent complex (3*) shows practically no difference from the IR spectra of $ZnL₃SO₄$ (3). In complex (3), three NH₂ stretching frequencies at 3260 cm^{-1} , 3220 cm⁻¹ and 3170 cm⁻¹ are observed whereas only one band at 3260 cm⁻¹ is observed in the tris complex derived from the parent (3^*). The decomposition pattern of complex (3*) appears simple with respect to that of complex (3) though we could not isolate the intermediates, ZnL_2 SO, and $ZnLSO₄$, pyrolytically from complex (3^*) . These observations definitely indicate that the geometry attained by complex (3) is not identical to the geometry attained by the anhydrous species of complex (3*).

The thermal stability of ZnL, X , $(X = Cl^-$ or Br⁻ or SO₄⁻) shows the order $Cl \leqslant Br \leq SO_4$. This order also prevails in monohydrazine complexes. The interesting observation is that we noticed some kind of rearrangement taking place in the freshly prepared hydrazine complexes of Cd^{2+} ion on keeping them in a desiccator for a month [7]. This type of rearrangement does not take place here. Another interesting feature is that zinc hydrazine complexes generate a smaller number of complexes as intermediates in comparison to that of Cd complexes reported by us.

REFERENCES

- 1 F. Bottomley, Q. Rev., Chem. Soc., (1970) 617.
- 2 P. Glavic, J. Slivnik and A. Bole, J. Inorg. Nucl. Chem., 37 (1975) 345.
- 3 K.C. Patil, C. Nesamani and V.R. Pai Vemeker, Synth. React. Inorg. Met.-Org. Chem., 12 (1982) 383.
- 4 B. Banerjee, P.K. Biswas and N. Ray Chaudhuri, Thermochim. Acta, 68 (1983) 261.
- 5 B. Banerjee, P.K. Biswas and N. Ray Chaudhuri, Bull. Chem. Sot. Jpn., 56 (1983) in press.
- 6 B. Banerjee, P.K. Biswas and N. Ray Chaudhuri, unpublished results.
- 7 B. Banerjee and N. Ray Chaudhuri, Thermochim. Acta, 71 (1983) 93.
- 8 D. Nicholls and R. Swindells, J. Inorg. Nucl. Chem., 30 (1968) 2211.
- 9 L. Sacconi and A. Sabatini, J. Inorg. Nucl. Chem., 25 (1963) 1389.
- 10 A. Ferrari, A. Braibanti and G. Bigliardi, Acta Crystallogr., 16 (1963) 498.
- 11 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, 1980, p. 590.